ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Ручная плазменная резка: аппараты, оборудование, видео. Резка металла плазмой. Металлообрабатывающее оборудование Резка металла плазмой

Машиностроение и тяжелую промышленность нельзя представить без сварки и резки металлических поверхностей. На крупных производственных объектах, занимающихся обработкой, применяется специальная резка металла плазмой.

Плазма, что это?

Под плазменным элементом понимают токопроводящий газ, ионизирующийся под действием высоких температур. Значение температурного показателя в рабочей зоне достигает 25 000 – 30 000 градусов. Газ подается к обрабатываемому изделию под давлением, то есть струей.

Эта разновидность резки подразумевает сочетание двух дуг – газовой и электрической. Источник плазменной резки производится в специальном приборе, называемым плазмотроном.

Как устроен плазморез?

Плазменный раскрой металла включает нескольких составных систем:

  • энергоисточник;
  • резак;
  • компрессорная установка или баллон с газом для подачи воздуха;
  • соединительные кабели.

Энергоисточник

В качестве энергобазы может выступать:

  1. Инвертор. Имеет массу достоинств: обеспечивает стабильность образования дуги; высокий показатель КПД, в отличие от трансформатора; легкий вес и невысокая стоимость; возможность применения в малодоступном месте. Единственным минусом системы является то, что он неспособен резать детали более 30 мм.
  2. Трансформатор. Основным достоинством устройства является устойчивость к перепадам напряжения электросети. Также можно отметить, что он дает резать металлические детали большой толщины. Главный недостаток – существенная масса, низкий КПД.

Плазмотрон

Это устройство представляет собой электроплазменный резак, благодаря которому разрезается металлическая деталь. Он считается главным «механизмом» плазмореза.

Плазмотрон включает:

  • Рабочий электрод;
  • Рабочее сопло;
  • Изолирующий элемент, обладающий высокой термоустойчивостью.

Горелка плазмореза

Необходимо предварительно определиться с материалом, который необходимо прорезать и условиями работы.

Стоит отметить, что системы с медным соплом обладают значительной прочностью и быстро охлаждаются воздушными массами. А это очень хорошо.

На рукояти плазморезов подобного вида есть возможность закрепить вспомогательные элементы, поддерживающие насадку сопла на требуемой дистанции. Это облегчает процесс эксплуатирования.

Для разреза тонкого металла следует выбрать установку, в горелку которой поступает кислород, а для толстого изделия – азот.

Показатели мощности

Главным принципом в работе плазменной резки считается мощность. Выбирая мощность агрегата необходимо учитывать свойства изделия, с чем придется работать. По этому признаку будут отличаться габариты сопла и вид газообразной смеси.

Чтобы справиться с изделием из металла 30 мм достаточно выбрать мощность агрегата 50-90А.

Если толщина реза превышает 30 мм, то профессионалы советуют приобрести плазморез с мощностью 100-170А.

Покупая агрегат, следует учесть силу тока и напряжение, которое он способен выдержать.

Быстрота, время, затраченное на разрез

Данное значение измеряется в см, которые разрезает агрегат за 1 или 5 мин

Если на устройстве указывается, что длительность эксплуатирования равна 80 процентам, то этот показатель означает, что резак будет работать 8 мин, а далее 2 мин аппаратура будет остывать.

Если при эксплуатировании потребуется делать длинные разрезы, то рационально выбирать устройства с увеличенной продолжительностью работы.

Раскрой струей плазмы

Принцип оптимальной работы плазменной резки заключается в разрезании металлических деталей струей плазмы, не проводящей электричество. При раскрое этим способом дуга возникает между насадкой плазмотрона и рабочим электродом, а возделываемое изделие в электрической цепочке не участвует. Для разреза детали применяется плазменная струя.

Плазменно – дуговая резка характеризуется тем, что воздействию подвергаются токопроводящие элементы. Дуга при этом способе образуется между возделанной деталью и рабочим электродом, ее основание совмещается с электроплазменным потоком. Струя возникает в результате поступления газа и последующей его ионизацией.

Метод плазменно-дуговой резки используется при:

  • изготовление изделий с различными фигурными очертаниями;
  • проделывание сквозных проемов в металлическом элементе;
  • производство деталей для сваривания, штамповки и контактного возделывания;
  • плазменная резка труб;
  • литейная обработка.

Плазменно-дуговая резка достаточно эффективна и хорошо себя зарекомендовала в возделывании металлов.

Разновидности плазменного раскроя

Разрезание поверхностей из металла с использованием плазмы различают на несколько типов, все зависит от атмосферы процесса:

  • Простой способ. При разрезе применяется воздух либо азот и электричество. Длиновые показатели электрической дуги ограничены. Этот метод применим для стали с низким содержанием вспомогательных примесей, то есть низколегированного типа. Газообразный кислород выступает в роли режущего компонента. Для данного метода характерна – ровная кромка и отсутствие заусениц. Основное использование - ручная резка.
  • Смешение двух газов. Одна газовая составляющая плазменной резки направляется на возникновение плазмы, другая выполняет защитную функцию от неблагоприятного воздействия атмосферы. Качественные характеристики разрезания металла увеличиваются.
  • С водной защитой. Эта модификация предполагает применение в технологии воды, вместо газообразного элемента. Водная основа обеспечивает оптимальное охлаждение сопла и заготовительного элемента. Все вредные вещества поглощаются водными массами.
  • Со впрыскиванием воды. Газ направляется на образование плазмы, а водные массы в вихревую дугу. Это позволяет увеличить ее сжатие, тем самым повышая плотность и температурные показатели.

Технологические особенности резки

Как работает плазменная резка? Принцип работы плазмореза заключается в локальном нагревании поверхности металла в зоне раздела и его последующем плавлении. Нагревание происходит потоком плазмы, который формируется путем специального оборудования. Технологические особенности получения плазмы выглядят так:

  • На первом этапе образовывается электродуга, разжигающееся между электродом устройства и соплом. Температурные показатели могут достигать 5 тысяч градусов.
  • Подается газовый элемент, повышая температурное значение уже до 20 тысяч.
  • Происходит взаимодействие газа и электрической дуги – ионизация. Температура увеличивается до 30 тысяч градусов.

Для полученной струи плазмы для резки металла плазмой характерно: яркая потоковая вспышка и усиленный выход из сопла устройства. Струя разогревает поверхность и расплавляет деталь в точечной области воздействия, в результате чего выполняется резка металла плазмой.

Как осуществляется ручная электроплазменная разрезка?

Принцип плазменной резки металла начинается с подключения устройства, тем самым собирая все составные части в единую систему. Далее инвертор либо трансформатор подключают к сети переменного тока и металлической детали.

Осуществление резки предусматривает удерживание сопла агрегата к обрабатываемой поверхность на дистанцию 4 см и вспышка дежурной дуги, вследствие которой будет возникать ионизация газа. Далее в сопло поступает газообразный воздух, в результате чего должен сформироваться электроплазменный поток.

Стоит отметить, что когда электроплазменная струя сформирована, первоначальная дуга отключается автоматом. Задача вспомогательной струи заключается в поддержание ионизации потока плазменного компонента. Бывают случаи, когда рабочая дуга угасает, значит нужно перекрыть доступ газа в сопло и повторить процедуру заново.

Плюсы и минусы плазменного раскроя

К основным положительным характеристикам применения плазменной системы относят следующие аспекты:

  • Универсальность технологического процесса.
  • Автоматическая плазменная резка.
  • Высокие показатели скорости операции при работе с материалами средней и малой толщины.
  • Высокоточный и качественный рез, исключив дополнительных механических операций.
  • При работе с электроплазменной средой практически исключается загрязнение воздуха.
  • Нет необходимости предварительного разогрева поверхности, что снижает временные рамки прожига.
  • Выполняемые работы считаются относительно безопасными, так как нет необходимости волочить за собой баллоны с газом, которые являются взрывоопасными.

К минусам электроплазменной технологии относят:

  • Ценовая составляющая плазмотрона и его конструкционные особенности, что повышает себестоимость выполнения работ по резке металла.
  • Незначительная толщина прореза.
  • Высокие показатели шума, так как газовый элемент из плазмотрона выходит на околозвуковой скорости.
  • Необходимо качественное техническое обслуживание агрегата.
  • Если в качестве газообразного элемента используется азот, то это способствует выделению большого количества вредных веществ в атмосферу.
  • К конфигурации плазмотрона нельзя подключить дополнительный плазменный резак для ручной обработки металлической поверхности.

Также существенным недостатком при работе плазменной установки считается отклонение от перпендикуляра резания на угол не более 50 градусов.

Основные аспекты правил безопасности

Технология плазменной резки металла является опасной для рабочего и окружающих. При осуществлении операции профессионалы своего дела рекомендуют использовать защитный костюм сварщика и специальный щиток с затемненными стеклами. При разрезе металлических поверхностей возможно воздействие нежелательных эффектов:

  • Тепловой микроклимат в зоне работающего человека;
  • Облучение ультрафиолетовым спектром;
  • Влияние расплавленного металла;
  • Увеличенное напряжение;

Температурные показатели при резке плазмой достигают тысяч градусов по Цельсию. Человек может получить ожоги во время проведения резки. Ожоговый риск снижается, если процесс автоматизирован. Излучение, которое возникает в период эксплуатирования устройства способно вызвать ожоги глазного сектора работающего. Чтобы это не произошло достаточно пользоваться маской либо щитком с защитными темными стеклами. На практике щиток менее комфортен, так как приходится постоянно придерживать рукой, а это сковывает и ограничивает движения сварщика.

Техника безопасности на месте резки металла плазмой включает в себя внимательный осмотр оборудования на наличие неисправностей. Стоит помнить, что неисправным устройством пользоваться нельзя, даже если очень нужно. При проведении резания не следует стучать плазмотроном для удаления расплавленных остатков. В противном случае он повредится. Также во время проведения работ необходимо постоянного контролировать напряжение сети.

Плазменно-дуговая резка и раскрой металлических поверхностей струей плазмы достаточно широко используются в промышленном секторе. Плазменная современная резка труб с ЧПУ по праву является незаменимым оборудованием для производственных компаний, так как все можно сделать с высокой точностью и производительностью. Плазморезом можно пользоваться для разделения различных элементов. Что важно, то устройство подходит и для спаивания. Например, с его помощью проводятся различные операции закалки, зачистки, а также сваривание припоями. Металлическая поверхность в этой ситуации быстрее охлаждается, нежели при стандартной резке кислородом.

Внешние особенности

При плазморезке собственными силами следует обратить внимание на компактность прибора. Ими просто управлять и не требуют особого опыта. Если чувствуете неуверенность в своих силах, то рекомендуем посмотреть обучающее видео.

) струи плазмы называется плазменной резкой. Поток плазмы образуется в результате обдува газом сжатой электрической дуги. Газ при том нагревается и ионизируется (распадается на отрицательно и положительно заряженные частицы). Температура плазменного потока составляет около 15 тысяч градусов по Цельсию.

Виды и способы резки при помощи плазмы

Резка плазмой бывает:

  • поверхностная;
  • разделительная.

На практике широкое применение нашла разделительная плазменная резка. Поверхностная резка используется крайне редко.

Само резание осуществляется двумя способами:

  • плазменной дугой. При резании стали этим способом разрезаемый металл включается в электрическую цепь. Дуга образуется между вольфрамовым электродом резака и изделием.
  • плазменной струей. Дуга возникает в резаке между двумя электродами. Разрезаемое изделие в электрическую цепь не включается.

Плазменная резка превосходит по производительности кислородную. Но если режется материал большой толщины или титан, то предпочтение надо отдавать кислородной резке. Плазменная резка незаменима при резании (особенно ).

Виды газов, применяемых для плазменного резания.

Для образования плазмы используются газы:

  • активные – кислород, воздух. Применяются при резке черных металлов
  • неактивные – азот, аргон, . Применяются при резке цветных металлов и сплавов.
  1. Сжатый воздух. Используется для резки:
  • меди и ее сплавов – при толщине до 60 mm;
  • алюминия и его сплавов – при толщине до 70 mm;
  • стали – при толщине до 60 mm.
  1. Азот с аргоном. Применяется для резки:
  • высоколегированной стали толщиной до 50 mm.

Применять эту газовую смесь для резания меди, алюминия, и черной стали не рекомендуется;

  1. Чистый азот. Используется для резания (h=толщина материала):
  • меди h равной до 20 mm;
  • латуни h равной до 90 mm;
  • алюминия и его сплавов h равной до 20 mm;
  • высоколегированных сталей h равной до 75 mm, низколегированных и низкоуглеродистых – h равной до 30 mm;
  • титана – любой толщины.
  1. Азот с водородом. Применяется для резки:
  • меди и ее сплавов средних толщин (до 100 mm);
  • алюминия и сплавов средних толщин – до 100 mm.

Азотоводородная смесь непригодна для резки любых сталей и титана.

  1. Аргон с водородом. Применяется при резке:
  • Меди, алюминия и сплавов на их основе толщиной от 100 мм и выше;
  • Высоколегированной стали толщиной до 100 мм.

Для резки углеродистых, низкоуглеродистых и низколегированных сталей, а также для титана аргон с водородом применять не рекомендуется.

Оборудование для плазменной резки: виды и краткая характеристика.

Для механизации плазменной резки созданы полуавтоматы и машины переносные различных модификаций.

1. могут работать как с активными, так и с неактивными газами. Толщина разрезаемого материала колеблется от 60 до 120 мм.

  • Расход газа:
  1. воздух – от 2 до 5 м куб/час;
  2. аргон – 3 м куб/час;
  3. водород – 1 м куб/час;
  4. азот – 6 м куб/час.
  • Скорость перемещения – от 0,04 до 4 м/мин.
  • Рабочее давление газа – до 0,03 МПа.
  • Вес полуавтоматов составляет 1,785 – 0,9 кг в зависимости от модификации.

2. Переносные машины используют сжатый воздух.

  • Толщина разрезаемого материала – не более 40 мм.
  • Расход сжатого воздуха – от 6 до 50 м куб/час;
  • Охлаждение плазмотронов – водой или воздухом.
  • Скорость перемещения – от 0,05 до 4 м/мин.
  • Рабочее давление газа – до 0,4 – 0,6 МПа.
  • Вес переносных машин – до 1,8 кг в зависимости от модификации.
  • Плазмотроны, охлаждаемые водой, могут эксплуатироваться только при плюсовых температурах окружающей среды.
  • Полуавтоматы и переносные машины пригодны для промышленного использования.

Для ручной резки выпускаются два комплекта:

  • КДП-1 с плазмотроном РДП-1;
  • КДП-2 с плазмотроном РДП-2.

Резание плазмой

Аппарат КДП-1 используется для резки алюминия (до 80 мм), нержавеющих и высоколегированных сталей (до 60 мм) и меди (до 30 мм).

Максимальный рабочий ток – 400 А.

Максимальное напряжение холостого хода источника питания – 180 В.

Плазмотрон РДП-1 работает с азотом, аргоном или смеси этих газов с водородом.

Охлаждается плазмотрон РДП-1 водой, потому его можно использовать при температуре выше 0 градусов Цельсия.

Аппарат КДП-2 уступает первому по мощности дуги (всего 30 кВт). Преимущество этой модели в том, что охлаждение плазмотрона РДП-2 осуществляется воздухом. В результате комплект может быть использован на открытом воздухе при любой температуре окружающего воздуха.

Комплектность аппаратов ручной резки:

  • режущий плазмотрон;
  • кабель-шланговый пакет;
  • коллектор;
  • зажигалка для возбуждения режущей дуги.

Комплекты для ручной плазменной резки выпускаются беспультовыми. Такое конструктивное решение рационально для выполнения ограниченного объема работ с загрузкой оборудования не более чем на 40 – 50%. Но на время работы их приходится доукомплектовывать сварочными выпрямителями и преобразователями.

При том не следует забывать, что с точки зрения техники безопасности для ручной резки допускается величина напряжения холостого хода источника питания не более 180 В.

Плазменная резка металлов выполненная своими руками: некоторые тонкости процесса.

  • Началом процесса резания металлов считается момент возбуждения плазменной дуги. Начав резку, необходимо поддерживать постоянное расстояние между соплом плазмотрона и поверхностью материала. Оно должно быть от 3 до 15 мм.
  • Необходимо стремиться к тому, чтобы в процессе работы ток был минимальным, потому что при увеличении силы тока и расхода воздуха снижается ресурс работы сопла плазмотрона и электрода. Но при этом уровень тока должен обеспечивать оптимальную производительность резки.
  • Наиболее сложной операцией является пробивка отверстий. Сложность заключается в возможном образовании двойной дуги и выходе из строя плазмотрона. Потому при пробивке плазмотрон должен быть поднят над поверхностью металла на 20 – 25 мм. Опускается плазмотрон в рабочее положение только после того, как металл будет пробит насквозь. При пробивке отверстий в листах большой толщины специалисты рекомендуют использовать защитные экраны с отверстиями диаметром 10-20 мм. Экраны помещаются между изделием и плазмотроном.
  • Для ручной резки высоколегированных сталей в качестве плазмосодержащего газа применяется азот.
  • При ручной резке алюминия с применением аргоноводородной смеси содержание водорода не должно превышать 20% для повышения стабильности горения дуги.
  • Резку меди выполняют с использованием водородосодержащих смесей. А вот латунь требует азота или азотоводородной смеси. При этом резка латуни происходит на 20% быстрее, чем меди.
  • После резки медь обязательно зачищают на глубину 1-1,5 мм. Для латуни это требование не является обязательным.

Применяется при обработке проводящих металлов. Обрабатываемый материал получает энергию от источника тока посредством ионизированного газа. Стандартная система включает контур зажигания и резак, которые обеспечивают подачу электроэнергии, ионизацию и управление, необходимые для качественной высокопроизводительной резки различных металлов.

Выход источника постоянного тока задает толщину и скорость обработки материала и поддерживает дугу.

Контур зажигания выполняется в виде высокочастотного генератора переменного напряжения 5-10 тыс. В частотой 2 МГц, которое создает высокоинтенсивную дугу, ионизирующую газ до состояния плазмы.

Резак является держателем для расходных деталей — сопла и электрода — и обеспечивает охлаждение этих деталей газом или водой. Сопло и электрод сжимаются и поддерживают ионизированную струю.

Ручные и механизированные системы служат для разных целей и требуют разного оборудования. Только пользователь может определить, какая из них лучше всего подходит для его нужд.

Резка металла плазмой представляет собой термический процесс, при котором пучок нагревает электропроводный металл до температуры, превышающей точку его плавления, и удаляет расплавленный металл через проделанное отверстие. Между электродом в горелке, к которому подведен отрицательный потенциал, и заготовкой с положительным потенциалом возникает электрическая дуга и происходит резка материала ионизированным потоком газа под давлением при температуре от 770 до 1400 °C. Струя плазмы (ионизированного газа) концентрируется и направляется через сопло, где она уплотняется и становится способной расплавить и разрезать самые разные металлы. Это основной процесс как для ручной, так и для механизированной плазменной резки.

Ручная резка

Ручная резка металла плазмой производится с помощью достаточно небольших устройств с плазменной горелкой. Они маневренны, универсальны и могут быть использованы для выполнения различных задач. Их возможности зависят от силы тока режущей системы. Параметры установок ручной резки варьируются от 7-25 А до 30-100 А. Некоторые устройства, однако, позволяют получить до 200 ампер, но они не являются широко употребительными. В ручных системах в качестве плазмообразующего и защитного газа обычно используется технический воздух. Они сконструированы таким образом, чтобы их можно было использовать с различным входящим напряжением, которое может изменяться от 120 до 600 В, а также использоваться в одно- или трехфазных сетях.

Ручная плазма для резки металла обычно используется в мастерских, занимающихся обработкой тонких материалов, заводских службах технического обслуживания, ремонтных мастерских, пунктах приема металлолома, при строительно-монтажных работах, в судостроении, автомастерских и художественных мастерских. Как правило, ее применяют для обрезки излишков. Обычный 12-амперный плазменный аппарат разрезает максимум 5-мм слой металла со скоростью около 40 мм в минуту. 100-амперное устройство режет 70-мм слой со скоростью до 500 мм/мин.

Как правило, ручная система выбирается в зависимости от толщины материала и желаемой скорости обработки. Устройство, которое обеспечивает высокую силу тока, работает быстрее. Однако при резке с большой силой тока становится труднее контролировать качество работы.

Машинная обработка

Механизированная резка металла плазмой производится на установках, которые, как правило, значительно больше ручных, и используется в сочетании с раскройными столами, в том числе с водяной ванной или с платформой, оборудованной различными приводами и двигателями. Кроме того, механизированные системы оборудуются ЧПУ и управлением высотой струи режущей головки, которая может включать в себя предустановку высоты резака и контроль напряжения. Механизированные системы плазменной резки могут устанавливаться на другое металлообрабатывающее оборудование, такое как штамповочные прессы, или роботизированные системы. Размер механизированной конфигурации зависит от размера стола и используемой платформы. Раскроечный станок может быть меньше, чем 1200х2400 мм и больше, чем 1400х3600 мм. Такие системы не очень подвижны, поэтому до установки следует предусмотреть все их компоненты, а также место их расположения.

Требования к питанию

Стандартные источники питания обладают максимальным диапазоном силы тока от 100 до 400 А для кислородной резки и от 100 до 600 А для азотной. Многие системы работают в более низком диапазоне, например, от 15 до 50 А. Существуют системы с азотной резкой с силой тока 1000 А и выше, но они редки. Входное напряжение для механизированных плазменных систем составляет 200-600 В в трехфазной сети.

Требования к газу

Для резки мягкой и нержавеющей стали, алюминия, а также различных экзотических материалов обычно используются сжатый воздух, кислород, азот и смесь аргона с водородом. Их комбинации служат плазмообразующим и вспомогательным газом. Например, при резке мягкой стали пусковым газом часто является азот, плазмообразующим - кислород, а сжатый воздух используется как вспомогательный.

Кислород употребляется для мягкой углеродистой стали, потому что он производит высококачественные разрезы в материале толщиной до 70 мм. Кислород также может исполнять роль плазмообразующего газа для нержавеющей стали и алюминия, но результат получается не совсем аккуратным. Азот служит плазменным и вспомогательным газом, поскольку он обеспечивает отличную резку практически любого типа металла. Используется при больших токах и позволяет обрабатывать листовой прокат толщиной до 75 мм и в роли вспомогательного газа для азотной и аргон-водородной плазмы.

Сжатый воздух - наиболее распространенный газ как плазменный, так и вспомогательный. Когда производится слаботочный раскрой листового металла толщиной до 25 мм, оставляет окисленную поверхность. При резке воздухом, азотом или кислородом является вспомогательным газом.

Смесь аргона с водородом, как правило, используется для обработки нержавеющей стали и алюминия. Обеспечивает высококачественный разрез, и необходима для механизированной резки листов толщиной более 75 мм. Диоксид углерода также может быть использован в роли вспомогательного газа, когда производится резка металла плазмой азота, так как это позволяет работать с большинством материалов и гарантирует хорошее качество.

Смесь азота с водородом и метан также иногда применяются в процессе плазменной резки.

Что потребуется еще?

Выбор плазмы и вспомогательных газов - только два из важнейших решений, которые необходимо принимать во внимание при установке или использовании механизированной плазменной системы. Емкости для газа можно приобрести или арендовать, они доступны в различных размерах, и для их хранения необходимо создать соответствующие условия. Установка системы требует значительного количества электропроводки и труб для газа и охлаждающей жидкости. Помимо самой механизированной плазменной системы, требуется подобрать стол, раскроечный станок, ЧПУ и THC. OEM-производители обычно предлагают множество вариантов оборудования, которое подойдет для любой конфигурации устройства.

Нужна ли механизация?

Из-за сложности выбора механизированного процесса плазменной резки, необходимо уделить много времени исследованию различных конфигураций и критериев системы. Следует учесть:

  • типы деталей, которые будут вырезаться;
  • количество промышленных изделий в партии;
  • желаемую скорость и качество резки;
  • стоимость расходных материалов.
  • общую стоимость эксплуатации конфигурации, в том числе электроэнергии, газа и труда.

Размер, форма и количество производимых частей может определять необходимое производственное промышленное оборудование - тип ЧПУ, стола и платформы. Например, производство деталей небольшого размера может потребовать платформы со специализированным приводом. Реечные приводы, сервоприводы, приводные усилители и датчики, используемые на платформах, определяют качество резки и максимальную скорость системы.

Качество и скорость также зависит от того, какое ЧПУ и газы используются. Механизированная система с регулируемым током и потоком газа в начале и в конце резки уменьшит расход материалов. Кроме того, с ЧПУ с большим объемом памяти и выбором возможных установок (например, высоты факела в конце разреза) и быстрая обработка данных (входной/выходной коммуникации) снизит простои и увеличит скорость и точность работы.

В конечном счете решение о покупке или обновлении механизированной системы плазменной резки или использовании ручной должно быть обоснованным.

Плазменная резка металла: оборудование

Hypertherm Powermax45 - переносной аппарат с большим числом стандартных компонентов на основе инвертора, т. е. биполярного транзистора с изолированным затвором. Работать с ним очень легко, независимо от того, режется ли тонкая сталь или листовой прокат толщиной 12 мм со скоростью 500 мм/минуту или 25 мм со скоростью 125 мм/мин. Устройство способно генерировать большую мощность для резки различных видов токопроводящих материалов, таких как сталь, нержавеющая сталь и алюминий.

Система питания имеет преимущество перед аналогами. Входное напряжение - 200-240 В однофазного тока силой 34/28 А при мощности 5,95 кВт. Изменения входного напряжения сети компенсируются технологией Boost Conditioner, благодаря которой резак демонстрирует повышенную производительность на низких напряжениях, при колебаниях входной мощности, а также при питании от генератора. Внутренние компоненты эффективно охлаждаются с помощью системы PowerCool, обеспечивающей повышенную производительность, время работы и надежность устройства. Другой важной особенностью этого продукта является соединение горелки FastConnect, которое облегчает механизированное использование и повышает универсальность.

Факел Powermax45 имеет конструкцию с двойным углом, который продлевает срок службы сопла и снижает Он оснащен функцией Conical Flow, повышающей плотность энергии дуги, благодаря чему значительно сокращает дросс и производится высококачественная плазменная резка. Цена Powermax45 - 1800 $.

Hobart AirForce 700i

Hobart AirForce 700i обладает наибольшей режущей способностью данной линейки: номинальная толщина резки - 16 мм со скоростью 224 мм/мин, а максимальная - 22 мм. По сравнению с аналогами, рабочая сила тока устройства на 30% меньше. Плазменный резак подойдет для станций техобслуживания, ремонтных мастерских и при сооружении небольших построек.

Устройство отличается легким, но мощным инвертором, эргономичным пусковым предохранителем, эффективным потреблением воздуха и недорогими расходными материалами горелки, благодаря чему производится безопасная, качественная и недорогая плазменная резка. Цена AirForce 700i составляет 1500 $.

В комплект входит эргономичная ручная горелка, кабель, 2 сменных наконечника и 2 электрода. Потребление газа составляет 136 л/мин при давлении 621-827 кПа. Вес аппарата - 14,2 кг.

40-амперный выход обеспечивает исключительную производительность резки листового металла - быстрее, чем механические, газовые и плазменные устройства других изготовителей.

Miller Spectrum 625 X-treme

Miller Spectrum 625 X-treme - небольшой аппарат, достаточно мощный для резки различных видов стали, алюминия и других проводящих ток металлов.

Питается от сети переменного тока напряжением 120-240 В, автоматически подстраиваясь под поданное напряжение. Легкий и компактный дизайн делает устройство весьма портативным.

Благодаря технологии Auto-Refire дуга контролируется автоматически, избавляя от необходимости постоянно нажимать кнопку. Номинальная толщина резки при токе 40 А составляет 16 мм при скорости 330 мм/мин, а максимальная - 22,2 мм при 130 мм/мин. Потребляемая мощность - 6,3 кВт. Вес аппарата в ручном исполнении составляет 10,5 кг, а с машинным резаком - 10,7 кг. В качестве плазменного газа используется воздух или азот.

Надежность Miller 625 обеспечивается технологией Wind Tunnel. Благодаря встроенному высокоскоростному вентилятору пыль и мусор не попадают внутрь устройства. Светодиодные индикаторы информируют о давлении, температуре и мощности. Цена аппарата - 1800 $.

Lotos LTP5000D

Lotos LTP5000D - портативный и компактный плазменный аппарат. При весе 10,2 кг проблем с его перемещением не возникнет. 50-амперный ток, производимый цифровым преобразователем, а также мощный транзистор MOSFET обеспечивают эффективный рез мягкой стали толщиной 16 мм и 12 мм нержавеющей стали или алюминия.

Устройство автоматически подстраивается под напряжение и частоту сети. Длина шланга - 2,9 м. Вспомогательная дуга с металлом не контактирует, что позволяет использовать аппарат для резки ржавых, необработанных и окрашенных материалов. Устройство безопасно в использовании. Сжатый воздух, применяемый для резки, не вреден для человека. А крепкий ударопрочный корпус надежно защищает аппарат от попадания пыли и мусора. Цена Lotos LTP5000D - 350 $.

При покупке плазменного резака нужно всегда отдавать предпочтение качеству. Следует остерегаться искушения приобрести дешевый низкокачественный аппарат, так как его быстрый износ в долгосрочной перспективе приведет к гораздо большим затратам. Конечно, переплачивать также не стоит, есть достаточно достойных бюджетных вариантов без аксессуаров и высоких мощностей, которые могут никогда не понадобиться.

Плазменную резку очень часто используют в таких отраслях промышленности, как судостроение, машиностроение, а также при изготовлении металлоконструкций, коммунальной сфере и т. п. Кроме этого, плазморез довольно часто используется в частной мастерской. С его помощью быстро и качественно разрезают любой материал, проводящий ток, и некоторые нетокопроводящие материалы – дерево, камень и пластик.

Технология плазменной резки позволяет разрезать листовой металл и трубы, выполнять фигурный рез или изготавливать детали. Работа осуществляется при помощи высокотемпературной плазменной дуги . Чтобы ее создать, потребуется только источник тока, воздух и резак. Чтобы работа выполнялась довольно легко, а рез получался ровным и красивым, следует выяснить, как осуществляется принцип работы плазменной резки.

Как устроен плазморез

Этот аппарат состоит из следующих элементов:

  • источник питания;
  • воздушный компрессор;
  • плазменный резак или плазмотрон;
  • кабель-шланговый пакет.

Источник питания для аппарата плазменной резки осуществляет подачу на плазмотрон определенной силы тока. Представляет собой инвертор или трансформатор.

Инверторы довольно легкие, в плане энергопотребления экономные, по цене недорогие, однако, способны разрезать заготовки небольшой толщины. Из-за этого их применяют только в частных мастерских и на маленьких производствах . У инверторных плазморезов КПД на 30% больше, чем у трансформаторных и у них лучше горит дуга. Часто используют их для работ в труднодоступных местах.

Трансформаторы гораздо увесистее, тратят много энергии, но при этом имеют меньшую чувствительность к перепадам напряжения, и с их помощью разрезают заготовки большой толщины.

Плазменный резак считается главным элементом плазмореза. Его основными элементами являются:

  • сопло;
  • охладитель/изолятор;
  • канал, необходимый для подачи сжатого воздуха;

Компрессор требуется для подачи воздуха. Принцип работы плазменной резки предусматривает применение защитных и плазмообразующих газов. Для аппаратов, которые рассчитаны на силу тока до 200 А , применяется только сжатый воздух как для охлаждения, так и для создания плазмы. Они способны разрезать заготовки толщиной в 50 мм.

Кабель-шланговый пакет используется для соединения компрессора, источника питания и плазмотрона. По электрическому кабелю от инвертора или трансформатора начинает поступать ток для возбуждения электрической дуги, а по шлангу осуществляется подача сжатого воздуха, который требуется для возникновения внутри плазмотрона плазмы.

Принцип работы

При нажатии на кнопку розжига начинается подача тока высокой частоты от источника питания (инвертора или трансформатора). В результате этого внутри плазмотрона образуется дежурная электрическая дуга, температура которой достигает 8 тыс. градусов. Столб этой дуги начинает заполнять весь канал.

После того как возникла дежурная дуга, в камеру начинает поступать сжатый воздух. Вырываясь из патрубка, он проходит через электрическую дугу , нагревается, при этом увеличиваясь в объеме в 50 или 100 раз. Кроме того, воздух начинает ионизироваться и перестает быть диэлектриком, приобретая свойства проводить ток.

Сопло плазмотрона, суженное книзу, обжимает воздух, создавая из него поток, которое начинает вырываться оттуда со скоростью 2 – 3 м/с. В этом момент температура воздуха часто достигает 30 тыс. градусов. Именно такой раскаленный ионизированный воздух и является плазмой.

В то время, когда плазма начинает вырываться из сопла, происходит ее соприкосновение с поверхностью обрабатываемого металла, дежурная дуга в этот момент гаснет, а зажигается режущая. Она начинает разогревать заготовку в месте реза . Металл в результате этого плавится и появляется рез. На поверхности разрезаемого металла образуются небольшие частички расплавленного металла, сдуваемые с нее потоком воздуха. Таким образом осуществляется работа плазмотрона.

Преимущества плазменной резки

Работы по резке металла часто осуществляются на стройплощадке, в мастерской или цеху. Можно использовать для этого автоген, но не всех это устраивает. Если объем работ, связанный с резкой металла, слишком большой, а требования, предъявляемые к качеству реза, очень высоки, то следует подумать о том, чтобы использовать плазменный резак, имеющим следующие достоинства:

Недостатки плазменной резки

Недостатки в работе плазменной резки тоже имеются. Первый из них – максимально допустимая толщина реза довольно небольшая, и у самых мощных агрегатов она редко бывает больше 80 – 100 мм.

Следующий недостаток – достаточно жесткие требования, предъявляемые к отклонению от перпендикулярности реза. Угол отклонения не должен быть больше 10 – 50 градусов и зависит это от толщины детали. Если случается выход за эти пределы, то возникает довольно существенное расширение реза, что в результате влечет за собой быстрый износ расходных материалов.

Кроме того, рабочее оборудование довольно сложное, что делает совершенно невозможным использование двух резаков одновременно, которые подключаются к одному аппарату.

Заключение

Принцип работы плазменной резки довольно прост. Кроме того, аппарат, который используется для этого, имеет большое количество преимуществ, в несколько раз превосходящие имеющиеся недостатки. Если его правильно эксплуатировать, то можно существенно сэкономить время и получить качественный результат.

Для резки металлов используют несколько различных методов отличающихся друг от друга себестоимостью и эффективностью. Некоторые способы используются исключительно для промышленных целей другие также можно применять и в быту.


К последним относится плазменная резка металлов. Эффективность плазменного раскроя ограничивается опытом мастера и правильным выбором установки.

  • Что такое плазменная резка металла?
  • На чем основан принцип проведения работ?
  • Какие сферы применения имеет этот способ раскроя материалов?

Основы резки металлов плазмой

Чтобы понять основы резки металла с помощью плазменного метода следует для начала уяснить, что же такое плазма? От правильного понимания того как устроен плазматрон и принципов работы с ним зависит качество конечного результата.

Термическая плазменная обработка металлов зависит от параметров рабочей струи газа или жидкости, направленной под давлением на обрабатываемую поверхность. Для достижения необходимых результатов струю доводят до следующих характеристик:

  • Скорость - струя направляется под высоким давлением на поверхность материала. Можно сказать, что плазменный раскрой металла основан на разогревании металла до температуры плавления и быстрого выдувания его. Рабочая скорость струи при этом составляет от 1,5 до 4 км в сек.
  • Температура - для образования плазмы необходимо практически моментально разогреть воздух до 5000-30000°C. Высокая температура достигается благодаря созданию электрической дуги. При достижении необходимой температуры воздушный поток ионизируется и меняет свои свойства, приобретая электропроводность. Технология плазменной резки металла подразумевает использование систем нагнетания воздуха, а также осушителей, которые удаляют влагу.
  • Наличие электрической цепи. Все о раскрое металла плазмой можно узнать только на практике. Но некоторые особенности необходимо учитывать еще до приобретения установки. Так, существуют плазмотроны косвенного и прямого воздействия. И если для вторых обязательно, чтобы обрабатываемый материал пропускал электричество и был включен в общую электрическую сеть (выступая в роли электрода), то для первых такой необходимости нет. Плазма для резки металла в таком случае получается с помощью встроенного электрода внутри держателя. Этот способ используют для металлов и других материалов, которые не проводят электричество.

Еще один важный момент, который следует учитывать, это то, что плазменная резка толстого металла практически не выполняется, так как это ведет к увеличенным материальным затратам и малоэффективно.

Характеристики и принцип резки металла плазмой

Основной принцип работы плазменной резки металла можно описать следующим образом:

Так как процесс связан с моментальным разогревом разрезаемого материала до жидкого состояния, толщина металла при резке составляет:

  • алюминий до 120 мм;
  • медь 80 мм;
  • углеродистая и легированная сталь до 50 мм;
  • чугун до 90 мм.

Существуют два основных способа обработки материалов, от которых зависят характеристики плазменной резки. А именно:

  1. Плазменно-дуговая - способ подходит для всех видов металла, которые в состоянии проводить электрический ток. Обычно плазменно-дуговую резку используют для промышленного оборудования. Суть способа сводится к тому, что плазма образовывается за счет дуги, которая появляется непосредственно между поверхностью обрабатываемого материала и плазмотроном.
  2. Плазменно-струйная – в этом случае дуга возникает в самом плазмотроне. Плазменно-струйный вариант обработки более универсален, позволяет разрезать неметаллические материалы. Единственным недостатком является необходимость периодической замены электродов.

Плазменная резка металла работает как обычная дуговая, но без использования привычных электродов. Но эффективность способа обработки прямо пропорциональна толщине обрабатываемого материала.

Скорость и точность резки металла плазмой

Как и при любом другом виде термической обработки, при плазменной резке металла происходит определенное оплавление металла, что отражается на качестве реза. Существуют и другие особенности, которые являются характерными для этого метода. А именно:

От профессионализма мастера во многом зависит качество выполнения работ. Чистый и точный рез с минимальным отклонением от необходимых размеров может выполнить только работник с профильным образованием. Без соответствующей подготовки выполнить фигурную резку вряд ли получится.

Плазменная резка цветных металлов

При обработке цветных металлов используются разные способы резки в зависимости от типа материала, его плотности и других технических характеристик. Для разрезания цветных сплавов требуется соблюдения следующих рекомендаций.

Где применяется плазменный раскрой металла

Использование плазмотронов не зря пользуется такой большой популярностью. При относительно простой эксплуатации и незначительной стоимости ручной установки (по сравнению с другим оборудованием для резки) удается достичь высоких показателей относительно качества реза.

Применение плазменной резки металла получило распространение в следующих сферах производства:

Применение станков с плазменной резкой не заменило ручных установок. Так художественная резка металла плазмой позволяет сделать уникальные детали точно соответствующие замыслу художника, для использования их в качестве декоративных украшений для заборов и лестниц, а также перил, ограждений и т. д.

Резка металла плазмой – преимущества и недостатки

Без резки металла не может обойтись практически ни одно промышленное предприятие, так или иначе связанное с металлопрокатом. Быстрое разрезание листового материала на заготовки, декоративная фигурная резка металла плазмой, вырезание точных отверстий – все это можно выполнить достаточно быстро с помощью плазмотрона. Плюсы, которые имеет метод, заключаются в следующем:
  • Высокая производительность и скорость обработки деталей. По сравнению с обычным электродным методом можно выполнить объемы работ от 4 до 10 раз больше.
  • Экономичность - плазменный метод намного выигрывает на фоне стандартных способов обработки материалов. Единственные ограничения связанны с толщиной металла. Нецелесообразно и экономически невыгодно разрезать с помощью плазмы сталь толще 5 см.
  • Точность - деформации от тепловой обработки практически незаметны и не требуют дополнительной обработки впоследствии.
  • Безопасность.

Все эти преимущества плазменной резки металла объясняют, почему метод пользуется настолько широкой популярностью не только в промышленных, но и бытовых целях.

Но говоря о плюсах необходимо заметить и некоторые отрицательные стороны:

  • Ограничения, связанные с толщиной реза. Даже у мощных установок максимальная плотность обрабатываемой поверхности не может быть выше, чем 80-100 мм.
  • Жесткие требования относительно выполнения обработки деталей. От мастера требуется четко придерживаться угла наклона резака от 10 до 50 градусов. При несоблюдении этого требования нарушается качество реза, а также ускоряется износ комплектующих.

Сравнение плазменной и лазерной резки металла

Отличие лазерной резки металла от плазменной заключается в методах воздействия на поверхность материала.

Лазерные установки обеспечивают большую производительность и скорость обработки деталей, при этом после выполнения операции наблюдается меньший процент оплавленности. Минусом лазерного оборудования является его высокая стоимость, а также то, что толщина разрезаемого материала должна быть меньше 20 мм.

По сравнению с лазером плазмотрон имеет меньшую стоимость, более широкую сферу применения и функциональные возможности.