ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Монтаж мембранной кровли своими руками. Поэтапная установка системы водоснабжения своими руками: от простого к сложному

Мы последовательно покажем процесс замены неисправной мембраны гидроаккумулятора. Когда наш гидроаккумулятор вышел из строя, пространство между мембраной и корпусом наполнилось водой. Назначение нижнего фланца – удерживать резиновую мембрану в корпусе гидроаккумулятора. Когда мы открутили фланец, вода из корпуса потекла наружу.

Демонтаж неисправной мембраны

Сначала мы аккуратно отвинчиваем болты с фланца, снимаем фланец и дожидаемся, пока стечёт вода.

Слегка освободив края мембраны, удаляем остатки воды.

В данной модели гидроаккумулятора объёмом 150 литров крепёж мембраны предусмотрен и в верхней части.

Это резьбовой штуцер с наружной резьбой. Аккуратно свинчиваем с него гайку и вытаскиваем неисправную мембрану вместе с резьбовым штуцером через отверстие в нижней части корпуса.

После удаления мембраны в корпусе не остаётся ничего, поэтому на данном этапе рекомендуется хорошо вычистить внутреннюю поверхность корпуса.

Мембрана по форме напоминает грушу. Обратите внимание, что новая мембрана должна полностью соответствовать оригиналу. Не приобретайте дешёвые варианты с другой спецификацией, в конечном итоге это выйдет дороже. Возьмите в магазин старую мембрану в качестве образца или перепишите её спецификацию с таблички на корпусе гидроаккумулятора.

Полезный совет: новую мембрану перед использованием желательно вымыть в неагрессивном моющем растворе. Мы вставляем в мембрану резьбовой штуцер для крепления её сверху и не спеша закручиваем его в отверстие мембраны.

Установка в корпус новой мембраны

Вставляем новую мембрану в корпус гидроаккумулятора через нижнее отверстие в корпусе.

Проталкиваем мембрану до её выступов в нижней части.

Теперь наша задача – расправить мембрану внутри корпуса и попасть резьбовым штуцером в отверстие в его верхней части. Для более крупной модели можно использовать специальные приспособления или заранее привязать к штуцеру верёвку и протянуть её через отверстие.

Закручиваем на резьбовой штуцер гайку.

Внутри штуцера предусмотрена выемка под шестигранник. Разводным ключом слегка подтягиваем гайку. Если на гидроаккумулятор не планируется устанавливать регулирующую автоматику, манометр или клапан для выпуска воздуха, то верхнее отверстие во фланце можно заглушить металлическим колпачком подходящего диаметра. В качестве уплотнения можно использовать фум-ленту или лён.

Наматываем 5-6 оборотов фум-ленты и устанавливаем колпачок.

Сначала закручиваем его от руки, затем подтягиваем разводным ключом.

Устанавливаем нижний прижимной фланец на корпус. Этот фланец фиксирует мембрану на корпусе, прижимая её края. Устанавливать и закручивать болты на фланце следует по тем же правилам, по которым закручиваются колёса автомобиля. В зависимости от количества болтов можно использовать схему “крест-накрест” или “звёздочка”. Надо стараться устанавливать и поджимать болты с противоположных сторон – так мы добьёмся равномерного прижатия фланца и мембраны. Когда все болты установлены, подтягиваем их поочерёдно торцевым ключом.

Подключение гидроаккумулятора к системе водоснабжения

Подсоединяем гидроаккумулятор с помощью прокладки и накидной гайки к системе водоснабжения. Здесь достаточно усилий от руки.

До запуска гидроаккумулятора необходимо создать дополнительное воздушное давление. Для этого откручиваем пластиковую крышку с ниппеля и подключаем насос.

По манометру следим за ростом давления в баке. Обычно на табличке гидроаккумулятора указана величина предварительного воздушного давления. В нашем случае она составляет 1,5 бара.

Если значение не указано, установите давление 1,5 – 2 бара. После этого можно открывать кран и подавать воду в гидроаккумулятор.

Все права на видео принадлежат: DoHow

Одна из самых сложных тем, которая зачастую ставит в тупик тех, кто хочет строить каркасный дом своими руками — это пленки и мембраны, пароизоляция и теплоизоляция каркасного дома.

В каркасном доме очень важно правильно применять различные пленки на своих местах и с правильной стороны, иначе долговечность вашего каркасного дома сильно сократится, а жить в нем будет весьма некомфортно.

Какие пленки бывают в каркасном доме?

Пароизоляционная пленка

Пароизоляция в каркасном доме нужна для того, чтобы остановить влагу, идущую из дома на улицу через утеплитель, то есть ее ставят только ИЗНУТРИ дома. Идет влага по законам физики, так как снаружи холоднее, чем внутри.

Соответственно, если снаружи помещения теплее или такая же температура, то ставить ее необязательно (например, между первым и вторым этажом одного одинакового отапливаемого здания). Если мы не остановим эту влагу, то утеплитель перестанет работать и утеплять наш дом, он полностью промокнет. Помним, что каркасный дом должен быть термосом, чтобы быть теплым.

Для роли пароизолятора идеально соответствует обычная полиэтиленовая пленка толщиной 200 мкн (самая толстая из тех, что продают). Остальные новомодные пленки, которые всего лишь продукт маркетинга, использовать для пароизоляции в каркасном доме нет необходимости.

К тому же, обычную полиэтиленовую пленку легко найти и купить.

Нужно помнить, что пароизоляция должна быть максимальное герметичной . Если в ней необходимо сделать отверстия (для розеток, для прохода труб вентиляции и другие), то нужно эти места проклеить специальным скотчем или герметиком (бутил каучук). Перфекционисты проклеивают также и дырки от любого крепежа в стене, я пока такого не делал.

Где применяют пароизоляционную пленку :
В стенах каркасного дома — изнутри
В полу каркасного дома (нижнем перекрытии) — изнутри
В потолке каркасного дома (верхнем перекрытии) — изнутри

Монтаж пароизоляционной пленки финнами на видео:

Мембрана в каркасном доме

1. Гидроветрозащитная паропроницаемая мембрана

Эта пленка абсолютно отличается по свойствам от пароизоляционной. Она не пускает влагу снаружи дома в утеплитель и на деревянные части дома, при этом выпускает пар изнутри. Несмотря на то, что мы закрыли утеплитель изнутри пароизоляцией, немного остаточного пара все равно проходит в утеплитель и нам этот пар нужно выпустить. Для этого мембрана и паропроницаемая .

Помимо этого данные мембраны обычно ветрозащитные и одновременно защищают утеплитель от выдувания тепла.

Где применяют гидроветрозащитную пленку в каркасном доме :

Стены каркасного дома — снаружи (или под контробрешеткой под деревянным фасадом или сразу под сайдингом по ОСП-3)
В полу каркасного дома (нижнем перекрытии) — снизу под утеплителем, чтобы ветер не задувал ()
В потолке каркасного дома (верхнем перекрытии) — сверху на утеплителе, чтобы утеплитель не выдувало (если это эковата или опилки и т.п. сыпучие утеплители)


Эта пленка отличается от предыдущей тем, что она дешевле, но при этом может защитить утеплитель от конденсата (не не от десятка литров воды), а также выпустить из него лишний пар.

Где применяют антиконденсатную пленку :
На холодном чердаке — под контробрешеткой, то есть изнутри холодного чердака.

Применяйте пленки правильно, и ваш каркасный дом стоять долго и радовать вас! Если остались какие-то вопрос, задавайте, или можете сразу обращаться за подбором бригады для вас.

Иногда нанять проверенных строителей куда легче, чем самостоятельно разбираться во всех тонкостях строительства дома, так что обращайтесь.

Проблему подачи воды в доме при наличии источника — скважины или колодца — вполне можно решить самостоятельно. В этой статье мы расскажем о самых простых и недорогих способах водоснабжения на разных этапах. Вы узнаете об основных принципах устройства автономного водопровода в загородном доме.

Далеко не всегда получается приобрести дом или дачу, готовые под ключ, где всё уже установлено, испытано и работает. До 50% объектов купли-продажи имеют либо незавершённый вид, либо требуют ремонта или реконструкции. Иногда речь идёт об участке с фундаментом, а то и без него. Индивидуальными источниками воды на таких участках обычно служат артезианские скважины или колодцы.

Примечание. На каждую скважину буровики выдают документ — «Паспорт скважины». В нём указаны параметры (глубина, ширина, расстояние до зеркала) и эксплуатационные характеристики скважины (производительность, качество воды), которые будут решающими при выборе насосного оборудования.

Внимание! В случае отсутствия «Паспорта скважины» не следует устанавливать и эксплуатировать постоянное оборудование «вслепую». Заказать услугу исследования скважины можно в любой организации соответствующего профиля.

Этап строительства, наружных работ или полив

Вода — необходимый элемент не только для живых организмов, но и для химических реакций. Понадобиться она может на разных этапах строительства и эксплуатации дома, дачи. Мы рассмотрим варианты срочного монтажа и подачи воды в разных случаях.

Когда разводки водопровода ещё нет, а вода уже нужна, разумно применить временный вариант. В этом случае вода будет доставляться только по участку, набираться в ёмкости, использоваться для приготовления раствора и прочих хозяйственных нужд. Работа такой системы будет производиться в ручном режиме, по необходимости и только в летний период.

Колодец хорош тем, что в нём можно использовать все виды водоподъёмных насосов. Недостаток его в том, что обычно это место общего пользования — колодец на участке большая редкость. Поэтому мы будем ориентироваться в основном на индивидуальные скважины, исходя из экономии средств на временные коммуникации.

В обоих случаях рекомендуется оборудовать примитивный пульт управления подачи воды. Водорозетка может быть выполнена в виде жёсткого колена в форме П или Г со штуцерами на входе и выходе. Ключ — любой переключатель в наружном исполнении. Если диаметр скважины позволяет, можно использовать в ней недорогой вибрационный насос без поплавка. Насос должен входить в трубу свободно, с запасом минимум 2 см по окружности. Если диаметр трубы не позволяет установить садовый насос, на этом этапе можно подобрать скважинный или наружный, который потом будет работать в постоянной системе.

Что понадобится:

  1. Любой погружной насос, конструктивно подходящий к источнику (в статье «Обзор погружных насосов для загородного дома» мы рассказывали о моделях этих агрегатов).
  2. Переключатель в наружном исполнении.
  3. Запас сплошного кабеля от ключа до насоса, установленного на глубину.
  4. Трос, верёвка.
  5. Материал для жёсткого колена — труба, колена трубы, штуцер под колено (1 дюйм на выходе).
  6. Обратный клапан (латунь или пластик) под резьбу на выходе насоса и штуцер под клапан (1 дюйм на выходе).
  7. Шланг под штуцеры (1 дюйм внутри).
  8. Хомуты, крепёж, материал козырька и щита.

Порядок работы

1. Определяем глубину установки (подвеса) насоса. Если скважина (колодец) малой или средней глубины (10-25 метров), оптимально установить насос в 1 метре от дна. Вибрационные насосы дают напор до 60 метров. Глубину скважины можно определить пробным опусканием груза на верёвке.

2. Если необходимо — подключаем сплошной кабель заданной длины к насосу.

3. Отмеряем нужную длину верёвки (троса), шланга.

4. Устанавливаем обратный клапан со штуцером на насос.

5. Подсоединяем шланг к штуцеру насоса и крепим хомутами.

6. Опускаем насос в скважину на заданную глубину и фиксируем страховочный трос.

7. Монтируем электрощит (доска с укреплённым на ней ключом и автоматом) и подсоединяем кабель к переключателю, на который подаём напряжение.

8. Собираем жёсткое колено и устанавливаем его крепежами на прочную основу (столб, труба, стена). Материал для колена можно выбрать подручный — металл, ППР, металлопластик. Подсоединяем шланг к штуцеру колена и фиксируем его хомутами.

При установке наружного (садового) насоса процедура упрощается до уровня интуитивного восприятия: шланг с сетчатым фильтром и обратным клапаном опускается одним концом в источник, а другим подсоединяется к насосу. Вся система фиксируется по месту.

В этом варианте нам не потребуется кран для запора воды — его функцию выполняет обратный клапан, благодаря которому труба постоянно заполнена водой. Если установить штуцер на высоте 1 метр, можно подавать воду для полива самотёком на довольно большой участок при условии, что он не имеет уклона в сторону источника воды.

Цена вопроса. В этой системе дороже всего будет стоить только сам насос — от 600 до 1500 руб. Штуцеры, шланг, трос, обратный клапан (пластик) и автомат обойдутся примерно в 300-500 руб.

Водоснабжение маленькой дачи с поливом, подача воды в помещение на дальнюю точку

Для полноценного функционирования скважины зимой понадобится устройство кессона — переходного помещения между источником (скважиной) и потребителем (системы водоразбора дома). Обычно его располагают ниже уровня земли, глубже промерзания грунта. Он выполняет несколько жизненно важных функций:

  1. Служит местом для установки оборудования, по сути, являясь насосной.
  2. Удерживает постоянную температуру за счёт энергии грунта.
  3. Поглощает шум от работы оборудования (насосной станции).

На этом этапе можно комбинировать временные элементы системы с постоянными. Есть элементы и показатели, которые останутся неизменными. Это глубина источника, расстояние до ввода в дом, глубина промерзания грунта, высота дома.

С учётом того, что мы стремимся постепенно ввести в эксплуатацию постоянную автономную систему водоснабжения , строительства кессона нам не избежать. Если мы эксплуатируем во временной системе вибрационный насос, то вся конструкция просто переносится в кессон.

Следующим постоянным элементом будет магистраль от кессона к вводу в дом. Этот участок лучше выполнить капитально, не зависимо от насосного оборудования. Трубу закладывать глубже промерзания грунта, диаметром не менее того, что в разводке дома, с шаровыми кранами с обеих сторон. Здесь возникает препятствие — путь от источника до потребителя может быть «тернист» и подлежит расчёту. Нас интересуют два основных показателя насоса: напор и глубина погружения водозабора (глубина всасывания для наружных).

Предположим, наши потребности на данном этапе весьма скромны: подача воды на высоту 2 метра от уровня 2-го этажа (от земли 5 м) в 10 метрах от скважины. Потребление — периодическое (наполнение ёмкостей), не более 1 м 3 в час. Глубина от насоса до зеркала воды — 5 метров.

Вычисляем высоту (Н), на которую насос должен поднять воду. 1 метр напора по вертикали равен 4 метрам горизонтального перемещения, на сопротивление системы — 5%:

  • Н = (6 + 10/4 + 2) + 10% = 11,55 — принимаем 12 метров.

При гидротехнических расчётах полученный показатель умножают на 2 — чтобы учесть дальнейшие условия эксплуатации. Итак, требуемый напор в нашем случае будет 24 метра.

Подобрав таким образом насос (с запасом мощности), мы включаем его в систему и устанавливаем в кессоне. В этом случае ручное управление на основе обратного клапана нам уже не подходит и пришло время внедрять автоматику. Первым и пока что единственным элементом управления будет реле давления. Его можно установить на вводе в дом (изнутри).

Что даёт реле давления? Оно срабатывает при открытии крана (падении давления) в системе и включает насос. Иными словами, автоматически подкачивает воду напрямую из скважины в систему. Мы подчёркиваем, что описанные устройства — временные меры, переходный этап к полноценной системе.

Внимание! Основная причина выхода из строя наружных и погружных насосов — частое кратковременное включение.

Обзор поверхностных насосов мы провели в предыдущей статье.

В таком виде система будет работать при открывании крана и позволит провести зиму с водой. Давление будет нестабильным, неравномерным, поэтому подключение водонагревательных приборов не рекомендуется.

Постоянное полноценное водоснабжение дачи или дома

Большая часть системы собрана и подключена. Осталось решить четыре задачи:

  1. Стабилизировать давление в системе.
  2. Защитить насос от частых кратковременных запусков.
  3. Дополнить и окончательно скомпоновать систему.
  4. Отфильтровать воду.

Задача 1 и 2

Давление выравнивается при помощи накопительного бака особой конструкции — гидроаккумулятора. Внутри него установлена герметичная резиновая мембрана, отделяющая водозаборный отсек от воздушного.

При включении гидроаккумулятора в систему происходит следующее: насос нагнетает воду в замкнутую систему, мембрана растягивается, создавая давление, срабатывает реле давления, насос отключается. Давление в системе поддерживается не насосом, а мембраной.

При малых объёмах потребления (мытьё рук, слив бачка унитаза) насос не включается на подкачку сразу, что в разы экономит его ресурс в сравнении с прямой системой. Для обеспечения дома, где проживает 4 человека, обычно достаточно бака на 30 литров, но существуют изделия на 50, 70, 100 и более литров. Рабочее давление гидроаккумляторов такого объёма — от 6 бар (атм). Реле давления выставляют в пределах 1-2,5 бар.

Задача 3 и 4

На этом этапе мы технически обеспечили подачу воды в дом на нужную высоту и расстояние под постоянным заданным давлением. Разумным шагом теперь станет «продление жизни» частям системы путём улучшения качества воды. Проще говоря, сейчас следует доукомплектовать систему фильтрами и смонтировать для постоянного использования.

Если скважина неглубокая и водозабор расположен близко ко дну, то установки грубого фильтра нам не миновать. Чтобы защитить крыльчатку и гидроаккумулятор, включаем в систему перед насосом (рядом с ним) фильтр грубой очистки. Непосредственно перед распределением воды в помещении устанавливают фильтры тонкой очистки для того, чтобы защитить чувствительные приборы домашней сантехники.

Внимание! Устанавливайте фильтры тонкой очистки в доступных местах для визуального контроля и своевременного обслуживания.

Классическим и наиболее удачным способом компоновки считается размещение всех описанных элементов (кроме фильтров тонкой очистки) в кессоне скважины. Это упрощает обслуживание и «прячет» шум под землю. При этом система не занимает места в доме.

Разумеется, описанные компоненты существуют в разных вариациях заводского исполнения. Самая удобная и популярная из них — портативная насосная станция. Она представляет собой гидрокомпрессор, компоненты которого подобраны с учётом взаимных показателей и собраны в заводских условиях. В неё входят:

  • поверхностный насос
  • гидроаккумулятор
  • манометр
  • реле давления
  • пульт управления

Затраты на поэтапную сборку насосной станции своими руками

Исходные данные:

  1. Насос поверхностный. Требуемый напор — от 24 м, давление на выходе — от 3 бар, глубина всасывания от 7 м.
  2. Гидроаккумулятор — 20-30 литров.
  3. Реле давления 1-3 бар с манометром — 1 шт.
  4. Обратный клапан (латунь) — 2 шт.
  5. Труба ПНД — 10 м.
  6. Труба ППР — 10 м.
  7. Кран шаровой — 2 шт.

Таблица расходов:

Позиция Производитель Цена ед., руб. Кол-во Стоимость, руб.
Насос поверхностный HAMMER NAC800A, КНР 2500 1 2500
QUATTRO ELEMENTI Giardino1000, Италия 3300 1 3300
GRUNDFOS JP 5, Германия 11000 1 11000
Гидроаккумулятор EUROAQUA Н024L, КНР 1600 1 1600
НАСОСЫ+ TANK 30L H, КНР 2100 1 2100
AQUAPRESS AFC 24SB, Италия 5200 1 5200
Реле давления с манометром Реле давления РДМ 5 (РМ 5) + манометр, Россия 400 1 400
Обратный клапан, латунь AL-KO, Германия 300 2 600
Труба ПНД - 20 10 200
Труба ППР - 20 10 200
Кран шаровой STA, Украина 70 2 140
Итого сопутствующий монтаж 1540
Итого насос + гидроаккумулятор 4100/5400/16200
Итого вся система 5640/6940/17740
Работа 5000
Итого материал и работа 10640/11940/22740

Обзор готовых насосных станций, подходящих под исходные требования:

Как видно из анализа, цена всей системы зависит от многих факторов, в том числе не учтённых в таблице (дополнительные, сопутствующие и транспортные расходы). Основной статьёй сметы являются насос и гидроаккумулятор. Их цена кардинальным образом зависит от производителя.

Как сделать гидроаккумулятор без мембраны своими руками

Специально для тех, кто привык всё делать сам, кратко опишем оригинальную и очень эффективную систему поддержания давления. Вместо заводского гидроаккумулятора устанавливаем герметичный бак из нержавеющей стали или пищевого алюминия. Подключаем к нему насос с поплавковым концевым переключателем. Устанавливаем на бак компрессор, который будет создавать нужное давление при любом уровне воды. Это сократит количество включений насоса ещё как минимум в два раза. При этом система усложнится за счёт компрессора.

Один из важнейших элементов систем водоснабжения для частных домов это гидроаккумулятор. Благодаря этому устройству, поддерживается постоянное давление в водопроводе, а также осуществляется защита всего оборудования от гидравлических ударов.

Мембрана для гидроаккумулятора

Однако, ничего не вечно, поэтому нужно знать, как заменить мембрану в гидроаккумуляторе – без нее он не сможет работать.

Принцип работы мембраны в гидроаккумуляторе

На самом деле, сменная мембрана для гидроаккумулятора – это его самая важная часть. Без нее, это будет просто накопительный металлический бак. Мембрана представляет собой резиновую грушу, сделанную из каучука. В зависимости от размеров самого бака, она может быть разной емкости, однако от этого, принцип ее работы не меняется.

Мембрана внутри гидробака

Она вставляется внутрь бака и делит его на две части:

  1. В одну насосом закачивается воздух.
  2. Во вторую подается вода с системы водопровода.

Давление воздуха в баке составляет 1,5-2 атмосферы. Благодаря этому, в водопроводе поддерживается постоянное рабочее давление.

Кроме этого, сменная мембрана для гидроаккумулятора выполняет еще одну важную задачу – она предохраняет водопровод от гидроударов и защищает насос от слишком частых включений. Происходит это таким образом:

  • например, мощность насоса составляет 3 м3\час, а кран потребляет 0,6 м3\час;
  • получается, что когда открывается кран, то сразу же включается насос, однако, поскольку он подает воды значительно больше, чем нужно крану, он сразу же выключается. А как только давление в системе упадет – насос снова включится. Таким образом, он будет включаться и выключаться через каждую секунду – а это может привести к тому, что устройство просто сгорит;
  • благодаря гидроаккумулятору, насос будет включаться только тогда, когда давление в мембране упадет ниже заданного.

Получается, что это устройство занимает важное место в системе водоснабжения. И желательно знать, как отремонтировать его своими руками. Тем более, это не так сложно.

Виды мембран

Существует 2 типа этих изделий:

  1. Для отопления.
  2. Для использования в водопроводах.

Различные виды мембран

Естественно, что между ними есть определенные различия:

  • максимальная температура мембран для водопровода составляет 70 градусов, тогда как для отопительных – 99;
  • изделия для водопровода изготавливаются из каучука, а для отопления из специального состава.

Отопительные мембраны выдерживают давление в 8 атмосфер, тогда как водопроводные – 7. Их объемы также бывают разными, однако наиболее популярные находятся в пределах 100 литров

Как определить, что мембрана пришла в негодность

Вообще, производители заявляют срок службы этих изделий равный 5 годам. Однако, на практике, такое случается редко. Ведь мембраны очень не любят:

  • повышение температуры выше установленного;
  • частые перепады давления;
  • интенсивное сжатие.

На практике, редко удается избежать работы гидробака в жестком режиме, поэтому срок службы груши уменьшается до 3-х лет.

Как определить, что пора поменять мембрану в гидравлическом аккумуляторе:

  • насос стал включаться слишком часто;
  • не держится постоянное давление воды.

Это явные признаки повреждения мембраны, однако, это может указывать и на повреждения в корпусе гидроаккумулятора. Поэтому, перед тем, как разбирать емкость, желательно проверить состояние самого бака.

Замена мембраны

Если причина уже определена, то нужно приступать к ремонту. И первое, что нужно сделать, это приобрести новое изделие. Здесь важно не экономить и покупать оригинальные запчасти, т.к. дешевые подделки могут быстро выйти из строя. И получится такая ситуация, что через полгода придется делать все заново.

Подготовка

Когда новая мембрана куплена, нужно приготовить набор ключей и переходить к ремонту. Вначале, нужно слить воду из самой емкости. Для этого:

  • перекрывается подача воды к гидроаккумулятору;
  • с него стравливается воздух;
  • сливается вода.

Важный момент – если при сливе воды из аккумулятора будет выходить и воздух, значит, резиновая груша повреждена. То же самое качается и ниппеля – если при стравливании воздуха будет выходить вода, это говорит о поломке.

Дело в том, что груша разделяет внутренность бака на две независимые камеры. Поэтому смешивание воды и воздуха исключается. Если же это происходит, значит внутренняя целостность нарушена.

Этапы ремонта

Когда вода с бака спущена, можно переходить непосредственно к ремонту. Замена мембраны в гидроаккумуляторе делается таким образом:

На этом сам процесс замены заканчивается. Теперь, нужно делать пробный пуск гидроаккумулятора. Для этого, он обратно подсоединяется к водопроводу. Но в начале, в него нужно накачать воздух до рабочего давления, оно составляет 1,5-2 атмосферы.

А после, включается подача воды. При этом, не стоит открывать кран подачи на полную мощность. Это может привести к разрыву мембраны, поэтому, вода набирается постепенно.

Таким образом, поменять мембрану своими руками довольно просто. И с этим без проблем можно справиться не привлекая специалистов. Тем более, стоимость замены в специализированном центре, может получиться довольно высокой.

Видео

Профилактика

Чтобы поломка гидроаккумулятора не застала врасплох, нужно проводить его периодическое обслуживание. Делать его несложно:

  • один раз в 3-4 месяца бак осматривается на наличие повреждений;
  • раз в полгода, нужно проверить работу манометра, реле давления, а также проверить уровень давления воздуха в баке.

Дело в том, что средний срок службы этих изделий редко превышает эту цифру. Поэтому лучше провести замену заранее – так можно заранее обезопасить себя от внезапной поломки.

Сразу хочу предупредить, что этот топик не совсем по тематике Хабра, но в комментариях к посту про разработанный в MIT элемент идею вроде бы поддержали, так что ниже я опишу некоторые соображения о биотоливных элементах.
Работа, на основе которой написан данный топик, выполнялась мной в 11 классе, и заняла второе место на международной конференции INTEL ISEF.

Топливный элемент – химический источник тока, в котором химическая энергия восстановителя (топлива) и окислителя, непрерывно и раздельно подаваемых к электродам, непосредственно превращается в электрическую
энергию. Принципиальная схема топливного элемента (ТЭ) представлена ниже:

ТЭ состоит из анода, катода, ионного проводника, анодной и катодной камеры. На данный момент мощности биотопливных элементов недостаточно для использования в промэшленных масшатабах, но БТЭ с небольшой мощностью могут использоваться для медицинских целей как чувствительные датчики поскольку сила тока в них пропорциональна количеству перерабатываемого топлива.
К настоящему времени предложено большое число конструктивных разновидностей ТЭ. В каждом конкретном случае конструкция ТЭ зависит от назначения ТЭ, типа реагента и ионного проводника. В особую группу выделяют биотопливные элементы, в которых используются биологические катализаторы. Важной отличительной чертой биологических систем является их способность к селективному окислению различных топлив при низкой температуре.
В большинстве случаев в биоэлектрокатализе используют иммобилизованные ферменты, т.е. ферменты, выделенные из живых организмов и закрепленные на носителе, но сохранившие при этом каталитическую активность (частично или полностью), что позволяет использовать их повторно. Рассмотрим на примере биотопливный элемент, в котором ферментативная реакция сопряжена с электродной при использовании медиатора. Схема биотопливного элемента на основе глюкозооксидазы:

Биотопливный элемент состоит из двух инертных электродов из золота, платины или углерода, погруженных в буферный раствор. Электроды разделены ионообменной мембраной: анодное отделение продувается воздухом, катодное - азотом. Мембрана позволяет пространственно разделить реакции, протекающие в электродных отделениях элемента, и в тоже время обеспечивает обмен протонами между ними. Подходящие для биосенсоров мембраны разных типов выпускаются в Великобритании многими фирмами (ВДН, ВИРОКТ).
Введение глюкозы в биотопливный элемент, содержащий глюкозооксидазу и растворимый медиатор, при 20 °С приводит к возникновению потока электронов от фермента к аноду через медиатор. По внешней цепи электроны идут к катоду, где в идеальных условиях в присутствии протонов и кислорода образуется вода. Результирующий ток (в отсутствие насыщения) пропорционален добавке скоростьопределяющего компонента (глюкозы). Измеряя стационарные токи, можно быстро (5с) определить даже малые концентрации глюкозы - до 0,1 мМ. Как сенсор, описанный биотопливный элемент, имеет определенные ограничения, связанные с присутствием медиатора и определенными требованиями к кислородному катоду и мембране. Последняя должна удерживать фермент и в тоже время пропускать низкомолекулярные компоненты: газ, медиатор, субстрат. Ионообменные мембраны, как правило, удовлетворяют этим требованиям, хотя их диффузионные свойства зависят от рН буферного раствора. Диффузия компонентов через мембрану приводит к снижению эффективности переноса электрона вследствие побочных реакций.
На сегодняшний день имеются лабораторные модели топливных элементов с ферментными катализаторами, которые по своим характеристикам не отвечают требованиям их практического применения. Основные усилия в ближайшие несколько лет будут направлены на доработку биотопливных элементов и дальнейшее применение биотопливного элемента будет связано большей степенью с медициной, например: вживляемый биотопливный элемент, использующий кислород и глюкозу.
При использовании ферментов в электрокатализе главной проблемой, требующей решения, является проблема сопряжения ферментативной реакции с электрохимической, то есть обеспечение эффективного транспорта электронов с активного центра фермента на электрод, что может достигаться следующими путями:
1. Перенос электронов с активного центра фермента на электрод с помощью низкомолекулярного переносчика - медиатора (медиаторный биоэлектрокатализ).
2. Непосредственное, прямое окисление и восстановление активных центров фермента на электроде (прямой биоэлектрокатализ).
При этом медиаторное сопряжение ферментативной и электрохимической реакции в свою очередь можно осуществить четырьмя способами:
1) фермент и медиатор находятся в объеме раствора и медиатор диффундирует к поверхности электрода;
2) фермент находится на поверхности электрода, а медиатор в обьеме раствора;
3) фермент и медиатор иммобилизованы на поверхности электрода;
4) медиатор пришит к поверхности электрода, а фермент находится в растворе.

В данной работе катализатором катодной реакции восстановления кислорода служила лакказа, а катализатором анодной реакции окисления глюкозы - глюкозооксидаза (ГОД). Ферменты использовались в составе композитных материалов, создание которых является одним из наиболее важных этапов создания биотопливных элементов, одновременно выполняющих функцию аналитического датчика. Биокомпозитные материалы в данном случае должны обеспечивать селективность и чувствительность определения субстрата и в тоже время обладать высокой биоэлектрокаталитической активностью, приближающейся к ферментативной.
Лакказа представляет собой Cu-содержащую оксидоредуктазу, основной функцией которой в нативных условиях является окисление органических субстратов (фенолы и их производные) кислородом, который при этом восстанавливается до воды. Молекулярная масса фермента составляет 40000 г/моль.

К настоящему времени показано, что лакказа является наиболее активным электрокатализатором восстановления кислорода. В ее присутствии на электроде в атмосфере кислорода устанавливается потенциал близкий к равновесному кислородному потенциалу, и восстановление кислорода протекает непосредственно до воды.
В качестве катализатора катодной реакции (восстановления кислорода) использовали композитный материал на основе лакказы, ацетиленовой сажи АД-100 и нафиона. Особенностью композита является структура, обеспечивающая ориентацию молекулы фермента по отношению к электронпроводящей матрице, необходимую для прямого переноса электрона. Удельная биоэлектрокаталитическая активность лакказы в композите приближается к наблюдаемой в ферментативном катализе. Способ сопряжения ферментативной и электрохимической реакции в случае лакказы, т.е. способ переноса электрона от субстрата через активный центр фермента лакказы на электрод, – прямой биэлектрокатализ.

Глюкозокооксидаза (ГОД) – фермент класса оксидоредуктаз, имеет две субъединицы, каждая из которых имеет свой активный центр – (флавинадениндинуклеотид) ФАД. ГОД является ферментом, селективным по отношению к донору электронов – глюкозе, а в качестве акцепторов электронов может использовать многие субстраты. Молекулярная масса фермента составляет 180000 г/моль.

В работе использовали композитный материал на основе ГОД и ферроцена (Фц) для анодного окисления глюкозы по медиаторному механизму. Композитный материал включает ГОД, высокодисперсный коллоидный графит (ВКГ), Фц и нафион, что позволило получить электронопроводящую матрицу с высокоразвитой поверхностью, обеспечить эффективный транспорт реагентов в зону реакции и стабильные характеристики композитного материала. Способ сопряжения ферментативной и электрохимической реакций, т.е. обеспечение эффективного транспорта электронов от активного центра ГОД на электрод – медиаторный, при этом фермент и медиатор были иммобилизованы на поверхности электрода. В качестве медиатора - акцептора электронов – использовали ферроцен. При окислении органического субстрата – глюкозы, ферроцен восстанавливается, а затем окисляется на электроде.

Если кому-то интересно, я могу подробно описать процесс получения покрытия электородов, но за этим лучше пишите в личку. А в топике я просто опишу полученную структуру.

1. АД-100.
2. лакказа.
3. гидрофобная пористая подложка.
4. нафион.

После того, как электорды получены мы перешли непосредственно к экспериментальной части. Вот так выглядела наша рабочая ячейка:

1. электрод сравнения Ag/AgCl;
2. рабочий электрод;
3. вспомогательный электрод - Рt.
В опыте с глюкозооксидазой - продувка аргоном, с лакказой - кислородом.

Восстановление кислорода на саже в отсутствии лакказы происходит при потенциалах ниже нуля и происходит в две стадии: через промежуточное образование перекиси водорода. На рисунке представлена поляризационная кривая электровосстановления кислорода лакказой иммобилизованной на АД-100, полученная в атмосфере кислорода в растворе с рН 4,5. В этих условиях устанавливается стационарный потенциал близкий к равновесному кислородному потенциалу (0,76 В). При потенциалах катоднее 0,76 В на ферментном электрода наблюдается каталитическое восстановление кислорода, которое протекает по механизму прямого биоэлектрокатализа непосредственно до воды. В области потенциалов катоднее 0,55 В на кривой наблюдается плато, которое соответствует предельному кинетическому току восстановления кислорода. Величина предельного тока составила около 630 мкА/см2.

Электрохимическое поведение композитного материала, на основе ГОД нафиона, ферроцена и ВКГ, исследовали методом циклической вольтамперометрии (ЦВА). Состояние композитного материала в отсутствии глюкозы в фосфатно-буферном растворе контролировали по кривым заряжения. На кривой заряжения при потенциале (–0,40) В наблюдаются максимумы относящиеся редокс-превращениям активного центра ГОД – (ФАД), а при 0,20-0,25 В максимумы окисления и восстановления ферроцена.

Из полученных результатов следует, что на основе катода с лакказой, в качестве катализатора кислородной реакции, и анода на основе глюкозооксидазы для окисления глюкозы, существует принципиальная возможность создания биотопливного элемента. Правда на этом пути есть множество препятствий, например пики активности ферментов наблюдаются при разном pH. Это привело к необходимости добавлять в БТЭ ионообменную мембрану.Мембрана позволяет пространственно разделить реакции, протекающие в электродных отделениях элемента, и в тоже время обеспечивает обмен протонами между ними. В анодное отделение поступает воздух.
Введение глюкозы в биотопливный элемент, содержащий глюкозооксидазу и медиатор, приводит к возникновению потока электронов от фермента к аноду через медиатор. По внешней цепи электроны идут к катоду, где в идеальных условиях в присутствии протонов и кислорода образуется вода. Результирующий ток (в отсутствие насыщения) пропорционален добавке скоростьопределяющего компонента - глюкозы. Измеряя стационарные токи, можно быстро (5с) определить даже малые концентрации глюкозы - до 0,1 мМ.

К сожалению довести идею этого БТЭ до практического внедрения мне не удалось, т.к. сразу после 11 класса я пошёл учиться на программиста, чем усердно занимаюсь и сегодня. Спасибо всем, кто осилил.