ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Рабочее колесо для насоса продажа. Размеры рабочих колес к насосам марки д. Сборка должна производится на специальном участке, оборудованном стендами, обеспеченном полным комплектом инструмента специальных приспособлений и оборудования для ликвидации ручн

Часто в сельском хозяйстве, в промышленности и в частных домах используют насосное оборудование. Их предназначение заключается в перемещении разных видов жидкости. Именно поэтому насосные агрегаты имеют много разновидностей,особое место среди которых занимают центробежные насосы.

Основной рабочий элемент этого оборудования – рабочее колесо. В данной статье подробно рассматривается понятие рабочего колеса, устройство этого конструктивного элемента, а также его виды.

1 Понятие рабочего колеса и его устройство

Рабочее колесо (крыльчатка) насоса – основной рабочий элемент насосного оборудования, который передаёт энергию, получаемую от мотора. Внешний и внутренний диаметр по лопаткам, форму лопаток, ширину колеса можно определить с помощью расчетов.

Главное назначение рабочего колеса насоса – генерирование центробежной силы , которая создаёт давление, которое приводит в движение поток жидкости.

В конструкцию рабочего колеса входят следующие основные элементы:

  • передний (ведущий) диск;
  • задний (ведомый) диск;
  • крыльчатка, которая состоит из лопастей, находящихся между дисками.

Лопасти крыльчатки насосного оборудования, зачастую, имеют изогнутость к стороне, противоположной к направлению, к которому они движутся.

1.1 Функции рабочего колеса насоса

Принцип работы крыльчатки: когда начинается рабочий цикл жидкость накапливается между лопастей одновременно с началом вращения крыльчатки. Под воздействием вращения появляется центробежная сила, способствующая появлению давления; затем жидкость отходит от середины крыльчатки и постепенно прижимается к стенкам. Перекачиваемая среда, под напором выводится наружу через нагнетательный патрубок, при этом в середине крыльчатки создается минимальное давление, способствующее поступлению следующей порции жидкости для крыльчатки.

Также следует обратить внимание, что данный процесс происходит циклично, благодаря этому работа насосного оборудования стабильная и бесперебойная.

1.2 Виды и отличия

Рабочие колеса бывают таких типов:

  • открытые;
  • закрытые;
  • полузакрытые.

Центробежный насос с открытым рабочим колесом на сегодняшний день практически не применяют, так как их КПД < 40%. Но на немногих землесосных снарядах давней постройки такие колеса еще эксплуатируются. Но данный тип крыльчаток имеет и преимущества.Они гораздо менее подвержены засорению, и их весьма легко можно защитить от износа стальными накладками. Также отремонтировать данный тип колес можно очень просто.

Полузакрытый тип имеет диск со стороны, которая противоположная всасыванию. Данные типы не применяются в больших грунтовых агрегатах, но применяются в небольших насосах, для которых вопрос о засоряемости является краеугольным камнем.

Закрытые типы выдают наивысший КПД, их применяют на всех современных насосных оборудованиях. Они обладают высокой прочностью, но их защита от износа и ремонт гораздо сложнее, чем полузакрытых и открытых крыльчаток.

Закрытое колесо имеет от двух до шести рабочих лопаток. На его наружной поверхности дисков обычно делают радиальные выступы. Либо выступы, которые повторяют очертание лопаток.

Крыльчатки чаще всего производят цельнолитыми. Но в Соединенных Штатах Америки их иногда производят сварными, из литых деталей. В случае применения трудно обрабатываемых твердых сплавов крыльчатки, иногда, делают с отъемной ступицей, изготовливаемой из более мягкого материала.

1.3 Наиболее часто применяемые виды посадок

Конусная (коническая) посадка– позволяет легко установить и снять крыльчатку с вала насоса. Недостатком такой посадки является менее точное положение крыльчатки относительно корпуса насосного агрегата в продольном направлении, чем при цилиндрической посадке. На вал рабочее колесо посажено жестко, поэтому оно обездвижено. К тому же коническая посадка, как правило, дает большие биения рабочего колеса, а это, в свою очередь, негативно влияет на сальниковые набивки и .

Цилиндрическая посадка – обеспечивает точное расположение крыльчатки на валу. Фиксация колеса на валу производится за счет 1-ой или нескольких шпонок. Данная посадка используется в вихревых насосах, и погружных вихревых насосах. Недостатком такой посадки является потребность точнейшей обработки, как вала насоса, так и самого отверстия в его ступице.

Посадка шестигранная (крестообразная) – как правило, применяется в насосном оборудовании для скважин. Эта посадка обеспечивает простую установку и снятие крыльчатки. Она прочно фиксирует её на валу в оси его вращения. Посредством специальных шайб регулируются зазоры в колесах диффузорах.

Посадка в виде шестигранной звезды -применяется в вертикальных и горизонтальных многоступенчатых высоконапорных насосных агрегатов, в которых крыльчатки изготавливаются из нержавейки. Данная конструкция является самой сложной, она требует высочайшего класса обработки как вала, так и крыльчатки. Она прочно фиксирует рабочее колесо на оси вращения вала. Зазоры в диффузорах регулируются посредством втулок.

2 Причины и симптомы поломки колеса центробежных насосов

Чаще всего причиной поломок рабочего колеса становится кавитация- парообразование и появление пузырьков пара в жидкости, что приводит к эрозии металла, вследствие присутствия в пузырьках жидкости высокой химической агрессивности газа.

Основные причиныпоявления кавитации:

  1. Температура > 60°C
  2. Большая протяженность и недостаточно большой диаметр всасывающего напора.
  3. Неплотные соединения на всасывающем напоре.
  4. Загрязнение всасывающего напора.

Признаки поломки:

  1. Вибрация.
  2. Потрескивания во время всасывания.
  3. Шумы.

Совет:в случае присутствия в работе насоса вышеуказанных признаков, лучше прекратить его использование. Так как кавитация снижает КПД устройства, его напор и производительность, детали насосного агрегата становятся шероховатыми, и в последствии будет необходим ремонт или покупка нового аппарата.

2.1 Ремонт

Если прибор, все же отказался работать, его можно починить своими руками. Для необходимо выполнить его разборку:

  1. Первым шагом с помощью специального съемщика снимают полумуфту.
  2. Следующим шагом до упора разгрузочного диска направляют ротор в сторону, которая производит всасывание.
  3. Помечают расположение стрелки сдвига оси.
  4. Разбирают подшипники, вынимают вкладыши.
  5. Посредством съемщика вытаскивают разгрузочный диск.
  6. При помощи отжимных винтов снимают рабочее колесо с вала.

В случае если материал – сталь, если колесо стерлось, то сперва его направляют, а затем вытачивают на токарном станке. При сильной изношенности колеса его снимают, после чего приваривают новое.

В случае если материал – чугун, если колесо стерлось, то необходимые места заливают медью, а потом протачивают, но чугунные колеса, как правило, просто меняют.

Последним шагом насос собирают обратно в такой последовательности:

  1. Протирают детали центробежного насоса.
  2. Если есть заусенцы или забоины, их устраняют.
  3. Крыльчатку собирают на валу.
  4. Ставят на место разгрузочный диск.
  5. Устанавливают мягкую набивку сальников.
  6. Закручивают гайки.
  7. Обкатывают сальник.
  8. До упора разгрузочного диска в пятку подают ротор.

3 Основные характеристики современных центробежных насосов

Наилучшими представителями современных насосов являются: погружной насос с периферийным рабочим колесом Calpeda серии B-VT, а также, самовсасывающий насосный агрегат 1СВН-80А и электронасос 1АСВН-80А.

3.1 Предназначение насосов CALPEDA B-VT

Насосы CALPEDA B-VT применяют для перекачки чистых (для загрязненных жидкостей можно применить полупогружные насосы Calpeda VAL или Calpeda SC) невзрывоопасных жидкостей, в которых отсутствуют абразивные, взвешенные или высокоагрессивные для материалов, из которых изготовлен насос, частицы.

Благодаря небольшим размерам эти электронасосы весьма хорошо подходят для установки в разных устройствах и аппаратах систем охлаждения, циркуляции и кондиционирования.

Эксплуатационные ограничения насосных агрегатов CALPEDA B-VT

  1. Температура жидкости: для воды <90 °C, для масла < 150°C.
  2. Температура окружающей среды< 40°C.
  3. Непрерывный режим использования.

Самовсасывающее насосное оборудование 1СВН-80А и 1АСВН-80А. применяется для перекачки не загрязненной жидкости: воды, спирта, дизельного топлива, бензина, керосина и тому подобной нейтральной жидкости вязкостью <2⋅10-5 м 2 /с температурой -40 – 50 °Cи плотностью <1000 кг/м 3 .

Насосные агрегаты 1СВН-80А производятся правого и левого вращения, если смотреть со стороны окончания вала. В устройстве левого вращения приводной конец вала располагается со стороны всасывающего патрубка, направление движения вала идёт против часовой стрелки.

В аппарате правого вращения приводное окончание вала расположенное со стороны напорного патрубка, вращение вала идёт по часовой стрелке. Необходимо, чтоб направление движения вала совпадало с направлением стрелки на напорной секции насосного оборудования (проверяется посредством кратковременного пробного пуска привода устройства).

3.2 Моделирование рабочего колеса в FlowVision (видео)

Рабочее колесо насоса. Материал и конструкция крыльчатки.

Ведущую роль среди деталей насосов занимает рабочее колесо. Рабочее колесо центробежного насоса является важнейшим элементом конструкции. Его основное назначение состоит в передаче энергии от вращающегося вала к жидкости.

Проточная часть рабочего колеса центробежного насоса определяется гидродинамическим расчетом. Рабочее колесо насоса подвержено действию значительных сил реакции потока, действию центробежных сил и в случае посадки на вал с натягом – действию сил в месте посадки.

Крыльчатка насоса - это совокупность лопастей, расположенных по окружности рабочего колеса. Эти лопасти представляют собой пластины, изогнутые в противоположном водотоку направлении. Расположение, геометрия и направление крыльчатки определяет рабочие характеристики насоса. Все эти параметры определяются расчетом на этапе проектирования насоса.

Рабочее колесо и крыльчатка центробежного насоса являются одними из важнейших элементов устройства насоса .

Принцип работы

При работе насоса колесом создается центробежная сила, которая буквально выталкивает жидкость из рабочей камеры насоса в трубопровод.

Если рассматривать принцип работы более подробно, то цикл будет выглядеть следующим образом.
1 В начале цикла рабочая камера насоса заполнена жидкостью(перекачиваемой средой).
2 С началом вращения вала насоса после пуска электродвигателя, начинает вращаться рабочее колесо, закрепленное на валу.
3 С рабочей полости создается давление, обусловленное появление центробежной силы.
4 Под действием центробежной силы жидкость перемещается от центра колеса к стенкам камеры
5 Увеличивающееся давление выталкивает жидкость в нагнетательный канал трубопровода
6 В центре крыльчатки насоса давление падает, что способствует всасыванию новой порции жидкости в рабочую камеру.

Центробежное рабочее колесо такого типа широко применяются в конструкции поверхностного насоса , теплового насоса и насоса для повышения давления .

Типы рабочих колес

По конструктивному исполнению рабочие колеса насосов бываю закрытые – с покрывным диском, открытые и колеса двустороннего входа.

Открытое рабочее колесо

Отрытые колеса в подавляющем большинстве – литые. Рабочие колеса отливаются в специальную форму, методами точного литья. В этом случае колеса получаются с проточной частью высокой точности и чистоты поверхности.

Рабочее колес отрытого типа применяют для перекачивания загрязненных и/или густых жидкостей. Конструкция такого колеса несет в себе как плюсы, а именно:
большой срок эксплуатации и высокий уровень износостойкости
способность эффективно очищаться от разного рода засорений

Так и минусы – сравнительно невысокий КПД (коэффициент полезного действия), в среднем около 40%.

Закрытое рабочее колесо насоса

В закрытом рабочем колесе к основному диску с отлитыми или профрезерованными лопастями подгоняют и приваривают покрывающий диск.

Конструкция закрытого типа характеризуется высоким значением КПД, что делает насосы с колесами такого типа очень востребованными.

Насосы, оборудованные колесами данного типа, применяются как для перекачивания чистых жидкостей, так и незначительно загрязненных сред.

Рабочие колеса двустороннего входа представляют собой попарно соединенные рабочие колеса одностороннего входа с одинаковой формой проточной части. Такие колеса могут быть цельными (литыми) или состоящими из двух половин (сварно-литыми).

По силовому взаимодействию лопатки рабочего колеса с обтекающим её потоком они делятся на осевые и радиальные. Различие этих типов заключается в направлении течения.

Радиальное рабочее колесо

В насосах, где установлено радиальное рабочее колесо, поток жидкости имеет радиальное направлении и поэтому создается условия для работы центробежных сил.

Работа насоса выглядит следующим образом: при вращении радиального рабочего колеса(2) внутри корпуса(1) в потоке жидкости возникает разность давлений по обе стороны каждой лопатки, и следовательно силовое взаимодействие потока с крыльчаткой. Силы давление лопаток на поток создают вынужденное вращательное и поступательное движение жидкости, увеличивая её давление и скорость, т.е. механическую энергию.

Удельное приращение энергии потока жидкости в этом случае зависит от сочетания скоростей протекания потока, скорости вращения крыльчатки водяного насоса, диаметра рабочего колеса и его формы, т.е. от сочетания конструкции размеров и числа оборотов.

Осевое рабочее колесо

В насосах, где установлено осевое рабочее колесо, поток жидкости параллелен оси вращения лопастного насоса. Принцип действия центробежного агрегата похож на предыдущий вариант и основан на передаче энергии от лопасти к потоку жидкости.

Влияние монтажа насоса на рабочее колесо.

Способ монтажа насоса непосредственно влияет на сроки безотказной работы насоса, и на его ресурс в целом. Подробнее о всех нюансах монтажа описано в статье о напоре насоса . Вкратце на срок службы рабочего колеса влияет:
диаметр всасывающего участка трубопровода меньше диаметра всасывающего патрубка насоса
уклон в сторону от всаса насоса или провисание горизонтального участка трубопровода со стороны всаса
большое число поворотов и изгибов трубопровода.

Диаметр и расчет рабочего колеса

Расчет ведется по заданным значениям подачи Q, напора Н и числа оборотов n с целью определения проточной части, диаметра и размеров рабочего колеса.

Расчет остальных элементов проточной части насоса – подвода и отвода потока - выполняется с целью обеспечить условия, принятые при предыдущем расчете.

Задание для расчета рабочего колеса определяется по данным для насоса в целом на основании принятой схемы насоса.

Подача колеса

где К – число потоков в насосе

Напор колеса

где i – число ступеней в насосе(если колес несколько).

В расчете необходимо учитывать потери. Расчетная подача Q будет больше Q1 на величину объемных потерь, величина которых определяется объемным КПД. Величина объемного КПД обычно находится в пределах 0,85 – 0,95, причем большие значения относятся к насосам с большим коэффициентом быстроходности.

Аналогично дела обстоят и для напора. Гидравлические потери определяются гидравлическим КПД, который зависит от совершенства формы проточной части насоса, качества её выполнения и размеров агрегата. Значение гидравлического КПД находится в пределах 0,85-0,95.

При определении диаметра рабочего колеса и выполнении расчета вначале определяют основные размеры канала и угла лопаток на входе и выходе, а затем профилируют канал в меридианном сечении и контур лопаток.

Работы с выполнение расчета относятся к высокоточным, ведь от этого зависит рабочая характеристика и каждая ошибка несет за собой большие финансовые потери при серийном изготовлении. Поэтому такие работы выполняются только силами профильных расчетных организаций

Крыльчатка для насоса и причины разрушения

Кавитация

Кавитация возникает в результате местного снижения давления в жидкости. Процесс кавитации представляет собой парообразование с последующим схлопыванием пузырьков пара с одновременным конденсированием пара в потоке жидкости. В результате этих многочисленных всхлопываний – микроскопических взрывов, возникают скачки давления, которые могут повредить рабочее колесо насоса и даже привести в поломке всей гидравлической системы.

Характерным признаком кавитации является повышенный шум при эксплуатации насосного агрегата.

Сухой ход

Сухой ход характеризуется работой насоса при отсутствии жидкости на входе. При работе без движения жидкости, из-за трения и отсутствия охлаждения происходит нагрев и закипание жидкости в рабочей камере насоса. Такие явления приводят к деформации рабочего колеса, а затем к его полному разрушению

Коррозия металла

Коррозия металлов в воде или водных растворах имеет электрохимический характер. Этот процесс возникает из-за разности потенциалов, т.е. при наличие так называемой гальванической пары.

Возникновение гальванической пары происходит при погружении двух или нескольких различных металлов (макропары) или при наличии структурной неоднородности металла (микропары).

Разные составляющие как в микропарах, так и в макропарах имеют разные электродные потенциалы, вследствие чего возникает электрический ток. Составляющие, имеющие более положительный потенциал, называют катодами, более отрицательный – анодами.

Разрушение металла рабочего колеса насоса происходит на анодных участках из-за перехода ионов(электрически заряженных частиц) из металла в рабочую среду насоса. Освободившиеся электроны перетекают по металлу от анодных к катодным участкам и разряжаются на них.

Таким образом коррозия – это совокупность двух процессов: анодный процесс (переход ионов из металла в раствор) и катодный процесс (разрядка электронов).

Материалы рабочих колес насосов

При выборе материалов рабочих колес необходимо придерживаться ряда требований. Механические свойства материала должны обеспечивать требуемую прочность рабочего колеса с учетом температурных напряжений. Коэффициент линейного расширения не должен сильно отличаться от коэффициента линейного расширения материала вала.

Не менее важной характеристикой является стойкость материала против коррозии в перекачиваемой жидкости.

В общем, получается, что материал рабочего колеса центробежного насоса должен отвечать сложному сочетанию требований.

Механические свойства материала должны обеспечивать прочность колеса не только в условиях нормальной эксплуатации, но и при специальных режимах работы, связанных с температурными толчками.

В некоторых случаях возможно попадание посторонних тел в насос, которые могут нанести ущерб рабочему колесу, например, привести к образованию вмятин. Поэтому материал колеса должен быть прочен, пластичен и обеспечивать высокую коррозионную стойкость.

Наиболее всего этим требованиям удовлетворяет бронза, но бронза вместе с тем является и самым дорогим материалом. Кроме того в условиях высоких температур механические свойства бронзы резко снижаются. Возникают неудобства связанные с высоким коэффициентом линейного расширения бронзового колеса по сравнению со стальным валом. В результате посадка бронзового рабочего колеса на вал в условиях нормальной температуры, ослабевает в рабочих условиях при большой температуре.

Хорошими механическими свойствами и коррозионной стойкостью обладают нержавеющие стали. Но вследствие низких литейных качеств, колеса из таких сталей приходится изготавливать сварным способом из механически обработанных поковок.

В качестве материала для рабочего колеса насоса, работающего в низко-коррозионной среде, может быть использован чугун.

В последнее время в конструкции крыльчатки насоса набирают популярность различные виды пластмасс, имеющие относительно высокие механические свойства и стойкость к воздействию агрессивных сред.

В больших насосах в благоприятных от коррозии условиях, рабочие колеса выполняют из углеродистой стали, а места подверженные усиленному износу защищают специальными наплавками.

Ремонт и замена крыльчатки для насосов (видеоинструкция)

Если насосное оборудование выходит из строя, то одной из причин является рабочее колесо и тогда необходима замена крыльчатки насоса.

Если у Вас возник вопрос о том как снять крыльчатку насоса, воспользуйтесь предлагаемой ниже инструкцией:

1 Убедитесь в отсутствии питания насосного агрегата;

2 Для негерметичных насосов необходимо разъединить муфту, которая соединяет насос и электродвигатель;

3 В зависимости от конструкции агрегата (при необходимости) отсоедините всасывающую и/или напорную трубы;

4 Снять корпус насоса открутив соответствующие болты;

5 Выбить шпонку, соединяющую вал и рабочее колесо;

6 Снять рабочее колесо.

Посадочные места колеса на вал двигателя может быть выполнено в крестообразном или шестигранном исполнении или в форме шестигранной звезды.

Фото центробежного насоса

Оборудование, с помощью которого накачивают воду, называется насосным, оно делится на несколько групп: объемные и динамические. В этой статье мы поговорим о динамических насосах, к которым относится центробежный агрегат, и что такое рабочее колесо центробежного насоса.

Итак, что же такое центробежный насос ? Как уже говорилось раньше, это оборудование, с помощью которого накачивается вода.
Как работает конструкция:

  • Это происходит с помощью центробежной силы. Проще говоря, внутри насоса находится вода, которая с помощью лопастей и центробежной силы отбрасывается к стенкам корпуса.
  • После чего вода под действием давления начинает поступать к напорному и всасывающему трубопроводу.

Таким образом, вода непрерывно начинает качаться. Чтобы лучше понять, каким образом это происходит, необходимо разобраться из чего состоит насос.

Для чего используется насос

Каким образом происходит накачивание воды через насос в теории уже понятно, а вот какие его части помогают в этом деле — нет.
Поговорим о том, из каких частей он состоит:

  • Рабочее колесо центробежного насоса.
  • Насосный вал, также важная его часть.
  • Сальники.
  • Подшипники.
  • Корпус.
  • Насосный аппарат.
  • Уплотняющие кольца.

Примечание. Центробежные насосы используются не только для добычи воды, так же ими добывают химические жидкости, поэтому, составные насосов могут различаться в зависимости от способа их применения.

Рабочее колесо

Одна из важнейших деталей насоса это рабочее колесо, так как именно оно создает центробежную силу, вода под действием давления, начинает накачивать.
Итак, давайте подробнее разберем, из чего оно состоит, и как происходит его работа, оно состоит из:

  • Переднего диска.
  • Заднего диска.
  • Лопасти, которые находятся между ними.
  • Когда колесо начинает вращаться, вода, находящаяся внутри лопастей, тоже начинает свое вращение, из-за чего возникает центробежная сила, появляется давление, вода примыкает к периферии и ищет выход наружу.

Так как насосы качают не только воду, но и химические жидкости, поэтому рабочие колеса и корпус центробежного насоса изготавливаются из разнообразных материалов:

  • Так, например, для работы с водой используется бронза или чугун.
  • Для улучшения износостойкость при работе с водой, в которой содержатся механические примеси, можно использовать рабочее колесо сделанного из хромистого чугуна.

А если насос предназначен для работы с химикатами, необходимо использовать стальное рабочее колесо.

Характеристики рабочего колеса

Ниже будет представлена таблица классификаций рабочих колес:

Классификация рабочего колеса центробежного насоса
Кол-во рабочих колес
  • Одноступенчатый насос
Ось
  • Вертикально
  • Горизонтально
Давление
  • Низко, < 0,2 МПа
  • Средне, 0,2 — 0,6 МПа
  • Высоко, > 0,6 МПа
Подвод жидкости
  • односторонний
  • двусторонний
  • открытый
  • закрытый
Способ разъема корпуса
  • горизонтально
  • вертикально
Способ отвода жидкости
  • спиральный
  • лопаточный
Быстроходность
  • тихоходный
  • нормальный
  • быстроходный
Назначение
  • водопровод
  • канализация
  • щелочь
  • нефть
  • другие
Соединение с двигателем
  • приводной
  • муфта
Расположен по отношению к воде
  • поверхностный
  • глубинный
  • погруженный

Причины поломок рабочего колеса

Зачастую основной причиной поломки рабочего колеса является кавитация, то есть — парообразование и образование пузырьков пара в жидкости, которое влечет за собой эрозию металла, так как в пузырьках жидкости имеется химическая агрессивность газа.
Основными причинами возникновения кавитации является:

  • Высокая, более 60 градусов температура
  • Не плотные соединения на всасывающем напоре.
  • Большая протяженность и малый диаметр всасывающего напора.
  • Засорение всасывающего напора.

Совет. Все эти факторы влекут за собой поломку рабочего колеса насоса, поэтому, нужно внимательно следить за соблюдением условий работы вашего оборудования. Ведь не зря для каждого вида техники существуют свои условия эксплуатации, которые созданы для большей износостойкости.

Признаки поломки рабочего колеса

Поломка рабочего колеса центробежного насоса может быть заметна не сразу, однако, есть общие признаки, которые указывают на то, что с вашей техникой что-то не так:

  • Потрескивания при всасывании.
  • Шумы.
  • Вибрация.

Совет. Если вы заметили в работе своего насоса вышесказанные признаки, необходимо прекратить его работу. Так как кавитация уменьшает КПД насоса, его напор и соответственно производительность.

Более того, она влияет не только на работу колеса, но и на другие его детали. При длительном воздействии кавитации, детали становятся шероховатыми, и единственное что им поможет — это ремонт или покупка нового оборудования.

Ремонт рабочего колеса

Если рабочее колесо все же сломалось, или сломался насос, его можно отремонтировать своими руками.

Совет. Но, лучше обратиться в специализированный ремонт, так как для этого необходимы специальные инструменты.

Все же, вот небольшая инструкция, каким образом производится ремонт рабочих колес центробежного насоса самостоятельно.
Разборка:

  • С помощью съемщика полумуфту.
  • До упора разгрузочного диска подают ротор в ту сторону, где производится всасывание.
  • Помечают положение стрелки сдвига оси.
  • Разбирают подшипники.
  • Вынимают вкладыши.
  • С помощью специального съемщика вытаскивают разгрузочный диск.
  • С помощью отжимный винтов поочередно, не допуская задания, снимают рабочее колесо с вала.

Ремонт рабочего колеса:

Для того, чтобы произвести ремонт делается расчет рабочего колеса центробежного насоса.
Сталь:

  • Если колесо стерлось, то сначала его направляют, после чего вытачивают на токарном станке.
  • Если колесо сильно изношено, то его удаляют, а затем приваривают новое.

Чугун:

  • Чугунные колеса, как правило, просто меняют, если можно обойтись заточкой, то необходимые места заливают медью, а потом протачивают.

После того как колесо отремонтировано или заменено, насос собирают обратно:

  • Протирают делать центробежного насоса.
  • Проверяют наличие заусенцев и забоин, если он есть, их устраняют.
  • Рабочее колесо собирают на валу.
  • Возвращают разгрузочный диск.
  • Устанавливают мягкую набивку сальников.
  • Заворачивают гайки.
  • Обкатывают сальник.
  • До упора разгрузочного диска в пятку подают ротор.

Для большего понимания процесса ремонта вы можете посмотреть видео в этой статье.

Цены

Цена на рабочее колесо в разных магазинах своя, все зависит от материала самого насоса. Начальная стоимость 1800 рублей, конечная — 49 т.р. Все зависит от того, какой у вас центробежный косо, для чего вы его используете, и какого он размера, а также, сколько в нем колес.
Поэтому, для того чтобы избежать расходов за ремонт, необходимо внимательно следить за его работой. А также, при возникновении каких-либо признаков, указывающих на его неисправность, не нужно использовать его до того момента, пока он не прекратит работу, его следует отнести специалисту, который заменит или отремонтирует вам те детали, которые подверглись поломке.

При работе насоса на лопастное колесо действует осевое гидравлическое давление, стремящееся сдвинуть вал с насаженным на него колесом в сторону, обратную направлению движения жидкости, входящей в колесо.

Давление со стороны всасывания в кольцевом пространстве всегда меньше давления на противоположной стороне диска рабочего колеса (2.13). Если с правой стороны колеса сила давления Р2 действует на кольцевую поверхность диска с радиусом г2 и гд, то с левой стороны его действие ограничивается кольцевой поверхностью с радиусом г3 и Rt. Отсюда следует, что силы полного Давления на рабочее колесо с односторонним входом жидкости справа и слева неодинаковы.

Из формулы () следует, что осевое давление направлено справа налево (Р2 > Рх), В результате этого создается усилие вдоль оси вала, стремящееся

сдвинуть рабочее колесо в сторону всасывания. Величина осевой силы тем больше, чем больше диаметр входа и чем больше разность давлений (р2 рг)~ Формула (2.81) является приближенной, так как она не учитывает реактивное давление жидкости при движении в рабочем колесе, которое возникает вследствие изменения направления потока жидкости от осевого к радиальному.

Осевое давление в насосе даже на одно колесо может быть значительным, а в многоступенчатых насосах снятие осевого усилия требует специальных устройств. Осевое давление смещает рабочее колесо, жестко насаженное на вал насоса, что приводит к нагреву подшипников, а при значительном смещении ротора насоса рабочее колесо может прийти в соприкосновение с неподвижными стенками корпуса. Это может вызвать истирание стенок рабочего колеса и увеличение расхода мощности, а в отдельных случаях поломку насоса.

Осевое усилие может быть снято или значительно уменьшено следующим образом:

применением рабочего колеса с двусторонним всасыванием; перепуском жидкости из полости зазора заднего диска во всасывающий патрубок. В этом случае площадь сечения перепускной разгрузочной трубы должна быть не менее чем в 4 раза больше площади зазора между уплотнением колеса и корпусом насоса. Сальник на напорной стороне будет находиться под давлением всасывания;

устройством отверстий во втулке рабочего колеса. Этот способ снижает к. п. д. насоса на 4-6%, поэтому разгрузку предпочтительнее выполнять С помощью перепускной трубы;

установкой радиальных ребер на заднем диске колеса (способ широко применяется в конструкции колес для кислот);

Во многоступенчатых насосах осевые силы уравновешивают следующими способами: противонаправленной установкой колес и соответствующей системой перевода жидкости от колеса к колесу; применением разгрузочного диска (гидравлической пяты) (2.14).

Равновесие ротора в этом случае достигается действием давления рх в направлении, противоположном осевой нагрузке. С этой целью полость перед разгрузочным диском соединяется системой зазоров, через которые незначительная часть подачи насоса Qy2 отводится во всасывающую линию. Это позволяет обеспечить минимальный разбег ротора в осевом направлении и разгрузить сальники со стороны нагнетания от действия высокого давления.

Часто в сельском хозяйстве, в промышленности и в частных домах используют насосное оборудование. Их предназначение заключается в перемещении разных видов жидкости. Именно поэтому насосные агрегаты имеют много разновидностей,особое место среди которых занимают центробежные насосы.

Основной рабочий элемент этого оборудования - рабочее колесо. В данной статье подробно рассматривается понятие рабочего колеса, устройство этого конструктивного элемента , а также его виды.

1 Понятие рабочего колеса и его устройство

Рабочее колесо (крыльчатка) насоса - основной рабочий элемент насосного оборудования, который передаёт энергию, получаемую от мотора. Внешний и внутренний диаметр по лопаткам, форму лопаток, ширину колеса можно определить с помощью расчетов.

Главное назначение рабочего колеса насоса – генерирование центробежной силы , которая создаёт давление, которое приводит в движение поток жидкости.

В конструкцию рабочего колеса входят следующие основные элементы:

  • передний (ведущий) диск;
  • задний (ведомый) диск;
  • крыльчатка, которая состоит из лопастей, находящихся между дисками.

Лопасти крыльчатки насосного оборудования, зачастую, имеют изогнутость к стороне, противоположной к направлению, к которому они движутся.

1.1 Функции рабочего колеса насоса

Принцип работы крыльчатки: когда начинается рабочий цикл жидкость накапливается между лопастей одновременно с началом вращения крыльчатки. Под воздействием вращения появляется центробежная сила, способствующая появлению давления; затем жидкость отходит от середины крыльчатки и постепенно прижимается к стенкам. Перекачиваемая среда, под напором выводится наружу через нагнетательный патрубок, при этом в середине крыльчатки создается минимальное давление, способствующее поступлению следующей порции жидкости для крыльчатки.

Также следует обратить внимание, что данный процесс происходит циклично, благодаря этому работа насосного оборудования стабильная и бесперебойная.

1.2 Виды и отличия

Рабочие колеса бывают таких типов:

  • открытые;
  • закрытые;
  • полузакрытые.

Центробежный насос с открытым рабочим колесом на сегодняшний день практически не применяют, так как их КПД

Полузакрытый тип имеет диск со стороны, которая противоположная всасыванию. Данные типы не применяются в больших грунтовых агрегатах, но применяются в небольших насосах, для которых вопрос о засоряемости является краеугольным камнем.

Закрытые типы выдают наивысший КПД, их применяют на всех современных насосных оборудованиях. Они обладают высокой прочностью, но их защита от износа и ремонт гораздо сложнее, чем полузакрытых и открытых крыльчаток.

Закрытое колесо имеет от двух до шести рабочих лопаток. На его наружной поверхности дисков обычно делают радиальные выступы. Либо выступы, которые повторяют очертание лопаток.

Крыльчатки чаще всего производят цельнолитыми. Но в Соединенных Штатах Америки их иногда производят сварными, из литых деталей. В случае применения трудно обрабатываемых твердых сплавов крыльчатки, иногда, делают с отъемной ступицей, изготовливаемой из более мягкого материала.

1.3 Наиболее часто применяемые виды посадок

Конусная (коническая) посадка– позволяет легко установить и снять крыльчатку с вала насоса. Недостатком такой посадки является менее точное положение крыльчатки относительно корпуса насосного агрегата в продольном направлении, чем при цилиндрической посадке. На вал рабочее колесо посажено жестко, поэтому оно обездвижено. К тому же коническая посадка, как правило, дает большие биения рабочего колеса, а это, в свою очередь, негативно влияет на сальниковые набивки и торцевые уплотнения.

Цилиндрическая посадка – обеспечивает точное расположение крыльчатки на валу. Фиксация колеса на валу производится за счет 1-ой или нескольких шпонок. Данная посадка используется в вихревых насосах, и погружных вихревых насосах. Недостатком такой посадки является потребность точнейшей обработки, как вала насоса, так и самого отверстия в его ступице.

Посадка шестигранная (крестообразная) – как правило, применяется в насосном оборудовании для скважин. Эта посадка обеспечивает простую установку и снятие крыльчатки. Она прочно фиксирует её на валу в оси его вращения. Посредством специальных шайб регулируются зазоры в колесах диффузорах.

Посадка в виде шестигранной звезды -применяется в вертикальных и горизонтальных многоступенчатых высоконапорных насосных агрегатов, в которых крыльчатки изготавливаются из нержавейки. Данная конструкция является самой сложной, она требует высочайшего класса обработки как вала, так и крыльчатки. Она прочно фиксирует рабочее колесо на оси вращения вала. Зазоры в диффузорах регулируются посредством втулок.

2 Причины и симптомы поломки колеса центробежных насосов

Чаще всего причиной поломок рабочего колеса становится кавитация- парообразование и появление пузырьков пара в жидкости, что приводит к эрозии металла, вследствие присутствия в пузырьках жидкости высокой химической агрессивности газа.

Основные причиныпоявления кавитации:


  1. Температура > 60°C
  2. Большая протяженность и недостаточно большой диаметр всасывающего напора.
  3. Неплотные соединения на всасывающем напоре.
  4. Загрязнение всасывающего напора.

Признаки поломки:

  1. Вибрация.
  2. Потрескивания во время всасывания.
  3. Шумы.

Совет:в случае присутствия в работе насоса вышеуказанных признаков, лучше прекратить его использование. Так как кавитация снижает КПД устройства, его напор и производительность, детали насосного агрегата становятся шероховатыми, и в последствии будет необходим ремонт или покупка нового аппарата.

2.1 Ремонт

Если прибор, все же отказался работать, его можно починить своими руками. Для ремонта устройства необходимо выполнить его разборку:

  1. Первым шагом с помощью специального съемщика снимают полумуфту.
  2. Следующим шагом до упора разгрузочного диска направляют ротор в сторону, которая производит всасывание.
  3. Помечают расположение стрелки сдвига оси.
  4. Разбирают подшипники, вынимают вкладыши.
  5. Посредством съемщика вытаскивают разгрузочный диск.
  6. При помощи отжимных винтов снимают рабочее колесо с вала.

В случае если материал - сталь, если колесо стерлось, то сперва его направляют, а затем вытачивают на токарном станке. При сильной изношенности колеса его снимают, после чего приваривают новое.

В случае если материал - чугун, если колесо стерлось, то необходимые места заливают медью, а потом протачивают, но чугунные колеса, как правило, просто меняют.


Последним шагом насос собирают обратно в такой последовательности:

  1. Протирают детали центробежного насоса.
  2. Если есть заусенцы или забоины, их устраняют.
  3. Крыльчатку собирают на валу.
  4. Ставят на место разгрузочный диск.
  5. Устанавливают мягкую набивку сальников.
  6. Закручивают гайки.
  7. Обкатывают сальник.
  8. До упора разгрузочного диска в пятку подают ротор.

3 Основные характеристики современных центробежных насосов

Наилучшими представителями современных насосов являются: погружной насос с периферийным рабочим колесом Calpeda серии B-VT, а также, самовсасывающий насосный агрегат 1СВН-80А и электронасос 1АСВН-80А.

3.1 Предназначение насосов CALPEDA B-VT

Насосы CALPEDA B-VT применяют для перекачки чистых (для загрязненных жидкостей можно применить полупогружные насосы Calpeda VAL или Calpeda SC) невзрывоопасных жидкостей, в которых отсутствуют абразивные, взвешенные или высокоагрессивные для материалов, из которых изготовлен насос, частицы.

Благодаря небольшим размерам эти электронасосы весьма хорошо подходят для установки в разных устройствах и аппаратах систем охлаждения, циркуляции и кондиционирования.

Эксплуатационные ограничения насосных агрегатов CALPEDA B-VT

  1. Температура жидкости: для воды
  2. Температура окружающей среды
  3. Непрерывный режим использования.


Самовсасывающее насосное оборудование 1СВН-80А и 1АСВН-80А. применяется для перекачки не загрязненной жидкости: воды, спирта, дизельного топлива, бензина, керосина и тому подобной нейтральной жидкости вязкостью

Насосные агрегаты 1СВН-80А производятся правого и левого вращения, если смотреть со стороны окончания вала. В устройстве левого вращения приводной конец вала располагается со стороны всасывающего патрубка, направление движения вала идёт против часовой стрелки.

В аппарате правого вращения приводное окончание вала расположенное со стороны напорного патрубка, вращение вала идёт по часовой стрелке. Необходимо, чтоб направление движения вала совпадало с направлением стрелки на напорной секции насосного оборудования (проверяется посредством кратковременного пробного пуска привода устройства).

3.2 Моделирование рабочего колеса в FlowVision (видео)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Филиал федерального государственного бюджетного образовательного

учреждения высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

в г. ОКТЯБРЬСКОМ

Кафедра нефтепромысловых машин и оборудования

Курсовой проект

Ремонт рабочего колеса центробежного насоса

по дисциплине: «Эксплуатация и ремонт машин и оборудования нефтяных и газовых промыслов»

Выполнил: ст.гр. МП-06-11 Р.Р. Шарифуллин

Октябрьский 2013

Введение

1.1 Техническая характеристика насосного агрегата

1.2 Устройство и принцип работы насосного агрегата

2. Структура технологического процесса капитального ремонта Насосного агрегата типа НПВ-1250-60

2.1 Организация ремонта насосного агрегата. Особенности ремонтных работ

3.1 Разборка насоса

3.2 Контроль вала

5.1 Общие положения

5.2 Сборка соединений вала

5.2.1 Сборка прессовых соединений вала

5.2.5 Сборка резьбовых соединений вала

5.3 Сборка насоса

5.3.1 Сборка ротора

5.3.4 Сборка секций

5.3.5 Финальная сборка насоса

5.4 Центровка насоса

6.1 Основные положения

6.2 Методы испытаний

7. Защита насосного агрегата типа НПА-1250-60 от коррозии

8. Техническое обслуживание и правила эксплуатации насосного агрегата типа НПВ-1250-60

Список литературы

Введение

В различных технологических процессах нефтяной и газовой промышленности добыче, сборе, подготовке и транспорте продукции нефтяных скважин, магистральном транспорте нефти, процессах повышения нефтеотдачи пластов, поддержании пластового давления и водоснабжении, а также в различных технологических установках газоперерабатывающих заводов и компрессорных станциях применяется разнообразное насосное оборудование, различающееся по принципу действия, конструктивному исполнению, приводу и характеристикам перекачиваемой жидкости.

Нефтяные центробежные насосы, рассчитанные на работу в условиях возможного образования взрывоопасных смесей газов и паров с воздухом, применяют в промысловых системах сбора, подготовке и транспорте нефти, технологических установках нефтеперерабатывающих и нефтехимических производств для перекачивания нефти, сжиженных углеводородных газов, нефтепродуктов и других жидкостей, сходных с указанными по физическим свойствам (плотности, вязкости и др.) и коррозионному воздействию на материал деталей насосов. Максимальное содержание твердых взвешенных частиц в перекачиваемой жидкости не должно превышать 0,2 % (по массе). Размеры частиц должны составлять не более 0,2 мм.

Изготовляют насосы следующих типов: К консольные горизонтальные одно- и двухступенчатые; С горизонтальные секционные межопорные с осевым разъемом корпуса; СД горизонтальные секционные межопорные двухкорпусные; ВМ вертикальные, встраиваемые в трубопровод.

Предусмотрено изготовление следующих типов: НСУ нефтяные для откачки утечек; НПВ нефтяные подпорные вертикальные; НМ нефтяные магистральные.

Насосы нефтяные подпорные вертикальные типа НПВ предназначены для подачи нефти с температурой от минус 5 0 С до плюс 80 0 С, кинематической вязкостью 1-3x10 -4 см 2 /с, плотностью 830-900 кг/м 3 .

насос ремонт вал коррозия

1. Конструкция, назначение и условия работы насосного агрегата типа НПВ-1250-60

Кавитацией называется нарушение сплошности потока жидкости, обусловленное появлением в ней пузырьков или полостей, заполненных паром или газом. Кавитация возникает при понижении давления, в результате чего жидкость закипает или из нее выделяется растворенный газ. В потоке жидкости такое падение давления происходит обычно в области повышенных скоростей. В большинстве случаев выделение газа, из раствора не играет существующей роли. В этом, случае кавитацию часто называют паровой. Паровую кавитацию сопровождают следующие основные явления:

1) Конденсация пузырьков пара, который увлекается потоком в область повышенного давления.

2) Эрозия металла стенок канала. При конденсации пузырьков пара давление внутри пузырька остается постоянным и равным упругости насыщенного пара, давление же жидкости повышается по мере продвижения пузырька. Частицы жидкости, окружающие пузырек, находятся под действием разности давления жидкости и давления внутри пузырька и движутся к его центру ускоренно. При полной конденсации пузырька происходит столкновение частиц жидкости, сопровождающееся мгновенным местным повышением давления, достигающем тысяч атмосфер. Это приводит к выщербливанию материала стенок каналов, вызванному, по-видимому, усталостными явлениями. Описанный механический процесс разрушения стенок каналов называется эрозией и является наиболее опасным следствием кавитации.

3) Звуковые явления (шум, треск, удары) и вибрация установки, являющиеся следствием колебаний жидкости, которые вызваны замыканием полостей, заполненных паром.

4) В лопастных насосах кавитация сопровождается падением подачи, напора, мощности и к. п. д.

В лопастном насосе паровая кавитация возникает на лопатке рабочего колеса обычно вблизи ее входной кромки. Давление здесь значительно ниже, чем давление во входном патрубке насоса из-за местного возрастания скорости при натекании на лопатку и из-за гидравлических потерь в подводе.

Для исключения явления кавитации на магистральных центробежных секционных насосах при перекачке нефтепродуктов из товарного парка на НПЗ применяют подпорные насосы, создающие давление на входном патрубке магистрального насоса.

Рисунок 1 Насосный агрегат НПВ-1250-60 1 электродвигатель; 2 фонарь; 3 напорный патрубок; 4 входной патрубок; 5 стакан с насосом

Агрегаты электрические насосные нефтяные подпорные вертикальные (рисунок 1) предназначены для подачи нефти с температурой 268..353К (-5..+80С), плотностью =830..900 кг/м2 к нефтяным магистральным насосам по ГОСТ 12124-80 и создания необходимого подпора для их безкавитационной работы.

Агрегаты предназначены для эксплуатации во взрывоопасных зонах класса В-1Г (в соответствии с правилами устройства электроустановок) и перекачивания нефти, пары которой образуют взрывоопасные смеси с воздухом категории II А и группы Т3 по ГОСТ 12.1.011-78.

Насосы изготовлены по первой группе надёжности ГОСТ 6134-71 в климатическом исполнении V категории размещения I по ГОСТ 15150-69, и предназначены для эксплуатации на открытых площадках при нижнем значении предельной температуры окружающей среды -50С.

В условном обозначении электронасосного агрегата (насоса) цифры и буквы обозначают:

НПВ нефтяной подпорный вертикальный

1250 подача, м3/ч

60 напор, м.

Агрегаты изготавливаются в исполнении для взрывоопасных и пожароопасных производств.

1.1 Техническая характеристика

Насос НПВ-1250-60 имеет следующие технические характеристики:

Подача 1250 м 3 /ч

Напор 60 м

Частота вращения ротора 1500 об/мин

Допускаемый кавитационный запас на оси рабочего колеса (на воде), не более 2,2 м

КПД (на воде), не менее 76%

Внешняя утечка через уплотнение насоса 0,3*10

Габаритные размеры 6155х2361 мм

Масса, не более 11940 кг

Допускается обточка рабочих колёс по наружному диаметру на 5 и 10% от номинального значения по рекомендациям предприятия изготовителя.

1.2 Устройство и принцип работы

Каждый электронасосный агрегат состоит из нефтяного вертикального подпорного насоса, вертикального асинхронного взрывозащищённого электродвигателя, типа ВАОВ, соединительной муфты, системы автоматики и контрольно-измерительных приборов.

Насос центробежный, вертикальный, одноступенчатый с осевым подводом жидкости. Рабочее колесо двустороннего входа, для повышения всасывающей способности колеса, применены предвключенные колёса.

Статорная часть насоса состоит из двух осевых подводов, отвода, переводных каналов, двух напорных секций, крышки с напорным патрубком и контрфланцем и фонаря под электродвигатель.

Нижней частью насос помещён в металлический стакан с приварным днищем, входным патрубком и опорной плитой. Стакан опорной частью плиты устанавливается на фундамент и крепится к нему фундаментными болтами. Для выпуска воздуха при заполнении для опорожнения насоса в стакане предусмотрены патрубок и трубка. Крышка устанавливается на опорную плиту стакана. На верхний фланец крышки устанавливается фонарь для монтажа электродвигателя.

Ротор насоса состоит из вала рабочего и предвключенных колёс, втулок уплотнения, шпонок и т.д. Направление вращения ротора по часовой стрелке, если смотреть со стороны приводного конца вала.

Гидравлическое осевое усилие ротора разгружается применением рабочего колеса двухстороннего входа.

Масса ротора и остаточное гидравлическое осевое усилие ротора воспринимается сдвоенным радиально-упорным шариковым подшипником, являющимся верхней опорой. Смазка шарикового подшипника консистентная ЦИАТИМ-202 ГОСТ11110-75 или Литол-24 ТУ 38-101139-71.

Для восприятия радиальных усилий в конструкции насоса предусмотрены два радиальных подшипника скольжения концевой (на нижнем конце вала) и промежуточный, смазываемых перекачиваемым нефтепродуктом.

Концевое уплотнение ротора торцевого типа ТМ120М ТУ 26-06-968-75. В полости крышки организован сборник утечек нефти из торцевого уплотнения. Для обогрева торцевого уплотнения и сборника утечек нефти при низких температурах окружающего воздуха, крышка насоса оснащена электрическим обогревателем. Во избежание больших потерь тепла, внешняя поверхность крышки насоса на месте эксплуатации насоса должна быть теплоизолирована.

Сборник утечек нефти опорожняться раз в 1,5..2 месяца при нормальной утечке из торцевого уплотнения. Для контроля уровня применяются сигнализаторы уровня жидкости СУЖ-3.

2. Структура технологического процесса капитального ремонта насосного агрегата типа НПВ-1250-60

Технологический процесс капитального ремонта представляет собой комплекс технологических и вспомогательных операций по восстановлению работоспособности оборудования, выполняемых в определенной последовательности, и включает в себя приемку оборудования в ремонт, моечно-очистные операции, разборку оборудования на агрегаты, сборочные единицы и детали, контроль сортировку деталей и ремонт деталей, их комплектацию, сборку сборочных единиц, агрегатов и оборудования в целом, обкатку и испытание оборудования после сборки, окраску и сдачу оборудования из ремонта.

На ремонтных предприятиях нефтяной и газовой промышленности в зависимости от количества однотипного оборудования и условий ремонта применяют два основных метода ремонта: индивидуальный и агрегатный (узловой). В зависимости от применяемого метода изменяются содержание и последовательность операций технологического процесса ремонта. При индивидуальном методе ремонта детали, сборочные единицы и агрегаты оборудования маркируют и после ремонта устанавливают на том же оборудовании. Следовательно, сборку оборудования начинают только тогда, когда отремонтированы все детали, что значительно удлиняет общее время ремонта.

Индивидуальный метод ремонта применяется в тех случаях, когда на ремонтное предприятие поступает мало однотипного оборудования. При индивидуальном методе ремонта машину или механизм ремонтирует одна комплексная бригада, состоящая из рабочих высокой квалификации.

Индивидуальный метод ремонта имеет следующие недостатки:

1) отсутствует специализация ремонтных работ и ограничена возможность внедрения механизации, что значительно снижает производительность труда;

2) оборудование длительно находится в ремонте, так как готовые детали простаивают, пока все детали не будут отремонтированы;

Рисунок 2 - Схема технологического процесса капитального ремонта оборудования индивидуальным методом.

При агрегатном методе ремонта должно соблюдаться следующее неравенство:

Следовательно, Естественно что длительность ремонта в этом случае значительно сокращается.

2.1 Организация ремонта. Особенности ремонтных работ

Ремонт насосов должен производиться на ремонтных базах. Технология ремонта насосов зависит от метода подготовки и планирования ремонта:

а) индивидуальный метод ремонта насосов, при условии восстановления изношенных деталей;

б) индивидуальный метод ремонта насосов, при условии замены изношенных деталей новыми из запаса, хранящегося на складе;

в) обезличенный метод ремонта.

При капитальном ремонте индивидуальным методом, поступившие в ремонт насосы подвергают наружной мойке, последовательной разборке на узлы и детали, повторной мойке деталей, контролю, сортировке (годные в сопряжении с восстановленной до ремонтного размера или новой деталью, нуждающиеся в ремонте и негодные), маркировке и дефектации деталей. Годные детали транспортируются непосредственно на склад комплектации, а детали, не подлежащие восстановлению, в металлолом.

При наличии запасных частей капитальный ремонт в основном сводится к слесарно-сборочным операциям и небольшому количеству станочных и сварочных работ, требующих универсального оборудования и средней квалификации ремонтного персонала.

Все детали, требующие ремонта и восстановления, проходят согласно технологическому процессу ремонта различные цехи предприятия и в - результате, также, поступают на склад комплектации, где комплектуются узлы, подлежащие сборке, а затем производятся собственно сборка и испытание.

Параллельно ремонтируется базовая деталь, а затем производится общая сборка, испытание, обкатка, окраска и сдача потребителю отремонтированной машины.

Сборку насоса можно начинать только после восстановления последней детали.

Требование к сборке и испытанию капитально отремонтированного наcoca не должны отличаться от аналогичных требований, которые предъявляются к новому насосу.

2.2 Централизация и специализация ремонтных работ

Ремонтная технология существенно отличается от технологии существующей на заводе-изготовителе насосов. Номенклатура ремонтируемых насосов обуславливает оснащение ремонтных цехов универсальным оборудованием, приборами, инструментом, переналаживаемой оснасткой.

Централизация и специализация создает условия для организации промышленного ремонта, а следовательно и для применения наиболее прогрессивных технологических и организационных решений. Полностью централизованный капитальный ремонт насосов на специализированных заводах, эффективен при масштабах выпуска, обеспечивающих возможность организации поточного обезличенного ремонта и при наличии обменного фонда.

Создание обменного фонда позволит потребителю, сдавая в ремонт насос, получить отремонтированный экземпляр такой же марки. Число зарезервированных для обмена насосов на ремонтном предприятии должно составлять - 4% от числа ежегодно ремонтируемых насосов. Основными преимуществами централизованного капитального ремонта являются снижение его трудоемкости и себестоимости в 1,5 - 2 раза, повышение качества за счет специализации и лучшего технического оснащения, а, следовательно, увеличение межремонтных периодов и повышение коэффициента использования оборудования в эксплуатации. При централизованном ремонте повышается культура и техника ремонтного производства, снижается численность ремонтного персонала, экономится металл, сокращается количество технологического оборудования, занятого на ремонте, повышается коэффициент его загрузки, улучшается технологическая дисциплина, сокращается производственный цикл ремонта насосов в 2 - 3 раза.

В любом случае стоимость капитального ремонта должна составлять

25 … 35% от стоимости нового насоса и в крайнем случае не превышать 60 … 70% ее величины.

3. Технология разборки насоса и контроль вала

3.1 Разборка

Разборка насоса производится на специальном стенде в следующем порядке (смотри рисунок 2):

снимается указатель осевого сдвига;

разборка опорных подшипников скольжения и извлечение вкладышей;

снимается напорная крышка и разбирается втулка пяты;

разбираются рабочие секции насоса;

снимается входная крышка насоса.

При капитальном ремонте машины разбивают полностью согласно технологической схеме, где указывается последовательность операций, предусматривающая вначале разборку машины на блоки, узлы, под узлы, а затем разборку каждого узла на детали.

При текущем ремонте разборке подлежат только те узлы, детали которых требуют ремонта или замены. В зависимости от объема ремонта разборка оборудования проводится одной бригадой на одном рабочем месте или создается дополнительные рабочие места по разборке отдельных агрегатов.

Чтобы выполнить операции разборки в более короткий срок и при этом предохранить узлы и детали от поломок, необходимо правильно организовать их укладку. Тяжелые и громоздкие узлы и детали машин ставят или укладывают на подставки и деревянные настилы у места разборки таким образом, чтобы они не мешали работе бригады и не загораживали проходы. Другие снятые с машины детали помещают на специальные подставки, которые могут быть установлены одна над другой на тележки для транспортировки деталей на мойку. Такой способ размещения деталей исключает контакт и удары деталей друг о друга при транспортировке, а следовательно, и их повреждения. Крепежные детали, обладающие малой массой и не вызывающие взаимных поломок, помещают в ящик. После мойке деталей на этих же подставках доставляют на контроль (дефектовку). При разборке детали проходит метку. Это необходимо для всех деталей при индивидуальном ремонте, когда машину собирают из собственных восстановленных деталей. При агрегатном методе ремонта метки необходимы для пары приработанных деталей (седло-клапан) или для фиксации правильного взаимного положения деталей.

Существуют следующие способы метки деталей: сильным клеймом (буквами, цифрами, кернением), электрографом или электроштихилем, кислотным клеймом и краской. Клеймят незакаленные детали, если клеймение не портит рабочую поверхность и не деформирует деталь. Другие методы пригодны и для заклеенных деталей. Кислотное клеймо наносят резиновым штампом, смоченным кислотой, с дальнейшей нейтрализацией 10%-ным раствором кальцинированной соды.

Рассмотрим особенности разборки наиболее распространенных деталей и применяемые при этом инструменты.

Резьбовые соединения. Если резьбовой конец испорчен, перед разборкой надо поправить резьбовую нарезку с помощью трехгранного надфиля, напильника или полностью спилить забитую нитку резьбы. Резьбовые соединения, работающие в агрессивных средах, корродируют, что затрудняют их разборку, так как момент развинчивания становится недопустимо велик. Такие соединения промывают керосинам, а в некоторых случаях узел погружают на время в ванну с керосином. Проникая в резьбу, керосин уменьшают коэффициент трения. Перед развинчиванием следует убедиться в направлении нарезки (правая, левая) с тем, чтобы не деформировать свинченные детали недопустимым крутящим моментом.

Чаще разобщение деталей облегчается легким и чистым обстукиванием молотком, а в отдельных случаях нагревом узла горячей водой, паром или (если отсутствует опасность коробления) открытым пламенем паяльной лампы либо кислородногазовой горелкой.

Перед развинчиванием деталей необходимо расстопорить средство против самоотвинчивания: отвинтить стопорный винт, отогнуть усик стопорной шайбы, вытащить шплинт, отвинтить контргайку и т. д. Запрещается при отвинчивании применять трубы для удлинения плеча ключа, так как недопустимо большой момент кручения приводит к порче граней гаек и поломке болтов и шпилек. Для извлечения поломанных шпилек используют следующие способы: если шпилька выступает над поверхностью, в верхней её части прорезают паз под отвертку, либо приваривают к сломанному торцу гайку по внутреннему диаметру; если шпилька спрятана в гнездо, в ней сверлят отверстие, нарезают левую резьбу и ввинчивают экстрактор, вращая который вывинчивают шпильку. Если вывинтить шпильку указанными методами невозможно, ее высверливают. Аналогичными методами можно удалять винты с испорченным пазом под отвертку или с поломанной головкой. Паз винта может быть испорчен недопустимым моментом вращения, а так же неправильным выбором отвертки, которая должна соответствовать длине и ширине паза. На ремонтных предприятиях следует ограничивать применения рожковых и особенно универсальных (разводных) ключей, так как работа с ними малопроизводительна и, кроме того, они быстро изнашивают грани болтов и гаек. Более рациональны накидные торцевые, коловоротные ключи, а так же ключ-трещотка и ключи с шарнирными наконечниками. Наибольшая производительность достигается при использовании пневматических и электрических гайковертов. Чтобы не применять контргайки для вывинчивания шпилек, используют специальные цанговые ключи.

Цилиндрические соединения с натягом. Если разборка деталей класса вал-втулка, соединенных на посадках с зазором, не вызывает затруднений, то разборка соединений с натягом требует применения специальных приспособлений, способных создавать значительные силы распрессовки. К таким приспособлениям относятся рычажные, винтовые и гидравлические прессы, применение которых не всегда возможно, а так же различные подшипников, муфт, шестерен, шкивов, втулок, седел поршневых насосов.

Усилие распрессовки создается системой винт-гайка, значительная величина усилия требует применения ходовой резьбы. Винтовые съемники и прессы дают возможность разбирать механизмы машин без ударов, благодаря чему детали предохраняются от повреждений, а операции разборки выполняются сравнительно быстро.

При разборке деталей, соединенных горячей посадкой, применяют прессы и мощные съемники. Разборку соединений может облегчить нагрев наружной детали. Если разборка невозможна, наружную деталь удаляют механической обработкой.

Подшипники качения. При демонтаже следует беречь от повреждений подшипники, их гнезда в корпусах и шейки валом, на которых они посажены. Лучший способ демонтажа подшипников - снять их с вала или удалить из гнезда с помощью прессов с использованием соответствующих наставок или при помощи съемников, аналогичных описанным выше. При этом усилие следует прикладывать только к туго насаженному кольцу, не передавая его через элементы качения. Запрещается снимать подшипники ударами молотка. Пружины кольца, которыми замыкаются подшипники качения в корпусах или на валах, снимают, разжимая или сжимая их с помощью специальных щипцов с закругленными губками (прямыми или отогнутыми), которые вводят в отверстия, имеющиеся в пружинных кольцах.

Если подшипник запрессован с большим натягом, перед демонтажем его следует прогреть маслом, имеющим температуру примерно 100єС, предварительно изолировав вал асбестом или картоном в местах примыкания к подшипнику. Горячее масло на подшипник льют из лейки.

3.2 Контроль вала

При проведении дефектации изделий необходимо производить разбраковку деталей по видам износа, одновременно необходимо сразу предварительно определять и направление восстановления деталей. В дальнейшем необходимо, чтобы детали, восстановленные одним способом, попадали бы на сборку в один узел (насос). Это делается, для того чтобы исключить преждевременный выход насоса из строя из-за неправильного выбора метода восстановления или защиты какой-либо одной детали или элемента насоса при сохранении работоспособности остальных элементов насоса.

В процессе эксплуатации у валов и осей изнашиваются посадочные шейки, шпоночные канавки и шлицы, повреждаются резьбы, поверхности валов, центрирующие отверстия, а также происходит изгиб валов.

Валы и оси выбраковываются, если в них есть трещины и изношены посадочные места сверх предельных размеров. Особое внимание при дефектовке уделяют контролю коленчатых валов. Трещины выявляю наружным осмотром или одним из методов дефектоскопии.

Предельные размеры, овальность и конусность шеек валов определяют микрометром в двух взаимно перпендикулярных плоскостях. У коленчатых валов замеряют шейки в плоскости кривошипов и перпендикулярно к ней.

Предельные размеры посадочных мест, шлицев, шпоночных канавок оценивают при помощи скоб, шаблонов, колец и др.

Изгиб валов проверяют индикатором при их вращении в центрах или на призмах. Шейки валов, имеющие царапины, риски и овальность до 0,1 мм, ремонтируют шлифованием. Но сначала проверяют, справлены ли центровые отверстия. При наличии на них забоин и вмятин отверстия восстанавливают. Шейки валов со значительным износом обтачивают и шлифуют под ремонтный размер. При этом допускается размер уменьшении диаметра на 5-10% в зависимости от характера воспринимаемых валом нагрузок. В тех случаях, когда необходимо восстановить размеры шеек, на них после их обточки напрессовывают или устанавливают на эпоксидном клее ремонтные втулки, которые затем обрабатывают точением или шлифованием. Изношенные поверхности валов можно ремонтировать также наращиванием металла вибродуговой наплавкой, металлизацией, осталиванием, хромированием и другими методами.

4. Технология восстановления вала

Учитывая условие работы и виды износа вала, дефект будем устранять наплавкой в среде углекислого газа. Наплавка проводится без последующей термической обработки, и без предварительной механической обработки. Для наплавки используется проволока 1,2 Нм-30ХГСА ГОСТ 10543-82. Рассматриваем режимы при наплавке в среде углекислого газа.Выбираем силу тока в зависимости от диаметра электрода и диаметра детали.Диаметр проволоки 1,1-1,2 мм.Сила тока.Напряжение

Скорость наплавки V H , м/ч.

б Н =(10ч12) г/А. ч;

J - сила тока, А;

h - толщина наплавляемого слоя, мм;

S - шаг наплавки, мм;

Где Dн - диаметр наплавки, Dп - диаметр проволоки.

S=(1,6ч2,2) . d пр =1,8 . 1,2=2,16 мм

Dпр-диаметр проволоки

Частота вращения детали п мин -1:

где Uн-скорость наплавки;d-диаметр вала

n=1000·82.6/60·3.14·97=9.53

Скорость подачи проволоки U пр, м/ч:

где б Н - коэффициент наплавки, г/А. ч,

J - сила тока, А;

пр -диаметр проволоки

г - плотность электродной проволоки, г/см 3 (г =7,85).

Вылет электрода:

Смещение электрода l, мм:

l=0.07·97=3.22 мм

Расход углекислого газа составляет 12 л/мин.

Рассчитываем норму времени, Т Н:

где Т 0 - основное время;

Т ВС - вспомогательное время;

Tдоп- дополнительное время.

T0=3.14·97·28/1000·82.6·2.16=0.022ч

Т ВС =(2ч4) мин - вспомогательное время

где к - коэффициент, учитывающий долю дополнительного времени от основного и вспомогательного, %:

к=10 - для наплавки в среде СО 2

Т ПЗ =(16ч20)мин

Используемая марка проволоки 1,2 Н П -30 ХГСА.

Выработка и выход из строя подшипников скольжения или качения, а также, коррозионные оспины, появление рисок и надиров при попадании мелких посторонних частиц во вкладыши подшипников вместе со смазкой приводят к износу шеек валов.

Шейки вала, работающего в подшипниках скольжения, обычно вырабатываются неравномерно и в продольном сечении принимают форму конуса, в поперечном - эллипса. Шейки вала, работающего в подшипниках качения, изнашиваются при протачивании внутренней обоймы подшипника на валу вследствие послабления при изготовлении или выработке посадочных мест в процессе эксплуатации насоса.

В зависимости от износа посадочных мест валов применяют следующие методы восстановления: хромирование при износе посадочных мест до 0,3 мм; осталивание (железнение) с последующим шлифованием при износе посадочных мест до 0,8 мм; наплавку при износе посадочных мест более 0,8 мм.

Восстановление и упрочнение валов наплавкой значительно увеличивают срок их службы, обеспечивают большую экономию запасных частей, сокращение затрат на ремонт оборудования. Известны различные способы наплавки - электродуговая, электрошлаковая, газовая, термитная, трением, электронно-лучевая и др. Валы восстанавливают обычно электродуговой наплавкой, не вызывающей деформации обрабатываемых изделий. Для восстановления изношенных валов можно также использовать наплавку трением. Этот процесс по затратам электроэнергии значительно экономичнее электродугового.

В ремонтном производстве для восстановления валов часто применяют электродуговую наплавку под слоем флюса, в среде диоксида углерода, в струе охлаждающей жидкости, с комбинированной защитой дуги, порошковой лентой и др. Автоматическую электродуговую наплавку под слоем флюса широко применяют для наплавки валов, изготовленных из нормализованных и закаленных среднеуглеродистых и низколегированных сталей, а также из малоуглеродистых сталей, не подвергающихся термической обработке, имеющих износ от 0,3 до 4,0 мм при однослойной наплавке и свыше 4 мм - при многослойной. Производительность процесса очень высока. Валы диаметром до 50 мм этим способом восстанавливать сложно, так как шлак, не успев затвердеть, стекает с наплавляемого изделия.

Электродуговая наплавка в среде диоксида углерода широко распространена в ремонтном производстве для восстановления валов диаметром до 40 мм.

Вибродуговую наплавку используют при восстановлении валов диаметром до 40 мм, когда требуется нанести равномерный и сравнительно тонкий слой металла при минимальной деформации изделия, а наличие мелких дефектов не имеет существенного значения. Этот процесс протекает при пониженной мощности дуг, высокоэкономичен и обеспечивает высокую твердость наплавленного металла.

Однако получаемые покрытия насыщены газами и имеют большие внутренние напряжения. Поэтому вибродуговая наплавка не рекомендуется для ремонта деталей, работающих при знакопеременных нагрузках.

Автоматическая наплавка порошковой проволокой, которая позволяет наносить слой металла любого химического состава и получать закалочные структуры различной твердости, получила широкое распространение в последнее время.

Автоматическая наплавка ленточным электродом и порошковой лентой в 2-3 раза производительнее, чем обычной электродной проволокой, и дает возможность за один ход аппарата наносить слой металла шириной до 100 мм, толщиной 2-8 мм. Этим способом нельзя наплавлять валы малого диаметра. Тугоплавкие сплавы наплавляют плазменным способом, который производительнее других способов.

В последние годы разработаны новые способы наплавки с комбинированной защитой дуги и сварочной ванны для устранения отдельных недостатков того или иного способа восстановления.

При восстановлении посадочных мест вала ручной электродуговой наплавкой поврежденное место вала протачивают на станке на величину наиболее глубоких повреждений. Затем наплавляют вал до нужных размеров с учетом последующей проточки и шлифовки. Наиболее ответственная операция - наплавка вала.

На Уфимском заводе синтетического спирта разработано приспособление, позволяющее качественно провести наплавку. Приспособление, показанное на рисунке 4, состоит из рамы 4, на которую крепят неподвижную 7 и передвижную 3 стойки, что позволяет наплавлять валы различной длины. Вал 1 помещается между четырьмя роликами 5 и может свободно вращаться вокруг своей оси. Расстояние между роликами в зависимости от диаметра вала регулируют пазом 8 и гайкой 6. При наплавке шеек валов, расположенных на значительном расстоянии от конца вала, в результате неравномерного нагрева вал деформируется.

Рисунок 3 - Приспособление для восстановления валов электродуговой наплавкой разработанное на Уфимском заводе синтетического спирта1-вал; 2-место наплавки; 3-передвижная стойка; 4-рама; 5-ролик; 6-гайка; 7-неподвижная стойка; 8-паз.

На рисунке 5 показано приспособление, внедренное на Уфимском нефтеперерабатывающем заводе. Оно позволяет вести наплавку спиральным валиком вдоль оси вала, что обеспечивает равномерный нагрев поверхности вала и исключает его коробление. На рисунке вал 2 фиксируют в центрах между планкой 1 и плитой 3. Планка с центром может передвигаться по стойке 4, и это позволяет вести наплавку валов различной длины. Однако установка валов на рассмотренное приспособление сопровождается неизбежной их деформацией.

Кроме ручной применяют автоматическую электродуговую наплавку вибрирующим электродом. Головки для наплавки ГВМК-1 выпускают с вылетом мундштука до 50 мм. Иногда наплавку вала целесообразно проводить без снятия рабочих колес. В этих случаях для головки изготовляют мундштук длиной 250 - 300 мм. Восстановление валов вибродуговой наплавкой показано на рисунке 6.

Рисунок 4 - Приспособления для наплавки валов спиральным валиком 1- планка; 2 - вал; 3- плита; 4 - стойка; 5 - барашек.

Рисунок 5 - Восстановление валов автоматической электродуговой наплавкой вибрирующим электродом 1-рабочие колеса; 2- вал; 3- головка для наплавки.

При наплавке лентой от проплавления основного металла зависит степень его перемешивания с наплавленным. Благодаря постоянному перемещению дуги глубина проплавления основного металла при наплавке лентой меньше, чем при наплавке проволокой. Наибольшее влияние на глубину проплавления и перемешивания основного металла с наплавленным оказывает скорость наплавки. С ее ростом увеличивается глубина проплавления, уменьшаются ширина и толщина наплавляемого валика.

При малых скоростях наплавки снижается проплавление основного металла.

Для наплавки холоднокатаной электродной лентой используют сварочные аппараты АДС-1000-2, А-384, А-874, ТС-3.5, головку АБС, сварочные преобразователи постоянного тока ПС-500, ПТС-500, ПС-1000, ПСМ-1000-4 и выпрямители ВС-600, ВС-1000, ВКСМ-1000, ВКСМ-2000. Наплавку осуществляют лентами из стали 08кп и коррозионно-стойких сталей. Широкое применение получили металлокерамические ленты ЛМ-70ХЗНМ, ЛМ-20ХЮПОТ, ЛМ-1Х14НЗ, ЛМ-5Х4ВЗФС, разработанные в Институте электросварки им. Е. О. Патона.

Наплавку металлокерамическими лентами ведут постоянным током обратной полярности. Плотность тока на электроде 10 -20 А/мм 2 , напряжение дуги 28 - 32 В, скорость наплавки 0,16 -0,55 м/с, скорость подачи ленты 15 - 150 м/ч.

Таблица 2 Сила тока в зависимости от ширины ленты следующая:

Восстановление деталей контактным электроимпульсным покрытием заключается в приварке металлической ленты под воздействием сварочных импульсов. Чтобы исключить нагрев детали и улучшить условия закалки приварного слоя, в зону сварки подают охлаждающую жидкость.

При приварке ленты толщиной 0,3 - 0,4 мм рекомендуемая емкость батареи конденсаторов 6400 мкФ. Напряжение заряда конденсаторов регулируют в пределах 260 - 425 В. Ленту приваривают при напряжении 325 - 380 В. Чем больше диаметр восстанавливаемой детали и толщина привариваемой ленты, тем выше требуемое напряжение заряда конденсаторов. Свариваемость ленты с основным материалом в зависимости от амплитуды и длительности импульса тока определяют по глубине вмятин сварной точки, числу пор на поверхности деталей, прошлифованных до номинального размера, и шелушению приварного слоя толщиной 0,15 - 0,02 мм.

5. Сборка насосного агрегата,регулировка основных узлов и деталей вала

5.1 Общие положения

После окончания ремонта и восстановления деталей, их комплектовки и балансировки наступает завершающий этап ремонта насоса - сборка и испытание отремонтированного насоса.

Сборка должна производится на специальном участке, оборудованном стендами, обеспеченном полным комплектом инструмента специальных приспособлений и оборудования для ликвидации ручных работ и необходимыми контрольно-проверочными приспособлениями и инструментом.

Основное содержание процесса сборки - выполнение комплекса слесарно-сборочных работ для сопряжения деталей насоса в необходимой последовательности.

Наиболее простой организационной формой сборки для насосов НПВ является так называемая стационарная сборка без расчленения процесса по операциям. При этом методе сборку насоса ведут на одном рабочем месте (или участке), куда поступают детали и собранные узлы.

Рабочие места сборочного участка должны быть обеспечены всеми деталями необходимыми для полной комплектности сборки. Детали должны быть чистыми и полностью соответствовать техническим требованиям, изложенным в ведомости дефектации и ремонта деталей, и должны быть приняты ОТК.

При этом необходимо проверить

а) соответствие форм и размеров деталей рабочим чертежам;

б) материалы - проверкой сертификатов;

в) отсутствие внешних дефектов - визуально;

г) шероховатость обработанных поверхностей, допускается снижение шероховатости поверхности на один класс у деталей, которые годны по всем размерам без ремонта.

Рабочие колеса, полумуфты, диск разгрузочный должны быть статически сбалансированы, а ротор должен быть сбалансирован динамически;

На насосах подлежащих ремонту применяются следующие методы сборки деталей и узлов.

Полная взаимозаменяемость, при которой любая деталь и узел могут быть использованы для любого насоса при сборке без дополнительной пригонки. В этом случае сборка заключается только, в соединении деталей узлов, при этом обеспечиваются заданные посадки, (рабочие колеса корпуса секций, направляющие аппараты);

Сборка с применением компенсаторов, при которой в результате изменения величины одного из звеньев обеспечивается заданная точность размерной цепи; все остальные звенья изготавливается с точностью, допустимой условиями производства. Практически этот метод сборки осуществляется введением прокладок, колец, втулок (сборка ротора с компенсирующими кольцами между рабочими колесами).

Применение пригонки деталей по месту обеспечивают заданную точность сборки изменением размера или получением размера по месту в результате снятия стружки (диск разгрузочный...).

5.2 Сборка соединений

5.2.1 Сборка прессовых соединений

К прессовым соединениям, относятся посадки наплавляющего аппарата в корпус секции, соединение секций между собой. При сборке прессовых соединений посадка деталей всегда производится с натягом. Перед сборкой детали должны быть тщательно очищены от стружки; эмульсии и других загрязнений и покрыты тонким слоем смазки. Основным оборудованием для выполнения прессовых посадок служат прессы различных типов: ручного действия с механическим приводом, пневматические и гидравлические.

Запрессовку деталей необходимо производить плавно, с постоянным нарастанием усилия, не допуская перекоса.

Если по условиям сборки установка детали производится ударом молотка по обработанной поверхности, необходимо применять оправки и молотки из цветных металлов, пластмасс. При, этом запрессовку необходимо производить легкими ударами молотка по головке оправки или по специальной подставке, причем, чтобы деталь плотно села на месте своим буртиком или упором, причем последний удар должен быть сильным и резким.

5.2.2 Сборка шпоночных соединений вала

Сборку шпоночного соединения начинают с проверки паза на валу. Дно паза должно быть параллельно оси вала, острые кромки паза закругляют. Шпонку пригоняют по пазу, смазывают жидкой смазкой и запрессовывают в паз. Правильность прилегания шпонки к боковым стенкам проверяют шумом или по окраске. Затем выверяют паз в ступице, производят пригонку паза по шпонке и после этого ступицу насаживают на вал.

5.2.3 Сборка конусных соединений (насадка полумуфты насоса)

Перед сборкой конусного соединения необходимо проверить плотность прилегания конических поверхностей вала и втулки по краске. Плотность прилегания должна бать не менее, 80%.

Конусное соединение для надежности дополнения шпонкой; полумуфта насаженная на вал крепится на нем гайкой и шайбой.

5.2.4 Установка подшипника качения

Нормальная работа подшипников во многом зависит от соблюдения технологического процесса посадки подшипника.

При посадке подшипника в корпус усилия запрессовки прилагают к наружному кольцу, предварительно смазав место посадки жидкой смазкой.

Следует стремиться запрессовать кольцо под прессом или при отсутствии пресса, молотком с использованием монтажной отправки. Правильно смонтированный подшипник при проворачивании от руки должен работать ровно без шума, стука и толчков.

5.2.5 Сборка резьбовых соединений

Качество сборки резьбовых, соединений определяется правильностью затяжки болтов и гаек, достижением необходимых посадок, отсутствием перекосов в соединениях, надежностью стопорных устройств.

При затяжке болтовых соединений важно осуществлять постоянное усилие, достаточное для создания необходимой плотности соединения. Слишком сильная затяжка может привести к недопустимым дёформациям пли перенапряжению соединения. Приступая к затяжке болтового соединения необходимо проверить резьбу болта и гайки. Гайка должна от усилия руки навертываться на резьбу до конца и не иметь качания.

Особенное внимание обратить на стяжные шпильки - для которых нужно обеспечить равномерную затяжку по всей окружности, завинчивая гайки поочередно "крест-накрест".

Момент затяжки (указан в сборочных чертах) получить не менее, чем за 5 обходов гаек по окружности.

Для более качественного соединения секций рекомендуется применять гидрозатяжку шпилек с гарантируемым усилием затяжки.

Концы болтов и шпилек резьбовых соединений должны выступать из гаек на 1..4 витка резьбы.

Допускается при необходимости поставка ступенчатых шпилек в гнезда ремонтного размера и увеличение диаметров шпилек, при износе гнезд.

5.3 Сборка насоса

При окончании необходимого ремонта всех деталей проводится сборка всех узлов, входящих в насос: ротор, секции, концевое уплотнение, крышка насоса.

5.3.1 Сборка ротора

Сборка ротора осуществляется в два этапа: предварительная и окончательная сборка совместно с насосом. Детали, поступающие на предварительную сборку (рабочие колеса, полумуфты,) должны быть статически сбалансированы.

Предварительная сборка ротора осуществляется в следующем порядке. На вал одевается рабочее колесо первой ступени до упора в буртик, предварительно вложив шпонку в паз вала. Затем поочередно одеваются рабочие колеса промежуточной ступени, причем необходимо обратить внимание, что шпонки под колеса (через ступень) находятся на диаметрально противоположных поверхностях вала.

После рабочего колеса последней ступени одеваются диск разгрузочный, рубашка и с двух сторон проводят стяжку всех деталей с помощью гаек.

В процессе этой сборки проводится проверка размеров 95 мм и 98,5 мм между осями рабочих колес, и при необходимости устанавливаются прокладочные кольца из материалов, стойких по отношению к перекачиваемой среде. Кроме этого должно быть обеспечено прилегание торцов сопрягаемых деталей. При проверке по краске распределение пятен должно быть равномерным по площади торцов.

Предварительная сборка позволяет путем соответствующих замеров обеспечить правильную взаимную осевую установку всех вращающихся деталей и их остановку по отношению к неподвижным частям корпуса.

После сборки готовый ротор подлежит проверке на биение.

Проверка ротора на биение производится на стенке в центрах или специальных отправках. Биение должно замеряться при зажатых и отпущенных гайках ротора, при этом величины биения не должны отличаться. Изменение величины биения свидетельствует о неправильно обработанных торцах деталей.

В случае необходимости производится проточка уплотнений рабочих колес, наружной поверхности рубашек, и торца разгрузочного диска; Запрещается протачивать шейки вала под подшипники и полумуфты.

0тбалансированный ротор снова возвращается на участок сборки, где производится демонтаж с вала деталей, затрудняющих установку ротора в насос, причем необходима фиксация положения снимаемых с вала деталей и порядковая нумерация рабочих колес с целью сохранения динамической балансировки.

5.3.2 Сборка крышки всасывания

После окончания ремонта и проверки основных размеров в крышку всасывания вставляется уплотнительное кольцо, которое привинчивается винтами к крышке. Затем вставляется предохранительная втулка из бронзы или нержавеющей стали, и фиксируется винтами или сваркой. В зависимости от варианта уплотнения может устанавливаться на болтах корпус уплотнения с уплотнительным кольцом.

5.3.3 Сборка напорного патрубка

Сборка заключается в установке втулки пяты на штифтах и фиксации ее подвижным фланцем.

5.3.4 Сборка секций

В направляющем аппарате фиксируется уплотнительное кольцо из бронзы или пластмассы, в корпусе секции фиксируется стальное уплотнительное кольцо и затем направляющий аппарат вставляется в корпус секции.

5.3.5 Финальная сборка насоса

Сборка насоса начинается с установки на плиту входной крышки, если она снималась, со вставленной уплотнительной втулкой и закреплением ее на плите. На плиту устанавливается монтажная подставка для сборки секций. Затем устанавливается первая секция до металлического контакта по уплотнительному стыковому торцу и подпирается вал от провисания. Таким же образом собираются остальные рабочие колеса и секции. После каждой установки очередной секции проверяется суммарный осевой разбег путем передвижения ротора до упора в одну и другую сторону.

Если разбег меньше 6 мм, то выполняется подгонка осевых размеров рабочих колес, направляющих аппаратов или устанавливаются дистанционные кольца на ротор.

После сборки, всех секций устанавливается крышка с предварительной собранной в ней втулкой пяты и производится затяжка шпилек.

Предварительный момент затяжки шпилек - 30 кгс.м. Окончательный момент затяжки шпилек насоса - 1000 кгс.м.

Равномерность затяжки шпилек насоса проверяется шумом на равномерность бокового зазора в щелевом уплотнении рабочего колеса первой ступени или диска разгрузочного.

После обтяжки насоса обязательно проверяется осевой разбег ротора.

Суммарный осевой разбег ротора (до установки разгрузочного диска) должен быть 6..8 мм. С установленным разгрузочным диском осевой разбег должен быть:

а) для сальникового уплотнения - 3..4 мм

б) для торцового уплотнения - I..2 мм.

5.4 Центровка насоса

Центровка ротора проводится при снятых крышках подшипников и верхних вкладышах, путем смещения ротора в вертикальном положении.

Смещение производить одновременным перемещением корпусов подпятников с помощью регулирующих винтов. Замеренный наименьший вертикальный зазор разбить так, чтобы вверху 1/3 зазора, а внизу 2/3 зазора, но не менее 0,2 им.

Гайки, крепящие корпус подшипника к корпусу насоса должны быть затянуты так, чтобы обеспечить равномерный зазор на плотности стыка и шуп 0,03мм закусывал. После центровки корпуса подшипников заштифтоватъ и установить переднюю и заднюю крышку.

Перед окончательной сборкой подшипников проверяется контакт подшипников с валом и рабочие зазоры.

Прилегание нижних половин вкладышей к шейкам вала должно быть в осевом направлении по всей длине, а по окружности на 1/3 полуокружности. Зазоры между шейками вала и половинками вкладышей подшипников должны находится в пределах:

сверху - 0,15..0,21 мм;

сбоку - 0,05..0,11 мм.

Полумуфта устанавливаются на вал с большой тщательностью, т.к. от этого зависит надежность работы насоса.

При сборке зубчатых муфт венцы полумуфт соединяют болтами, в строгом соответствии с маркировкой определяющей взаимное положение частей муфты.

6. Испытание и приработка насосного агрегата и узлов с описанием испытательного стенда

6.1 Основные положения

1) Обкатать насос в течение 10 минут, не регулируя утечку. Затем, подтягивая крышку поворотом гаек на 1/6 оборота через каждые 5..10 минут, добиться необходимого уровня утечки. Обкатка насоса без рабочей жидкости недопустима.

2) Утечка на валу необходима для нормальной работы уплотнения. Затяжка пакета набивки до полного прекращения утечки ведёт к повышенному износу и уменьшению периода между подтяжками. Уровень утечки должен находиться в пределах 0,5..2 л/час для агрессивных сред и 0,5..10 л/час для прочих.

3) Перегрев узла при обкатке не допускается. В случае перегрева (уплотнение парит) остановить насос, охладить уплотнение, проверить отсутствие перекоса крышки сальника и продолжить обкатку. Общее время обкатки 30..90 минут в зависимости от условий работы.

4) Затворная жидкость должна подаваться под давлением 0,5..1 кг/см 2 большим, чем давление перед уплотнением.

5) Контроль утечки и температуры сальниковых уплотнений производится один раз в сутки. При запуске насоса после длительной стоянки необходимо проверить правильность регулировки.

6) После подтяжка пакет на 1..1,5 кольца, т.е. использования запаса регулировки, рекомендуется заменить весь пакет набивки, поскольку большая часть смазки потеряна и дальнейшая эксплуатация ведёт к повышению износа защитной втулки (кроме набивки на основе углеродного волокна). В случае производственной необходимости допускается добавление одного кольца набивки со стороны нажимной крышки.

7) Тщательно следить за правильностью выбора набивки при эксплуатации насоса.

8) При перекачивании агрессивных токсичных и взрывоопасных жидкостей, подача затворной жидкости обязательна.

6.2 Методы испытаний

Детали и сборочные единицы насоса, подвергавшиеся исправлению дефектов способом заварки, должны пройти гидравлические испытания в течение 10 минут на прочность и герметичность в соответствии с ГОСТ 22161-75 давлением, превышающим пробное на 20% .

Детали и узлы насоса считаются выдержавшими гидравлические испытания на прочность и плотность, если в процессе испытания не было обнаружено "потение" металла, течи, отдельные капли, нарушение каких-либо соединений, признаков разрыва.

Согласно ГОСТ 6134-71, насосы прошедшие капитальный ремонт, подвергаются обкатке и приемосдаточным испытаниям с целью проверки их соответствия основным требованиям технической документации, утвержденной в установленном порядке. Результаты испытаний оформляются актом. Если насос соответствует основным требованиям, то он принимается, если результаты испытаний отрицательны, то насос возвращается на исправление и повторные, испытания.

Основное назначение обкатки - проверка качества сборки насоса и приработка его деталей.

Перед обкаткой насос необходимо подвергнуть внешнему осмотру и произвести кратковременный пуск. При внешнем осмотре должны быть проверены: комплектность насоса в соответствии со сборочными чертежами, качество сборки, доступное проверки без пуска насоса, наличие смазки.

Кратковременный пуск производится при закрытой задвижке на напорном трубопроводе.

Подобные документы

    Назначение, техническая характеристика, конструкция и принцип действия насосного агрегата. Монтаж, эксплуатация и ремонт оборудования. Эксплуатация цементировочного насоса во время работы. Расчет штока, червячного колеса, поршня и цилиндровой втулки.

    курсовая работа, добавлен 04.11.2014

    Назначение, устройство и параметры агрегата для депарафинизации скважин. Оборудование и технические характеристики. Износ деталей насоса 2НП-160. Технологический процесс капитального ремонта оборудования. Конструкционный расчет трехплунжерного насоса.

    курсовая работа, добавлен 08.08.2012

    Краткая географическая и геологическая характеристика Рогожниковского месторождения. Описание продуктивных пластов. Свойства пластовых жидкостей и газов. Анализ работы скважин, оборудования установки погружного электрического центробежного насоса.

    курсовая работа, добавлен 12.11.2015

    Установки погружных винтовых электронасосов для добычи нефти. Принцип действия насоса. Отказы, неполадки оборудования. Техника безопасности на нефтяном предприятии. Общая характеристика Ярегского месторождения. Расчет основных параметров винтового насоса.

    курсовая работа, добавлен 03.06.2015

    Виды скважин, способы добычи нефти и газа. Вскрытие пласта в процессе бурения. Причины перехода газонефтепроявлений в открытые фонтаны. Общие работы по ремонту скважин. Обследование и подготовка ствола скважины. Смена электрического центробежного насоса.

    учебное пособие, добавлен 24.03.2011

    Спуск погружного электронасоса в скважину и его извлечение из нее. Работа с автонаматывателем кабеля. Передвижение и расстановка оборудования. Анализ причин ремонтов УЭЦН. Назначение и типы ловильных головок ЭЦН. Виды и причины износа деталей насоса.

    отчет по практике, добавлен 12.05.2015

    Геолого-физическая характеристика месторождения. Фильтрационно-емкостные свойства пород продуктивных пластов. Особенности выработки запасов нефти. Конструкция скважин. Испытание на герметичность. Монтаж подъемного агрегата и расстановка оборудования.

    дипломная работа, добавлен 17.06.2016

    Агрегаты для освоения, капитального и текущего ремонта скважин. Агрегаты для интенсификации добычи. Специальный транспорт для перевозки труб, штанг и другого оборудования. Техника безопасности при работе спецагрегатов по освоению и ремонту скважин.

    курсовая работа, добавлен 23.04.2013

    Общая схема установки погружного электроцентробежного насоса. Описание принципов работы газосепаратора, гидрозащиты и погружного электродвигателя. Подбор оборудования и выбор узлов установки для данной скважины. Проверка параметров трансформатора.

    курсовая работа, добавлен 06.10.2015

    Основное назначение промывки скважины в процессе бурения. Схема процессов, преимущества и недостатки прямой и обратной промывки. Промывочные жидкости и условия их применения. Схема бурения с обратной промывкой с использованием центробежного насоса.

Насосы уже давно вошли в нашу жизнь, причем отказ от них не представляется возможным в большинстве отраслей. Существует большое количество разновидностей этих устройств: у каждого свои особенности, конструкция, назначение и возможности.

Наиболее распространенные - центробежные - агрегаты оснащены рабочим колесом, которое является главной деталью, передающей энергию, поступающую от двигателя. Диаметр (внутренний и наружный), форма лопаток, ширина колеса – все эти данные являются расчетными.

Типы и особенности

Большинство насосов осуществляют свою работу с использованием одного или нескольких зубчатых или плоских колес. Передача движения происходит за счет вращения по змеевику или трубе, после чего жидкость выдается в отопительную или водопроводную систему.

Можно выделить такие типы рабочих колес центробежных насосов:

  • Открытые – обладают низкой производительностью: КПД составляет до 40 процентов. Конечно, некоторые землесосные снаряды до сих пор используют такие агрегаты. Ведь они обладают высокой стойкостью к засорению, при этом их легко защитить, используя стальные накладки. Добавляется к этому еще и упрощенный ремонт рабочих колес насосов.
  • Полузакрытые – используются для перекачки или передачи жидкости с низкой кислотностью и содержанием небольшого количества абразива в крупных грунтовых агрегатах. Такие элементы оснащены диском со стороны, противоположной всасыванию.
  • Закрытые – современный и наиболее оптимальный вид насосов. Используется для подачи или перекачки сточных или чистых вод, продуктов нефтепереработки. Особенность такого типа колес в том, что на них может быть разное количество лопаток, находящихся под разными углами. Такие элементы имеют самый высокий КПД, этим и объясняется высокая востребованность. Колеса сложнее защитить от износа и ремонтировать, однако они имеют высокую прочность.

Чтобы было удобнее выбирать и различать, на каждом насосе имеется маркировка, позволяющая правильно подобрать для него рабочее колесо. Во многом тип определяется объемом передаваемых жидкостей, при этом используются и разные двигатели.

Что касается количества рабочих лопаток в колесе, то это число колеблется от двух до пяти, реже используется шесть штук. Иногда на внешней части дисков закрытых колес делаются выступы, которые могут быть радиальными или повторяющими очертания лопаток.

Рабочее колесо насоса зачастую производится цельнолитым. Хотя, например, в Соединенных Штатах этот элемент крупного грунтового агрегата делается сварным из литых составляющих. Иногда рабочие колеса изготавливаются с отъемной ступицей, создаваемой из мягкого материала.

В этом элементе может быть сквозное отверстие для обработки.

Отверстие в ступице для посадки на вал может быть коническим или цилиндрическим. Последний вариант позволяет более точно закреплять положение рабочего колеса. Но при этом поверхности нуждаются в очень тщательной обработке, да и снять колесо при цилиндрической посадке сложнее.

При конической посадке высокая точность обработки не требуется. Важно лишь соблюсти конусность, которая в основном находится в границах от 1:10 до 1:20.

Но есть и недостаток такого подхода в закреплении: отмечается значительное биение колеса, что вызывает повышенный износ, особенно при сальниковом уплотнении. При этом положение колеса относительно улитки в продольном направлении является менее точным – еще один минус.

Хотя, конечно, некоторые конструкции позволяют устранить этот недостаток путем перемещения вала в продольном направлении.

Рабочее колесо водяного насоса соединяется с валом при помощи шпонки призматической формы, изготовленной из углеродистой стали.

Современные землесосы все чаще использует другой вид фиксации рабочего колеса с валом – винтовой. Конечно, есть определенные сложности в создании, однако эксплуатация намного упрощается.

Такое решение применяется в крупных грунтовых насосах серии Гр (отечественного производства), а также в агрегатах американского и голландского происхождения.

На рабочее колесо центробежного насоса действуют большие силы – результат:

  • изменения давления на зону колеса против ступицы;
  • изменения направления потока внутри колеса;
  • разности давлений на задний и передний диски.

Если в ступице есть сквозные отверстия, осевая сила больше всего воздействует на хвостовик вала. Если же отверстия несквозные, сила направлена больше на болты, которые используются для фиксации с кольцом валом.

  • Вихревые и центробежно-вихревые насосы. Колесо центробежного насоса – диск с радиально расположенными лопатками, число которых находится в пределах 48-50 штук, имеющий высверленные отверстия. Рабочего колесо может изменять направление вращения, однако при этом требуется изменение назначения патрубков.
  • Лабиринтные насосы. По принципу действия такие агрегаты схожи с вихревыми. В этом случае рабочее колесо изготавливается в виде цилиндра. На внутренней и внешней поверхности имеются винтовые каналы противоположного направления. Между гильзой корпуса и колесом есть зазор в размере 0,3-0,4 мм. Когда колесо вращается, с гребня канала образуются вихри.

Обточка колеса

Обточка рабочего колеса центробежного насоса позволяет уменьшить диаметр для снижения напора, при этом эффективность гидравлики насоса не ухудшается. При малом снижении КПД довольно существенно увеличивается подача и напор.

Обточка применяется тогда, когда характеристика насоса не отвечает текущим условиям функционирования в определенных пределах, при этом параметры системы остаются неизменными, а выбрать агрегат по каталогу не удается.

Количество обточек, которые создаются производителем, не превышает двух.

Размер обточки находится в диапазоне 8-15% от диаметра колеса. И только в крайних случаях этот показатель может быть увеличен до двадцати.

В турбинных насосах обтачиваются лопатки, а в спиральных – еще и диски колеса. Данные производительности, напора, мощности и коэффициента быстроходности при процедуре определяются так:

  • G 2 = G 1 D 2 /D 1 ;
  • H 2 = H 1 (D 2 /D 1) 2 ;
  • N 2 = N 1 (D 2 /D 1) 3 ;
  • n s2 = n s1 D 1 /D 2 ,

где индексами обозначены данные до (1) и после (2) обточки.

При этом происходят такие изменения в зависимости от изменения коэффициента быстроходности колеса: 60-120; 120-200; 200-300:

  • снижение КПД на каждые десять процентов обточки: 1-1,5; 1,5-2, 2-2,5 процентов;
  • уменьшение нормального диаметра колеса: 15-20; 11-15; 7-11 процентов.

Расчет колеса центробежного насоса позволяет определить коэффициент быстроходности по формуле:

  1. (√Q 0 / i) / (H 0 / j)¾.
  2. n s = 3.65 n * (результат первого пункта).

где j – число ступеней; i – коэффициент, зависящий от вида рабочего колеса (с двухсторонним входом жидкости – 2, с односторонним входом жидкости - 1); H 0 – оптимальный напор, м; Q 0 – оптимальная подача, м 3 /с; n – частота вращения вала, об/мин.

Расчет рабочего колеса центробежного насоса выполнять самостоятельно не рекомендуется - работа это ответственная и требует внимания специалистов.

Ремонт и замена

При некачественно изготовленном элементе создается неравномерная нагрузка, что провоцирует нарушение равновесия проточных частей. А это, в свою очередь, приводит к дисбалансу ротора. Если возникла подобная проблема, необходима замена рабочего колеса.

Эта процедура включает такие действия:

  1. Разборка насосной части.
  2. Выпрессовка, замена колеса или нескольких колес (в зависимости от конструкции).
  3. Проверка остальных элементов насоса.
  4. Сборка агрегата.
  5. Тестирование характеристик устройства при нагрузке.

Процедура ремонта элемента может стоить от 2000 рублей. Купить рабочее колесо центробежного насоса можно от 500 рублей - само собой, за самый небольшой вариант.

К основным узлам и деталям центробежных насосов относятся рабочее колесо, направляющий аппарат, корпус насоса, вал, подшипники и сальники.
Рабочее колесо —. важнейшая деталь насоса. Оно предназначено для передачи энергии от вращающегося вала насоса жидкости. Различают рабочие колеса с односторонним и двусторонним входом воды, закрытые, полуоткрытые, осевого типа.

Закрытое рабочее колесо с односторонним входом воды (рис. 2.2, а) состоит из двух дисков: переднего (наружного) и заднего (внутреннего), между которыми расположены лопасти. Диск 3 с помощью втулки закреплен на валу насоса. Обычно рабочее колесо отливается целиком (диски и лопасти) из чугуна, бронзы или других металлов. Но в некоторых насосах применяют сборные конструкции рабочих колес, в которых лопасти вварены или вклепаны между двумя дисками.

Полуоткрытое рабочее колесо (см. рис. 2.2, о) отличается тем, что у него отсутствует передний диск, а лопасти примыкают (с некоторым зазором) к неподвижному диску, закрепленному в корпусе насоса. Полуоткрытые колеса применяют в насосах, предназначенных для перекачивания суспензий и сильно загрязненных жидкостей (например, илов или осадка), а также в некоторых конструкциях скважинных насосов.
Рабочее колесо с двусторонним входом жидкости (см. рис. 2.2, в) имеет два наружных диска и один внутренний диск с втулкой для крепления на валу. Конструкция колеса обеспечивает впуск жидкости с двух сторон, вследствие чего создается более устойчивая работа насоса и компенсируется осевое давление .
Колеса центробежных насосов обычно имеют шесть — восемь лопастей. В насосах, предназначенных для перекачивания загрязненных жидкостей (например канализационных), устанавливают рабочие колеса с минимальным числом лопастей (2—4).
Рабочее колесо насосов осевого типа (см. рис. 2.2, д) представляет собой втулку, на которой закреплены лопасти крыловидного профиля.
На рис. 2.2, г показана схема рабочего колеса с импеллерами, которые служат для разгрузки осевого усилия или защиты уплотнений от попадания твердых частиц.
Очертания и размеры внутренней (проточной) части колеса определяются гидродинамическим расчетом. Форма и конструктивные размеры колеса должны обеспечивать его необходимую механическую прочность, а также удобство отливки и дальнейшей механической обработки.
Материал для рабочих колес выбирают с учетом его коррозионной стойкости к воздействию перекачиваемой жидкости. В большинстве случаев рабочие колеса насосов изготовляют из чугуна. Колеса крупных насосов, выдерживающие большие механические нагрузки, изготовляют из стали. В тех случаях, когда эти насосы предназначены для перекачки неагрессивной жидкости, для изготовления колес используется углеродистая сталь. В насосах, предназначенных для перекачивания жидкостей с большим содержанием абразивных веществ (пульп, шламов и т. п.), применяются рабочие колеса из марганцовистой стали повышенной твердости. Кроме того, в целях повышения долговечности рабочие колеса таких насосов иногда снабжают сменными защитными дисками из абразивно-стойких материалов.
Рабочие колеса насосов, предназначенных для перекачивания агрессивных жидкостей, изготовляют из бронзы, кислотоупорных чугунов, нержавеющей стали, керамики и различных пластмасс.
Корпус насоса объединяет узлы и детали, служащие для подвода жидкости к рабочему колесу и отвода ее в напорный трубопровод. На корпусе монтируют подшипники, сальники и другие детали насоса.

Корпус насосов может быть с торцевым или осевым разъемом. В насосах с торцевым разъемом корпуса (рис. 2.3) плоскость разъема перпендикулярна оси насоса, а в насосах с осевым разъемом "(рис. 2.4) она проходит через ось насоса.
Корпус насоса включает в себя подводящее и отводящее устройства.
Подвооящее устройство (подвод) — участок проточной полости насоса от входного патрубка до входа в рабочее колесо — предназначено для обеспечения подвода жидкости во всасывающую область насоса с наименьшими гидравлическими потерями, а также для равномерного распределения скоростей жидкости по живому сечению всасывающего отверстия.
Конструктивно насоси изготовляют с осевым (рис. 2.5, а), боковым в виде колена (рис. 2.5, б), боковым кольцевым (рис. 2.5, в) и боковым полуспиральным (рис. 2.5, г) входом.
Осевой вход характеризуется наименьшими гидравлическими потерями, однако при изготовлении насосов с таким входом увеличиваются размеры насосов в осевом направлении, что не всегда удобно конструктивно. Боковой кольцевой вход создает наибольшие гидравлические потери, но обеспечивает компактность насоса и удобное взаимное расположение всасывающего и напорного патрубков.

В насосах с двусторонним входом рабочие колеса разгружены от осевого давления, возникающего при работе насоса. В этих насосах применяют, как правило, боковой полуспиральный вход, который обеспечивает равномерное поступление жидкости в рабочее колесо.
Отводящее устройство (отвод) — это участок, предназначенный для отвода жидкости от рабочего колеса в напорный патрубок насоса. Жидкость выходит из рабочего колеса с большой скоростью. При этом поток обладает высокой кинетической энергией, а движение жидкости сопровождается большими гидравлическими потерями. Для уменьшения скорости движения жидкости, выходящей из рабочего колеса, преобразования кинетической энергии в потенциальную (увеличения давления) и уменьшения гидравлических сопротивлений применяют отводящие устройства, а также направляющие аппараты.


Рис. 2.6. Схемы отводов центробежных насосов

Различают спиральный, полуспиральный, двухзавитковый и кольцевой отводы, а также отводы с направляющими аппаратами.
Спиральный отвод — это канал в корпусе насоса, охватывающий рабочее колесо по окружности (рис. 2.6, а). Поперечное сечение этого канала увеличивается соответственно расходу жидкости, поступающей в него из рабочего колеса, а средняя скорость движения жидкости в нем уменьшается по мере приближения к выходу или остается примерно постоянной. Спиральный канал оканчивается выходным диффузором, в котором происходит дальнейшее уменьшение скорости и преобразование кинетической энергии жидкости в потенциальную.
Кольцевой отвод — это канал постоянного сечения, который охватывает рабочее колесо так же, как и спиральный отвод (см.рис. 2.6,6). Кольцевой отвод применяют обычно в насосах, предназначенных для перекачивания загрязненных жидкостей. Гидравлические потери в кольцевых отводах значительно больше, чем в спиральных.
Полуспиральный отвод — это кольцевой канал, переходящий в спиральный расширяющийся отвод.
Направляющий аппарат (см. рис. 2.6, в) представляет собой два кольцевых диска, между которыми размещены направляющие лопасти, изогнутые в сторону, противоположную направлению изгиба лопастей рабочего колеса. Направляющие аппараты — более сложные устройства, чем спиральные отводы, гидравлические потери в них больше и потому их применяют только в некоторых конструкциях многоступенчатых насосов.
В крупных насосах иногда применяются составные отводы (см. рис. 2.6, г), представляющие собой сочетание направляющего аппарата и спирального отвода.
Вал насоса служит для передачи рабочему колесу вращения от двигателя насоса. Колеса закрепляют на валу с помощью шпонок и установочных гаек. Для изготовления валов чаще всего применяют кованые стали.
Подшипники, в которых вращается вал насоса, бывают шариковыми и скользящего трения с вкладышами. Шариковые подшипники применяют, как правило, в горизонтальных насосах. В некоторых конструкциях подшипников крупных насосов предусматриваются устройства для охлаждения и принудительной циркуляции масла. По расположению подшипниковых опор различают насоси с выносными опорами, изолированными от перекачиваемой жидкости, и насосы с внутренними опорами, в которых подшипники соприкасаются с перекачиваемой жидкостью.
Сальники служат для уплотнения отверстий в корпусе насоса, через которые проходит вал. Сальник, расположенный со стороны нагнетания, должен предотвращать утечку воды из насоса, а сальник, расположенный со стороны всасывания, — предупреждать поступление воздуха в насос.