ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Композитные материалы. Перспективы использования композитных материалов в машиностроении

1. Композиционные или композитные материалы – материалы будущего.

После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов. Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много разпревышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами. Упервых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

Композиционный материал – конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы ввиде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия. Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемымизначениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

2. Типы композиционных материалов.

2.1. Композиционные материалы с металлической матрицей.

Композитные материалы или композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.

2.2. Композиционные материалы с неметаллической матрицей.

Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная.
Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ейформу. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов,нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава компонентов,их сочетания, количественного соотношения и прочности связи между ними.
Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.

Содержание упрочнителя в ориентированных материалах составляет 60-80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20-30 об. %. Чем выше прочность и модуль упругости волокон,тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.

По виду упрочнителя композитные материалы классифицируют настекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты иоргановолокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слоисобираются в пластины. Свойства получаются анизотропными. Для работыматериала в изделии важно учитывать направление действующих нагрузок. Можносоздать материалы как с изотропными, так и с анизотропными свойствами.
Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.

Применяется укладка упрочнителей из трех, четырех и более нитей.
Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.

Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивлениесдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях.
Однако создание четырехнаправленных материалов сложнее, чем трех направленных.

3. Классификация композиционных материалов.

3.1. Волокнистые композиционные материалы.

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму,по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композитые материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 10 %), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.

Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокондолжны быть значительно больше, чем прочность и модуль упругости матрицы.
Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.

Для упрочнения алюминия, магния и их сплавов применяют борные, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модульупругости. Нередко используют в качестве волокон проволоку из высокопрочных сталей.

Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных ивысокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбидабора и др.

Композиционные материалы на металлической основе обладают высокойпрочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исчезает внезапное хрупкое разрушение. Отличительной особенностью волокнистых одноосных композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность кконцентраторам напряжения.

Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напряжения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, доборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повышением температуры.

Основным недостатком композиционных материалов с одно и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого лишены материалы с объемным армированием.

3.2. Дисперсно-упрочненные композиционные материалы.

В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом,несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.
Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500нм и равномерном распределении их в матрице.
Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об. %.

Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов иредкоземельных металлов), нерастворяющихся в матричном металле, позволяетсохранить высокую прочность материала до 0,9-0,95 Т . В связи с этимтакие материалы чаще применяют как жаропрочные. Дисперсно-упрочненныекомпозиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.

Наиболее широко используют сплавы на основе алюминия – САП(спеченный алюминиевый порошок).

Плотность этих материалов равна плотности алюминия, они не уступают ему покоррозионной стойкости и даже могут заменять титан и коррозионно-стойкиестали при работе в интервале температур 250-500 °С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов САП-1 и САП-2 при 500 °С составляет 45-55 МПа.

Большие перспективы у никелевых дисперсно-упрочненных материалов.
Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2-3 об. % двуоксида тория или двуоксида гафния. Матрица этих сплавов обычно твердыйраствор Ni + 20 % Cr, Ni + 15 % Mo, Ni + 20 % Cr и Mo. Широкое применениеполучили сплавы ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель,упрочненный двуокисью гафния) и ВД-3 (матрица Ni +20 % Cr, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсно-упрочненные композиционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительностивыдержки при данной температуре.

3.3. Стекловолокниты.

Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качественаполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствиевлияния неоднородностей и трещин, возникающих в толстых сечениях). Свойства стекловолокна зависят также от содержания в его составе щелочи; лучшие показатели у бесщелочных стекол алюмоборосиликатногосостава.

Неориентированные стекловолокниты содержат в качестве наполнителя короткое волокно. Это позволяет прессовать детали сложной формы, сметаллической арматурой. Материал получается с изотопными прочностными характеристиками, намного более высокими, чем у пресс-порошков и дажеволокнитов. Представителями такого материала являются стекловолокниты АГ-4В, а также ДСВ (дозирующиеся стекловолокниты), которые применяют дляизготовления силовых электротехнических деталей, деталей машиностроения (золотники, уплотнения насосов и т. д.). При использовании в качествесвязующего непредельных полиэфиров получают премиксы ПСК (пастообразные) и препреги АП и ППМ (на основе стеклянного мата). Препреги можно применять для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпусаприборов и т. п.).

Ориентированные стекловолокниты имеют наполнитель в виде длинных волокон, располагающихся ориентированно отдельными прядями и тщательносклеивающихся связующим. Это обеспечивает более высокую прочность стеклопластика.

Стекловолокниты могут работать при температурах от –60 до 200 °С, атакже в тропических условиях, выдерживать большие инерционные перегрузки.
При старении в течение двух лет коэффициент старения К = 0,5-0,7.
Ионизирующие излучения мало влияют на их механические и электрические свойства. Из них изготовляют детали высокой прочности, с арматурой и резьбой.

3.4. Карбоволокниты.

Карбоволокниты (углепласты) представляют собой композиции,состоящие из полимерного связующего (матрицы) и упрочнителей в видеуглеродных волокон (карбоволокон).

Высокая энергия связи С-С углеродных волокон позволяет им сохранить прочность при очень высоких температурах (в нейтральной и восстановительнойсредах до 2200 °С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим
(низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержаниюкарбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6-2,5 раза. Применяется вискеризациянитевидных кристаллов TiO, AlN и SiN, что дает увеличениемежслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.

Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

Эпоксифенольные карбоволокниты КМУ-1л, упрочненные углероднойлентой, и КМУ-1у на жгуте, висскеризованном нитевидными кристаллами, могут длительно работать при температуре до 200 °С.

Карбоволокниты КМУ-3 и КМУ-2л получают наэпоксианилиноформальдегидном связующем, их можно эксплуатировать притемпературе до 100 °С, они наиболее технологичны. Карбоволокниты КМУ-2 и
КМУ-2л на основе полиимидного связующего можно применять при температуре до
300 °С.

Карбоволокниты отличаются высоким статистическим и динамическимсопротивлением усталости, сохраняют это свойство при нормальной и оченьнизкой температуре (высокая теплопроводность волокна предотвращаетсаморазогрев материала за счет внутреннего трения). Они водо- и химическистойкие. После воздействия на воздухе рентгеновского излучения и Епочти не изменяются.

Теплопроводность углепластиков в 1,5-2 раза выше, чемтеплопроводность стеклопластиков. Они имеют следующие электрическиесвойства: = 0,0024-0,0034 Ом·см (вдоль волокон); ? = 10 и tg =0,001 (при частоте тока 10 Гц).

Карбостекловолокниты содержат наряду с угольными стеклянныеволокна, что удешевляет материал.

3.5. Карбоволокниты с углеродной матриццей.

Коксованные материалы получают из обычных полимерныхкарбоволокнитов, подвергнутых пиролизу в инертной или восстановительнойатмосфере. При температуре 800-1500 °С образуются карбонизированные, при 2500-3000 °С графитированные карбоволокниты. Для получения пироуглеродныхматериалов упрочнитель выкладывается по форме изделия и помещается в печь,в которую пропускается газообразный углеводород (метан). При определенномрежиме (температуре 1100 °С и остаточном давлении 2660 Па) метанразлагается и образующийся пиролитический углерод осаждается на волокнахупрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет высокую прочностьсцепления с углеродным волокном. В связи с этим композиционный материалобладает высокими механическими и абляционными свойствами, стойкостью ктермическому удару.

Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениямпрочности и ударной вязкости в 5-10 раз превосходит специальные графиты;при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200
°С, на воздухе окисляется при 450 °С и требует защитного покрытия.
Коэффициент трения одного карбоволокнита с углеродной матрицей по другомувысок (0,35-0,45), а износ мал (0,7-1 мкм на тормажение).

3.6. Бороволокниты.

Бороволокниты представляют собой композиции из полимерногосвязующего и упрочнителя – борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге исрезе, низкой ползучестью, высокими твердостью и модулем упругости,теплопроводностью и электропроводимостью. Ячеистая микроструктура борныхволокон обеспечивает высокую прочность при сдвиге на границе раздела сматрицей.

Помимо непрерывного борного волокна применяют комплексныеборостеклониты, в которых несколько параллельных борных волокон оплетаютсястеклонитью, предающей формоустойчивость. Применение боростеклонитейоблегчает технологический процесс изготовления материала.

В качестве матриц для получения боровлокнитов используютмодифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и
КМБ-1к предназначены для длительной работы при температуре 200 °С; КМБ-3 и КМБ-3к не требуют высокого давления при переработке и могут работать притемпературе не свыше 100 °С; КМБ-2к работоспособен при 300 °С.

Бороволокниты обладают высокими сопротивлениями усталости, онистойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

3.7. Органоволокниты.

Органоволокниты представляют собой композиционные материалы,состоящие из полимерного связующего и упрочнителей (наполнителей) в видесинтетических волокон. Такие материалы обладают малой массой, сравнительновысокими удельной прочностью и жесткостью, стабильны при действиизнакопеременных нагрузок и резкой смене температуры. Для синтетическихволокон потери прочности при текстильной переработке небольшие; онималочувствительны к повреждениям.

К органоволокнитах значения модуля упругости и температурныхкоэффициентов линейного расширения упрочнителя и связующего близки.
Происходит диффузия компонентов связующего в волокно и химическоевзаимодействие между ними. Структура материала бездефектна. Пористось непревышает 1-3 % (в других материалах 10-20 %). Отсюда стабильностьмеханических свойств органоволокнитов при резком перепаде температур,действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700кДж/мІ). Недостатком этих материалов является сравнительно низкая прочностьпри сжатии и высокая ползучесть (особенно для эластичных волокон).

Органоволокниты устойчивы в агрессивных средах и во влажномтропическом климате; диэлектрические свойства высокие, а теплопроводностьнизкая. Большинство органоволокнитов может длительно работать притемпературе 100-150 °С, а на основе полиимидного связующего иполиоксадиазольных волокон – при температуре 200-300 °С.

В комбинированных материалах наряду с синтетическими волокнамиприменяют минеральные (стеклянные, карбоволокна и бороволокна). Такиематериалы обладают большей прочностью и жесткостью.

4. Экономическая эффективность применения композиционных материалов.

Области применения композиционных материалов не ограничены. Ониприменяются в авиации для высоконагруженных деталей самолетов (обшивки,лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора итурбины и т. д.), в космической технике для узлов силовых конструкцийаппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов,бамперов и т. д., в горной промышленности (буровой инструмент, деталикомбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементысборных конструкций высотных сооружений и т. д.) и в других областяхнародного хозяйства.

Применение композиционных материалов обеспечивает новыйкачественный скачек в увеличении мощности двигателей, энергетических итранспортных установок, уменьшении массы машин и приборов.

Технология получения полуфабрикатов и изделий из композиционныхматериалов достаточно хорошо отработана.

Композитные материалы с неметаллической матрицей, а именнополимерные карбоволокниты используют в судо- и автомобилестроении (кузовагоночных машин, шасси, гребные винты); из них изготовляют подшипники,панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульныекарбоволокниты применяют для изготовления деталей авиационной техники,аппаратуры для химической промышленности, в рентгеновском оборудовании идругом.

Карбоволокниты с углеродной матрицей заменяют различные типыграфитов. Они применяются для тепловой защиты, дисков авиационных тормозов,химически стойкой аппаратуры.

Изделия из бороволокнитов применяют в авиационной и космическойтехнике (профили, панели, роторы и лопатки компрессоров, лопасти винтов итрансмиссионные валы вертолетов и т. д.).

Органоволокниты применяют в качестве изоляционного иконструкционного материала в электрорадиопромышленности, авиационнойтехнике, автостроении; из них изготовляют трубы, емкости для реактивов,покрытия корпусов судов и другое.


Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

1. Керамические композиты

При создании авиационных двигателей нового поколения для снижения веса, уменьшения расхода топлива и уменьшения вредных выбросов используются легкие и очень стойкие огнеупорные материалы – керамические композиты.

На рисунке 1 представлена схема технологического процесса, разработанного NASA для производства композитов Melt Infiltrated Ceramic Matrix Composites .

Сначала изготавливается ткань из волокон карбида кремния (торговая марка Sylramic ), из нее формуется заготовка заданной формы и размеров, затем заготовка насыщается расплавом карбида кремния и обжигается.

Для изготовления композита могут быть использованы волокна Sylramic или Sylramic с покрытием нитрида бора . Такие композиты выдерживают нагрев до 1200 о С.

Схожая технология используется при изготовлении композитных оксид­оксидных материалов, где ткань из материала Nextel 720 (содержащих 85% Al 2 O 3 и 15% SiO 2) насыщается в расплаве алюмосиликатов.

Композитные материалы имеют слоистую структуру (см. рис. 2 ).

По сравнению с монолитными керамическими материалами (например, Si 3 N 4) композитная керамика не такая хрупкая и обладает повышенной ударо­ стойкостью (см. рис. 3 и 4 ).

Керамические композитные материалы широко используются в конст­рукции гиперзвуковых летательных аппаратов (орбитальный БПЛА X37, ракета X51A WaveRider (см. рис. 5 и 6 ).

При полeте на скорости 68 Мах температура поверхностей передних кромок плоскостей может достигать 2700 о С, а температура в камере сгорания прямоточного воздушнореактивного двигателя со сверхзвуковой камерой сгорания (scramjet) – 3000 о С.

Для обеспечения тепловой защиты и высоких прочностных характеристик конструкции при аэродинамическом нагреве используются многослойные сэндвич­структуры Ceramic Matrix Composite/Foam Core (керамический матричный композит с внутренним слоем пористой керамики).

Композитная сэндвич–панель, имеющая плотность порядка 1,06 г/cм 3 обладает высокой прочностью и жесткостью. Коэффициент теплового расширения, керамического композитного материала обшивки и пористого керамического материала сердцевины подобраны таким образом, чтобы обеспечить градиент температур на наружной и внутренней поверхности сэндвич–панели около 1000 о С без расслоений и растрескивания.

Имеющая плотность порядка 1,06 г/cм обладает высокой прочностью и жесткостью. Коэффициент теплового расширения, керамического композитного материала обшивки и пористого керамического материала сердцевины подобраны таким образом, чтобы обеспечить градиент температур на наружной и внутренней поверхности сэндвич–панели около 1000С без расслоений и растрескивания.

В камере сгорания scramjet используются керамические композиты на основе высокотемпературной керамики . Такая керамика, состоящая из диборида циркония и карбида кремния, спекается с помощью электроискровых разрядов высокой частоты (так называемый метод SparcPlasma Sintering). По сравнению с методом горячего изостатического прессования SparcPlasma Sintering позволяет получить более плотную структуру (см. рис.7 и 8 ).

Кроме этого, для камеры сгорания разрабатываются «самовосстанавливающиеся» абляционные материалы , в которых замещение вещества обеспечивается на микроуровне. Это так называемые «secondary polymer layered impregnated tile» (SPLIT ) (слоистые плиты с пропиткой из вторичного полимера), имеющие неоднородный состав. Термин «вторичный» использован потому, что каждый элемент плиты содержит, по крайней мере, два полимерных слоя, вторичная эндотермическая реакция между которыми поглощает значительное количество тепла, помогая предотвращать перегрев материала, находящегося за теплозащитной плитой.

Для защиты композитной керамики на основе карбида кремния от реакций с продуктами горения топлива в камере сгорания и парами воды используются нанокомпозитные коррозионно­стойкие покрытия .

2. Конструкционные нанокомпозитные материалы

Металл­керамические нанокомпозитные сплавы

В качестве легких конструкционных материалов используются алюминиевые и магниевые сплавы, армированные керамическими наночастицами.
Основной проблемой при литье таких сплавов является равномерное распределение керамических наночастиц в объеме отливки. Из­за плохой смачиваемости наночастиц в расплаве они агломерируются и не размешиваются. В университете WisconsinMadison (США) разработана технология размешивания наночастиц в расплаве с помощью ультразвуковых волн, которые создают микропузыри в расплаве. При схлопывании таких микропузырей образуются микроударные волны. Интенсивные микроударные волны эффективно рассредоточивают наночастицы в объеме расплава металла.

Керамические нанокомпозитные материалы

Добавка углеродных нанотрубок и фуллернов (в том числе, нановискеров углерода) в керамическую матрицу улучшает механические свойства керамики (обеспечивают повышение пластичности, снижение хрупкости).

На рис. 9 показаны микрофотографии углеродных нанотрубок в матрице оксида алюминия. Видно развитие микротрещины, углеродные нанотрубки (CNT), являясь армирующим элементом, препятствуют развитию трещины.

Кроме углеродных нанотрубок в качестве армирующих элементов в нанокомпозитной керамике используют неорганические фуллеренподобные материалы (многослойные наносферы или нанотрубки бисульфидов вольфрама, титана, ниобия и молибдена).

Экспериментально подтверждено, что неорганические фуллеренподобные материалы обладают стойкостью к динамическим нагрузкам до 210 тонн/см 2 , (по сравн. 40 тонн/см 2 у высокопрочной стали), что делает его очень перспективным материалом для наполнителей в полимерные или керамические композиты, используемые в качестве легкой брони.

Очень перспективным материалом для применения в различных отраслях промышленности является керамика МАКСфазы (Mn+1AXn phases) – поликристаллические наноламинированные тройные нитриды, карбиды или бориды переходных металлов.

В зависимости от состава этих материалов они могут обладать совершенно уникальными многофункциональными свойствами: быть прочными, в то же время легко обрабатываться, выдерживать высокие температуры, обладать высокой теплопроводностью, очень низким коэффициентом трения. Образно говоря – это керамика, которую можно резать обычной ножовкой.

Материалы МАКСфаз были открыты американским исследователем Prof. M. Barsoum (университет Drexel – США) в 1996 г.

были открыты американским исследователем Prof. M. Barsoum (университет Drexel – США) в 1996 г.

Области применения: энергетика (высокая электропроводность, способность выдерживать высокие механические нагрузки, высокую температуру), газовые и паровые турбины (обладает низким коэффициентом трения при высоких температурах), авиация и космонавтика. На рис. 10 представлена микрофотография наноламинантной структуры МАКСфаз керамики .

Обработка композитных материалов

Появление новых композитных материалов с улучшенными свойствами накладывает новые требования на разработку технологий и инструмента для их обработки. За рубежом используется комплексный подход: к участию в проектах по разработке новых материалов привлекаются технологи по обработке металлов и керамики. В частности, в проектах NASA участвуют специалисты Армейской исследовательской лаборатории и Лаборатории ВВС США.

Например, для сверления отверстий в пластинах и панелях из композитной керамики используют инструмент с вставками из поликристаллического алмаза, а также цельный твердосплавный инструмент с нанокомпозитными многослойными покрытиями.

Для соединения деталей, изготовленных из высокотемпературной керамики на основе диборида циркония используются специальные припои.

В частности, сплавы AgCuTi (торговая марка CusilABA и Ticusil ), а также сплавы на основе палладия – кобальта и палладия никеля (торговая марка Palco и Palni ) обеспечивают надежное соединение такой керамики с конструкционными материалами, изготовленными из тугоплавких сплавов молибдена.

А.В. Федотов
Директор по развитию
НПФ «Элан­Практик»

Использование композитных материалов в строительстве

Недорогой и разносторонний, бетон является одним из лучших строительных материалов во многих предложениях. Являясь настоящим композитом, типичный бетон состоит из гравия и песка, связанных вместе в матрице из цемента, с металлической арматурой, обычно добавляемой для усиления прочности. Бетон превосходно ведет себя при сжатии, но становится хрупким и непрочным при растяжении. Растягивающие напряжения, так же как и пластическая усадка во время отверждения, приводят с трещинам, которые поглощают воду, что, в конечном счете, приводит к коррозии металлической арматуры и существенной потере монолитности бетона при разрушении металла.

Композитная арматура утвердилась на строительном рынке благодаря доказанному сопротивлению коррозии. Новые и обновленные конструкторские руководства и тестовые протоколы облегчают инженерам выбор армированных пластиков.

Усиленные волокнами пластики (стеклопластик, базальтопластик) с давних пор рассматривались как материалы, позволяющие улучшить характеристики бетона.

За последние 15 лет композитная арматура перешла от экспериментального прототипа к эффективному заменителю стали во многих проектах, особенно в связи с повышением цен на сталь.

Композитные сетки в сборных бетонных панелях: высокий потенциал углеродно-эпоксидные сетки C-GRID заменяют традиционную сталь или арматуру в сборных структурах в качестве вторичного армирования.

C-GRID является крупной сеткой из жгутов на основе углерода/эпоксидной смолы. Используется как замена вторичной стальной армирующей сетки в бетонных панелях и архитектурных приложениях. Размер сетки меняется как в зависимости от бетона и типа заполнителя, так и от требований к прочности панели

Использование коротких волокон в бетоне для улучшения его свойств было признанной технологией на протяжении десятилетий, и даже веков, если принять во внимание, что в Римской Империи строительные растворы были армированы конским волосом. Армирование волокнами усиливает прочность и упругость бетона (способность к пластической деформации без разрушения) посредством удерживания части нагрузки при повреждении матрицы и препятствуя росту трещин.

Добавление волокон позволяет материалу деформироваться пластично и выдерживать растягивающие нагрузки.

Усиленный волокнами бетон был использован для изготовления этих предварительно напряженных мостовых балок. Использование арматуры не потребовалось из-за высокой эластичности и прочности материала, которая была придана ему стальными армирующими волокнами, добавленными в бетонную смесь.

Алюминиевый композитный материал - это панель, состоящая из двух алюминиевых листов и пластикового либо минерального наполнителя между ними. Композитная структура материала придаёт ему лёгкость и высокую прочность в сочетании с упругостью и стойкостью к излому. Химическая и лакокрасочная обработка поверхности обеспечивает материалу превосходную устойчивость к коррозии и температурным колебаниям. Благодаря сочетанию этих уникальных свойств, алюминиевый композитный материал является одним из наиболее востребованных в строительстве.

Алюминиевый композит обладает рядом существенных преимуществ, обеспечивающих ему растущую с каждым годом популятность как отделочного материала.

Минимальный вес в сочетании с высокой жёсткостью. Панели алюминиевого композитного материала отличаются низким весом, обусловленным применением алюминиевых покрывающих листов и облегченного центрального слоя в сочетании с высокой жесткостью, задаваемой комбинацией вышеуказанных материалов. В условиях применения на фасадных конструкциях данное обстоятельство выгодно отличает алюминиевые композитные материалы от альтернативных материалов, таких как листовые алюминий и сталь, керамический гранит, фиброцементные плиты. Применение алюминиевого композитного материала значительно снижает общий вес конструкции вентилируемого фасада. композитный бетонный алюминиевый металлический

Алюминиевый композитный материал способен противостоять скручиванию. Причина - в нанесении верхнего слоя методом прокатки. Плоскостность обеспечивается применением прокатки вместо обычной прессовки, которая дает высокую равномерность нанесения слоя. Максимальная пологость составляет 2мм на 1220 мм длины, что составляет 0,16% от последней.

  • - Устойчивость лакокрасочного покрытия к воздействию окружающей среды. Благодаря чрезвычайно устойчивому многослойному покрытию материал в течение длительного времени не теряет интенсивность окраски под воздействием солнечного цвета и агрессивных компонентов атмосферы.
  • - Широкий выбор цветов и фактур. Материал выпускается с покрытием, выполненным лакокрасками: солидные цвета и цвета «металлик» в любом диапазоне цветов и оттенков, покрытиями под камень и дерево. Помимо этого выпускаются панели с напылением «хром», «золото», панели с фактурной поверхностью, панели с полированным покрытием из нержавеющей стали, титана, меди.

Панели алюминиевого композитного материала имеют сложную структуру, образованную алюминиевыми листами и наполнителем центрального слоя. Сопряжение данных материалов обеспечивает панелям жесткость в сочетании с эластичностью, что делает алюминиевые композитные материалы устойчивым к нагрузкам и деформациям, создающимся окружающей средой. Материал не утрачивает своих свойств в течение чрезвычайно длительного времени.

Устойчивость материала к коррозии определяется применением в структуре панели листов алюминиевого сплава, защищенного многослойным лакокрасочным покрытием. В случае повреждения покрытия поверхность листа защищается образованием оксидной пленки

Композиционная структура панели алюминиевого композитного материала обеспечивает хорошую звукоизоляцию, поглощая звуковые волны и вибрации.

Панели легко поддаются таким видам механической обработки как гибка, резка, фрезеровка, сверление, вальцовка, сварка, склеивание, без ущерба покрытию и нарушению структуре материала. При нагрузках, возникающих в процессе сгибания панелей, в том числе в радиус не отмечается расслаивание панелей либо нарушения поверхностных слоев, такие как растрескивание алюминиевых листов и лакокрасочного покрытия. При производстве на заводе панели защищаются от механических повреждений специальной пленкой, удаляемой после завершения монтажных работ.

Панели легко принимают практически любую заданную форму, например радиусную. Пригодность материала к спаиванию позволяет добиваться сложной геометрии изделий, что невозможно ни с одним другим облицовочным материалом, кроме алюминия, перед которым алюминиевые композитные материалы значительно выигрывает по весу.

Применение алюминиевого композитного материала позволяет создавать панели облицовки различных размеров и форм, делает данный материал незаменимым при решении сложных архитектурных задач.

  • - Длительный срок службы. алюминиевого композитного материала в течение длительного времени устойчивы к воздействию внешней среды, таким как солнечный свет, атмосферные осадки, ветровые нагрузки, колебания температуры, благодаря применению устойчивого покрытия и достигнутому в материале сочетанию жесткости и эластичности. Расчетный срок службы панелей на открытом воздухе составляет около 50 лет.
  • - Минимальный уход в процессе эксплуатации. Наличие высококачественного покрытия способствует самоочищению панелей от внешних загрязнений. Так же панели легко моются не агрессивными очистителями.

Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами.

У первых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

Композиционный материал конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы в виде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия.

Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

Все эти комбинированные материалы объединены в систему. Система усиления из композитов используется практически для всех видов конструкций:

  • 1. Бетонных и железобетонных
  • 2. Металлических (в том числе стальных и алюминиевых)
  • 3. Деревянных
  • 4. Кирпичной (каменной) кладкой.

Также они обеспечивают целый спектр потребностей жизнеобеспечения:

  • 1. Защита от взрывов, взломов и повреждения.
  • 2. Усиление конструкций
  • 3. Баллистическая защита стен и защита от взрывов.
  • 4. Защита кабелей и проводов от взрывов

Рассмотрим достоинства и недостатки композитных материалов. Достоинство:

  • 1. Коррозийная стойкость
  • 2. Прочность на растяжение
  • 3. Простота применения
  • 4. Низкая стоимость рабочей силы
  • 5. Короткое время реализации
  • 6. Отсутствие размерных ограничений
  • 7. Экстремально высокая усталостная прочность
  • 8. Не требует консервации
  • 9. Возможность использования конструкций из разного материала

Недостатки:

  • 1. Относительная стоимость материала
  • 2. Ограничение сферы применения

Из выше изложенных достоинств и недостатков можно сделать вывод: что по сравнению с обычными материалами, композитные имеют практически единственный недостаток-это их достаточно высокая цена. Поэтому может сложиться мнение, что этот метод является дорогостоящим, однако если сравнивать объём расхода материалов-стали на усиление идёт больше чем композитов примерно в тридцать раз. Другими преимуществами композитных материалов является значительное уменьшение стоимости усилия из-за сокращения времени производства работ, использование рабочей силы и механического оборудования. Следовательно композитные системы усиления являются основными конкурентами перед применением стали.

Однако, не смотря на преимущества перед обычными материалами, композиционные материалы имеют характерные для них минусы. К ним следует отнести низкую огнестойкость, изменение свойств при воздействии ультрафиалетового излучения, возможное трещинообразование при изменении объёма в условиях ограничения свободы деформаций. Физико-механические свойства этих материалов делают их восприимчивыми к температурным колебаниям. При высоких температурах они склонны к значительным деформациям ползучести.

Особенности проектирования и внедрения изделий из КМ

При проектировании, изготовлении и внедрении изделий из компо­зиционных материалов на основе волокнистых наполнителей (ВКМ) не­ обходимо учитывать ряд особенностей, присущих этому классу мате­риалов:

а) Анизотропия физико-механических характеристик ВКМ.

Если традиционные материалы (сталь, чугун), а также дисперсно-упрочненные КМ обладают изотропностью свойств, то ВКМ имеют ярко выраженную анизотропию характеристик. При значительном различии характеристик волокнистой арматуры и матрицы соотношение между характеристиками ВКМ в различных направлениях может варьировать­ся в широких пределах: от 3-5 раз до 100 раз и более.

б) При проектировании конструкций, сооружений из традиционных материалов конструктор имеет дело с полуфабрикатами в виде листо­вого, профильного проката, литья и т.д. с гарантированными поставщи­ ком свойствами. Его задача состоит в выборе подходящих полуфабри­катов, определении геометрии, исходя из функционального назначения, и способов соединения отдельных деталей. Задача технолога - обес­печить заданную форму, размеры и качество соединения конструктив­ных элементов. Анализ процессов, протекающих на всех этапах созда­ния полуфабриката, получение материала с требуемым уровнем харак­ теристик относится к компетенции материаловедов. Сложилось вре­менное и организационное разделение процесса получения изделий из традиционных материалов на три этапа:

- материаловедческий - получение материала с требуемыми ха рактеристиками;

- конструкторский - проектирование изделий конструкций;

- технологический - изготовление изделий и машин.

Эти этапы разнесены по времени и могут считаться не связанными между собой, если конструктор руководствуется характеристиками ма­териала, достигнутыми материаловедами, и имеет общие представле­ния об уровне современных технологий.

Изготовление конструкций из КМ происходит, как правило, за одну технологическую операцию с созданием материала. При этом синхрон­но с изготовлением конструкции протекают сложные физико-химические и теплофизические процессы, связанные с образованием структуры и агрегатными превращениями матрицы, взаимодействием ее с арми­рующим материалом. Им сопутствуют механические явления, прямо влияющие на свойства материала и несущую способность композитных деталей, на образование в ней дефектов в ненагруженном состоянии. Поэтому конструктор, проектирующий изделия из КМ , должен знать и учитывать при разработке материаловедческие принципы создания КМ и технологические приемы получения изделий из КМ. Технолог без кон­структорских знаний по условиям нагружения и эксплуатации создавае­ мого изделия из ВКМ не может изготовить изделия, эффективно ис­пользуя отличия КМ от традиционных материалов, т.к. свойства КМ за­висят от структурно-геометрических факторов (объемного содержания армирующих волокон и матрицы, количества и расположения слоев и др.), которые заранее не известны. Поэтому подход должен быть кон структорско-технологическим, а это определяет организационные осо­ бенности производства изделий из КМ .

в) В связи с тесной взаимосвязью этапов изготовления конструк ций из КМ - создание материала, конструкций и технологии получения - более эффективно становится использовать специализированные КБ, имеющие конструкторский и технологический потенциал, оснащенные вычислительной техникой и мощным, но гибким опытным производ­ ством, потому как все конструктивные решения необходимо отрабаты вать на опытных образцах изделий. Такой поход в организации производства должен быть в каждой отрасли, где КМ находят широкое при­ менение: в строительстве, на транспорте, в авиации, химическом ма шиностроении, электротехнической промышленности и др., т.к. предъ являемые к ним требования сильно различаются.

г) При конструировании деталей из полимерных КМ необходимо учитывать их недостатки:

Малую сдвиговую прочность;

Невысокие характеристики при сжатии;

Повышенную ползучесть;

Сравнительно низкую теплостойкость ПКМ.

Особое внимание следует уделить соединениям изделий из ПКМ в связи с малой сдвиговой и контактной прочностью.

д) Несмотря на большой интерес к вопросам предельного состояния, надежных методик, позволяющих определить запасы прочности конструкционных элементов из КМ , нет. В связи со сложностью про блем, связанных с прочностью изделий из КМ , возрастает значение выбора методов при обработке результатов экспериментальных испыта ний.

В настоящее время оценка прочности конструкций из КМ состоит из комплекса испытаний, включающих:

100% испытания эксплуатационными нагрузками;

Выборочные испытания с доведением конструкции до разруше ния.

Гарантию качества и успешное прохождение этих двух видов испы­таний обеспечивает стабильность технологических процессов.

В последние годы на первый план выходит индивидуальная оценка прочности каждой детали с помощью неразрушающих методов испыта­ ния - ультразвук, акустическая эмиссия и др.

е) Определение допусков и посадок на детали из КМ .

Т.к. формирование поверхностей в изделиях из КМ происходит различными способами (намотка, прессование, выкладка и т.д.) и они чаще всего не подвергаются механической обработке, то система до пусков и требования к чистоте поверхности должны строится весьма гибко. Аналогичный подход должен быть и к регламентации разброса массы, связанной с разбросом параметров исходных материалов и их соотношением в КМ , появлением в ходе технологического процесса объемов, различающихся по ориентации наполнителя, и т.д.

ж) Переход на КМ при изготовлении машиностроительной продук­ции затрагивает вопросы детализации узлов машин. Т.к. материал конструируется под конкретные детали, которые в дальнейшем нежелательно подвергать механической обработке, то, естественно, встает вопрос стыковки отдельных деталей. Методы, принятые при изготовле­нии аналогичных узлов машин из металлов, в данном случае либо ма лоэффективны, либо вообще неприемлемы. В связи с этим целесооб­ разно изготавливать из КМ целиком узел, ранее расчленяемый на ряд деталей, которые затем собирались в изделие с помощью разъемных или неразъемных соединений. Это направление весьма эффективно, т.к. сокращаются трудозатраты и энергозатраты , хотя сокращение опе­ раций требует перестройки технологического оборудования и процесса производства.

Например, в США в 1970 г. в массовое производство легковых ав­томобилей была внедрена передняя панель с проемом под облицовку радиатора, впервые изготовлявшаяся из листового КМ . Помимо сниже­ ния массы на 50%, было достигнуто значительное сокращение расхо­ дов за счет объединения нескольких деталей в одну. Эта цельная па­нель исключила множество операций листовой штамповки, механиче­ской обработки на станках и сборки, устранила связанные с ними штам­ пы, формы и станочные зажимные приспособления. Она объединила 16 листовых штамповок и отлитых под давлением деталей в одну деталь из КМ . В 1979 г. на более чем 35 моделях легковых автомобилей стали применять передние панели из КМ , включающие корпуса и гнезда фар, стояночных фонарей, стоп-сигналов, сигналов поворота и габаритных огней.

з) Необходимо изменение подходов к определению экономической эффективности применения КМ . Как правило, экономический эффект от применения КМ образуется у «Потребителя» в виде повышения такти­ ко-технических, эксплуатационных характеристик изделия, его долго­вечности, ремонтопригодности и т.п. Поэтому экономический эффект можно определить только при использовании системного подхода, учи­тывающего все составляющие общего эффекта от замены традицион­ ного материала на КМ , и перехода на новую технологию при изготовле­нии деталей или конструкций в целом.

Только индивидуальный подход с учетом указанных особенностей делает переход к использованию КМ взамен металлов эффективным и перспективным, раскрывающим новые горизонты для развития и со­вершенствования техники.

Классификация композиционных материалов

По типу армирующих наполнителей современные КМ могут быть разделены на две группы:

Дисперсно-упрочненные;

Волокнистые.

Дисперсно-упрочненные композитные материалы (ДУКМ) представляют собой материа­лы, в матрице которых равномерно распределены мелкодисперсные частицы, которые призваны исполнять роль упрочняющей фазы. Дисперсные частицы наполнителя вводят в матрицу специальными технологическими приемами. Частицы не должны активно взаимодействовать с матрицей и не должны растворяться в ней вплоть дотемпературы плавления. В этих материалах основную нагрузку воспринимает матрица, в которой за счет армирующей фазы создается структура, затрудняю­щая движение дислокаций. Дисперсно-упрочненные КМ - изотропны. Их применяют в авиации, ракетостроении и др. Содержание дисперсной фазы составляет ~5-7% (трубки, проволоки, фольга, прутки и т.п.).

Механизм упрочняющего действия от включения дисперсных частиц в матрице, отличается для разных типов ДУКМ.

1) Дисперсно-упрочненные композиционные материалы «пластичная матрица – хрупкий наполнитель»

Для этого типа материалов матрица может быть представлена, например, следующими металлами: Al , Ag , Cu , Ni , Fe , Co , Ti . В качестве наполнителя чаще всего выбираются соединения из оксидов (Al 2 O 3 ; SiO 2 ; Cr 2 O 3 ; ThO 2 ; TiO 2), карбидов (SiC ; TiC ), нитридов (Si 3 N 4 ; AlN ), боридов (TiB 2 ; CrB 2 ; ZrB 2).

На основании опытных данных могут быть сформулированы следующие требования к материалу наполнителя, обеспечивающие наиболее эффективное его использование в качестве упрочняющей фазы. Он должен обладать:

Высокой тугоплавкостью (t пл . > 1000 ° С);

Высокой твердостью и высоким модулем упругости;

Высокой дисперсностью (удельная поверхность – S уд 10 м 2 /г);

Должна отсутствовать коалесценция (слияние) дисперсных частиц в процессе получения и эксплуатации;

Должно иметь место низкое значение скорости диффузиидисперсных частиц в металлическую матрицу.

Механизм упрочнения композиционные материалы «пластичная матрица – хрупкий наполнитель» .

Упрочнение идет по дислокационному механизму: если расстояние между частицами достаточно, то дислокация под действием касательного напряжения выгибается между ними, ее участки смыкаются за каждой частицей, образуя вокруг частиц петли. В областях между дислокационными петлями возникает поле упругих напряжений, затрудняющее проталкивание новых дислокаций между частицами (рис. 1). Этим достигается повышение сопротивления зарождению (инициированию) трещины.

Рис. 1. Схематическое изображение процесса формирования дислокационных петель в пластичной матрице:

1 – дисперсные частицы; 2 – линии дислокаций; 3 – дислокационные петли; 4 – поле упругих напряжений;

d – размер частицы наполнителя; L – расстояние между соседними частицами наполнителя;

τ – направление действия касательных напряжений.

Получение композиционных материалов «пластичная матрица – хрупкий наполнитель» .

В общем случае последовательность технологических операций для получения ДУКМ типа «пластичная матрица – хрупкий наполнитель» является следующей:

а) Получение композитного порошка;

б) Прессование;

в) Спекание;

г) Деформация полуфабриката;

д) Отжиг.

2) Дисперсно-упрочненные композиционные материалы «хрупкая матрица – пластичный наполнитель»

Структура таких ДУКМ представлена керамической матрицей с равномерно распределенными в ней дисперсными металлическими частицами наполнителя. Эти композиты относятся к классу керметов . Расстояние между соседними частицами задается путем варьирования их объемной доли, а эффект от армирования может проявляться при содержании частиц 15-20% объема.

В качестве керамической фазы могут использоваться тугоплавкие оксиды и некоторые тугоплавкие неоксидные соединения: Al 2 O 3 , 3Al 2 O 3 2SiO 2 , Cr 2 O 3 , ZrO 2 , ThO 2 , Y 2 O 3 , Si 3 N 4 , TiN , ZrN , BN, ZrB 2 , TiB 2 , NbB 2 , HfB 2 . В качестве металлической фазы – Fe , Co , Ni , Si , Cu , W, Mo , Cr , Nb , Ta , V, Zr , Hf , Ti . Выбор каждой конкретной керметной пары для получения композита обусловлен возможностью создания стабильной границы раздела в результате твердофазного взаимодействия при температуре, не превышающей температуру плавления наиболее легкоплавкой составляющей пары, либо температуру образования эвтектического расплава.

Механизм торможения разрушения композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Процесс разрушения таких композитов условно можно разделить на две стадии. На первой стадии в ходе нагружения сначала инициируется хрупкое разрушение в матрицевследствие повышенной концентрации напряженийна микронеоднородностях ее структуры: микропорах, границах зерен, крупных неравноосных зернах. При достижении некоторого критического уровня напряжений происходит старт трещины.

На второй стадии распространяющаяся трещина взаимодействует с пластичными металлическими частицами (рис. 2): у ее вершины действуют максимальные напряжения, которые приводят к деформации, удлинению и разрыву металлических частиц. При этом работа разрушения данного композита существенно возрастает по сравнению с таковой характеристикой для неармированного материала. Это происходит за счет затрат энергии трещины на работу пластической деформации всех частиц, попадающих во фронт трещины. В результате сопротивление развитию трещины повышается, поскольку ее берега перекрываются «мостиками связи» из пластичного металла.

Рис. 2. Иллюстрация процесса торможения разрушения в хрупкой матрице:

1 – металлические частицы перед фронтом трещины; 2 – «мостики связи» образованные деформированными

металлическими частицами; 3 – разрушенные металлические частицы; 4 – берега трещины; σ р – растягивающие напряжения

Получение композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Последовательность технологических операций, используемых для получения:

а) Получение композиционной порошковой смеси;

б) Введение в смесь органической связки;

в) Прессование;

г) Удаление органической связки;

д) Спекание;

е) Механическая обработка.

Для обеспечения прессуемости (придания пластичности) смеси порошков компонентов вводят органическую связку путем смешивания с раствором какого-либо органического вещества (поливиниловый спирт, поливинилбутираль , этиленгликоль, каучук и др.) с последующей сушкой для удаления растворителя. В результате выполнения этой операции каждая частица порошковой смеси покрыта тонким слоем пластификатора. Тогда при приложении давления прессования к порошковой смеси, засыпанной в пресс-форму, происходит связывание ее частиц по прослойкам пластификатора. После, путем термообработки изделий в вакууме или в порошковой засыпке из глинозема или сажи, происходит удаление связующего вещества при температуре термодеструкции или сгорания (300 – 400 ° С). После удаления органической связки частицы в объеме изделия удерживаются преимущественно за счет сил трения. Температура спекания композита лимитируется температурой спекания керамической матрицы. Оно проводится в нейтральных газовых средах (аргон, гелий) или в вакууме. В случае необходимости спеченный материал подвергают механической обработке с помощью алмазного инструмента.

Волокнистые КМ можно классифицировать по типу армирующего наполнителя. При их изготовлении в качестве арматуры применяются высокопрочные стеклянные, углеродные, борные, органические волок­на, металлические проволоки, нитевидные кристаллы ряда карбидов, оксидов, нитридов и др.

Армирующие материалы используются в виде моноволокон , нитей, жгутов, сеток, тканей, лент, холстов. Волокнистые КМ можно различать также по способу армирования: ориентированное и стохастическое (случайное). В первом случае композиты обладают четко выраженной анизотропией свойств; во втором - квизиизотропны . Объемная доля наполнителя в волокнистых КМ составляет 60-70%.

По типу матрицы композиты различают:

Полимерные (ПКМ);

Металлические (МКМ );

Керамические (ККМ);

- углерод-углеродные (УУКМ).

Полимерные композитные материалы – это гетерофазные композиционныематериалы с непрерывной полимерной фазой (матрицей), в которой хаотически или в определенном порядке распределены твердые, жидкие или газообразные наполнители. Эти вещества заполняют часть объема матрицы, сокращая тем самым расход дефицитного или дорогостоящего сырья, и (или) модифицируют композицию, придавая ей нужные качества, обусловленные назначением, особенностями технологических процессов производства и переработки, а также условиями эксплуатации изделий. К ним относятся подавляющее большинство пластмасс , резин, лакокрасочных материалов, полимерных компаундов, клеев и др.

В зависимости от типа полимерной матрицы различают наполненные реактопласты, термопласты (по­лиэтилен, поливинилхлорид, капрон и др.), синтетические смолы (полиэфирные, эпоксифенольные и др.) и каучуки. В зависимости от типа наполнителя ПКМ делят на дисперсно-наполненные пластики (наполнитель - дисперсные частицы разнообразной формы, в т. ч. измельченное волокно), армированные пластики (содержат упрочняющий наполнитель непрерывной волокнистой структуры), газонаполненные пластмассы, масло-наполненные каучуки; по природе наполнителя наполненные полимеры подразделяют на асбопластики (наполнитель-асбест), графито-пласты (графит), древесные слоистые пластики (древесный шпон), стеклопластики (стекловолокно), углепластики (углеродное волокно), органопластики (химические волокна), боропластики (борное волокно) и др., а также на гибридные, или поливолокнистые пластики (наполнитель-комбинация различных волокон).

По способу изготовления ПКМ можно разделить на полученные: выкладкой, намоткой, пултрузией , прессованием и др.

Композитные материалы , или, как их принято называть, композиты , произвели революцию во многих отраслях промышленности и стали популярными в высокотехнологичных изделиях, которые должны характеризоваться малым весом, но одновременно и высокой стойкостью к механическим нагрузкам. Ожидаемые экономические выгоды в таких высокотехнологичных проектах, как разработки в области военной и космической техники, связаны, в первую очередь, с легкими, стойкими к воздействию высоких температур композитными материалами, позволяющими снизить вес конечных изделий, эксплуатационные расходы и расход горючего.

Современная авиация, как военная, так и гражданская, была бы значительно менее эффективной без композитных материалов. Фактически требования именно этой отрасли промышленности для материалов (которые, с одной стороны, должны быть легкими, а с другой стороны – достаточно прочными) и были главной направляющей силой в их разработке и развитии. Сейчас является общепринятым, чтобы крылья самолетов, их хвостовое оперение, пропеллеры, лопатки турбин двигателей были выполнены из современных композитных материалов. Это же касается и большей части их внутренней структуры и частей фюзеляжа. Корпуса некоторых небольших летательных аппаратов уже полностью выполнены из композитных материалов. В больших коммерческих самолетах из таких материалов, как правило, выполнены крылья, хвостовое оперение и панели корпуса.

Композитные разъемы для внутренних подключений, поставляемые на рынок в соответствии с его запросами и требованиями потребителей, успешно заменяют собой прежние разъемы, которые изготавливали из латуни, никеля, алюминия, бронзы или нержавеющей стали. Разъемы из композитных материалов идеально подходят для использования в условиях окружающей среды, где требуется стойкость к высоким температурам и выполнение требований по электромагнитной совместимости. При их использовании практически не выделяются токсичные газообразные продукты и, в частности, что особенно важно, галогены. Композитные материалы более прочны, чем сталь, они обеспечивают высокую коррозионную стойкость, имеют более высокую надежность и долговечность и при этом обладают еще и существенно меньшим весом, чем их выполненные из стали аналоги.

Производство композитных материалов

Композиты состоят из нескольких отдельных материалов. Цель создания композитного материала – создать некую новую субстанцию, которая комбинирует свойства ее составляющих частей наиболее выгодным способом. В композитных материалах имеется две составляющие: матрица (связующее) и армирующие элементы (наполнители).

Для создания композитного материала требуется наличие, по крайней мере, одного составляющего каждого вида. Для матрицы большинство современных композиционных материалов используют термопластичные или термореактивные пластмассы (также называемые смолами). Пластмассы – это полимеры, которые скрепляют армирующие элементы, и именно они помогают задать нужные физические свойства конечного продукта.

Термопластичные пластмассы характеризуются тем, что они тверды при низких температурах, но размягчаются при нагревании. Хотя они используется реже, чем термореактивные пластмассы, они в действительности имеют некоторые преимущества, например, большую вязкость разрушения, продолжительный срок годности в виде сырья, возможность повторной переработки. Использование термопластичных пластмасс более безопасно и менее загрязняет рабочее место, потому что при подготовке их к непосредственному использованию нет надобности в органических растворителях для их затвердевания.

Серия Deutsch ACT представляет собой высокопроизводительные композитные разъемы , выполненные в соответствии со стандартом MIL-DTL-38999 .

Производительность любого разъема складывается из производительности его составных частей. Использование композитных материалов в серии ACT увеличило прочность корпуса разъема и фиксирующего резьбового механизма, в результате чего количество возможных циклов сочленений достигло 1500. Также применение композитных материалов повысило стойкость разъемов к коррозии (2000 часов в условиях солевого тумана). Кроме того, в конструкции данной серии разъемов предусмотрены фиксаторы, которые благоприятно влияют на производительность и продолжительность жизненного цикла соединителя.

Реактопласты, или термореактивные пластмассы , в исходном виде находятся в жидком состоянии, но затвердевают и становятся твердыми (вулканизируются) после их нагревания. Процесс затвердевания необратим, таким образом, эти материалы уже не становятся мягкими под воздействием высоких температур. Когда пластмассовая матрица усилена, например, стекловолокнами, реактопласты успешно противостоят износу и воздействию агрессивных химикатов, они являются весьма долговечными даже в условиях крайне неблагоприятной окружающей среды. Такие материалы обеспечивают как гибкость конструкции, так и высокую электрическую прочность.

Если классифицировать композиты по материалу матрицы, то различают: композиты-реактопласты, композиты с использованием коротких (рубленых) волокон и реактопласты с длинными волокнами или усиленные волокнами. Наиболее известные материалы для таких матриц: полиэфиры (полиэстер), эпоксидные смолы, фенолформальдегиды, полиимиды, полиамиды и полипропилен. Керамика, углерод и металлы также используются как матрицы для некоторых очень специфических применений. Например, керамика используется в случае, когда материал подвергается воздействию очень высоких температур, а углерод используется для изделий, которые подвержены трению и износу.

Полимеры используются не только в качестве материала для матрицы, они также используются и в качестве хорошо зарекомендовавших себя армирующих материалов для усиления композитов. Например, кевлар – полимерное волокно, которое является очень прочным и добавляет в композитный материал жесткость в сочетании с вязкостью. Хотя стекловолокна – наиболее часто употребляемый вариант армирования, в композитах может также быть использовано армирование элементами из металла в виде арматуры, усиливающее другие металлы, как, например, в металло-матричных композитных материалах (MMC). По сравнению с композитами на основе полимерных матриц, MMC являются более стойкими к воспламенению и могут работать в более широком диапазоне температур, не гигроскопичны, имеют более высокую электропроводность и удельную теплопроводность, они стойки к воздействию радиационного облучения и не выделяют токсичные газы. Однако они, как правило, более дороги, чем заменяемые ими аналоги, и используются там, где их более высокие технические характеристики и свойства могут оправдать увеличение стоимости.

На сегодня эти материалы наиболее часто находят применение в узлах самолетов и космических системах.

Прочность и устойчивость к повышенным температурам – наиболее важные характеристики в полимерах, используемых для высокотехнологических приложений. Изделия, предназначенные для коммерческих и военных космических приложений, должны быть изготовлены с использованием так называемых специальных конструкционных пластмасс (в англоязычной технической литературе – «engineering plastics») или других специализированных высокотемпературных полимеров. Конструкционные пластмассы типа полиэфиримида (PEI), полифталамида (PPA), полифениленсульфида (PPS) и полиэстеримида (Polyamide-imide – PAI) разработаны и предназначены именно для использования в условиях повышенной рабочей температуры. Смолы типа полиэфирэфиркетона (PEEK) и различные жидкокристаллические полимеры (LCP) также способны противостоять чрезвычайно высоким температурам. Эти современные высокотехнологичные пластики также удовлетворяют требованиям по выделению токсичных газов и устойчивы к воспламенению.

Преимущества использования композиционных материалов

Мы зависим от композиционных материалов в целом ряде моментов нашей повседневной жизни. Композитные материалы на основе стекловолокна были разработаны еще в конце 40-х годов прошлого столетия, они являются первыми современными композитными материалами и до сих пор находят широкое применение. В общем объеме выпускаемых на текущее время композитных материалов материалы на основе стекловолокна занимают примерно 65%. Вы можете использовать изделия, сделанные из стекловолоконного композитного материала, даже не подозревая этого.

Все увеличивающееся количество производителей композитных материалов и рост их предложений на рынке позволяет потребителям выбирать нужный материал с учетом целого ряда их преимуществ, таких как:

  • Композиты невероятно легки и поэтому находят все большее применение в системах внутренних подключений (разъемы), для которых малый вес является определяющим. Для большинства таких приложений типичное снижение веса при использовании композитов по сравнению с алюминием составляет приблизительно 40 %, и 80 % по сравнению с деталями из латуни и нержавеющей стали.
  • Композитные материалы чрезвычайно прочны. Как пример, высокопрочные композиты, структурированные волокном, широко используются в бронежилетах. Благодаря высокой прочности таких композитных материалов солдаты хорошо защищены от осколков и пуль.
  • Композиты являются очень стойкими к агрессивным химическим реагентам, они никогда не будут ржаветь или разъедаться. Это как раз то, почему морская индустрия была одной из первых, которая приняла их для использования.
  • Полимерные пластики менее подвержены механическому резонансу, поэтому детали с резьбовыми соединениями, выполненные из таких материалов, с меньшей долей вероятности ослабятся и отвинтятся при воздействии ударов и сильной вибрации.
  • Некоторые композиты не электропроводны. Это важно, потому что часто композитные материалы необходимы там, где нужна прочность и высокие электроизоляционные свойства.
  • Композиты могут ослаблять магнитные поля, уменьшать влияние магнитных полей на коррозию и заглушать так называемую «акустическую подпись», то есть характерное для каждого устройства акустическое излучение, что является весьма важным свойством при разработке изделий, для которых важна малая вероятность их обнаружения.

Детали из композитов будут разрушаться под напряжением со значительно меньшей степенью вероятности, чем детали из металла. Небольшая трещина в металлической детали может развиться в катастрофическую, причем очень быстро и с очень серьезными последствиями. Волокнистые материалы в своей сложной композитной структуре могут распределить внутреннее напряжение и блокировать расширение небольших трещин.

Нагрузка в любом композите распределяется по его волокнам, именно волокна несут всю нагрузку, поэтому их тип, количество, ориентация и линейность определяют их эффективность. Стекловолоконные композиты используются для приложений, в которых одновременно требуются жесткость, высокие электроизоляционные свойства и абразивная стойкость. Углеродные волокна в композиционных материалах используются для приложений, требующих высокой прочности и жесткости. Матрица из смолы в композите, распределенная между волокнами, предохраняет их и удерживает волокна в их правильной локализации и ориентации. Тип смолы матрицы определяет ее абсорбционные свойства, как к воде (гигроскопичность), так и к химическим соединениям, механические свойства при высоких температурах, прочность на сжатие и механическую жесткость.

Кроме того, тип смолы определяет метод изготовления конечного изделия и его стоимость относительно альтернативных типов смол и методов изготовления.

Использование композитов в оборонной и авиационной промышленности

Самое главное из всех преимуществ композитных материалов – их прочность и жесткость, объединенные с малым удельным весом. Наиболее трудно конструировать сложные детали из композитов, которые используют в своих целях перечисленные свойства, но при этом должны выполнять необходимые требования по геометрическим размерам, установке и функциональному использованию. Но, выбирая соответствующую комбинацию армирующего материала и материала матрицы, производители могут обеспечить все необходимые характеристики изделия, которые будут соответствовать требованиям как для его конкретной конструкции, так и для специфической цели его использования.

Электрические соединители, которые применяются для подачи питания и передачи данных в изделиях, предназначенных для использования в вооруженных силах и космической технике, постоянно уменьшаются в размерах и весе. Многие военные заказчики ищут меньшие по габаритам, более легкие и более гибкие решения, которые соответствуют жестким индустриальным требованиям по прочности и долговечности. Недавние разработки в области конструктивных решений и материалов позволили совершить скачок в технологии производства и исполнения соединителей, которые обеспечивают как их высокие технические характеристики, так и необходимые требования по защите окружающей среды.

Композиты – это основа многих современных проектов в области развития устройств с минимально заметным действием. Одним из них являются беспилотные летательные аппараты (БЛА). Композитные материалы весьма активно использовались в их конструкции, результатом чего стала возможность их обнаружения только лишь с близкого расстояния.

Композиты обеспечивают высокую долговечность и жесткость, благодаря чему они являются подходящими материалами для систем, которые используются в авионике.

Эти материалы дают уменьшение веса, высокую прочность и эксплуатационную устойчивость, что значительно превышает аналогичные характеристики многих металлов и некомпозитных термореактивных материалов.

Особое состояние окружающей среды в космосе требует и особых узлов, которые могут использоваться в условиях космического пространства, кроме того, они должны отвечать требованиям по отсутствию выделения токсичных газов и быть изготовленными из немагнитных материалов. Композиты на основе углерода – основной материал в современных ракетоносителях и тепловых экранах многоразовых космических кораблей. Они также широко используются в отражателях антенн, траверсах космического корабля, в переходниках к отсеку полезного груза, межблочных конструкциях и тепловых экранах многоразовых космических кораблей.

Несомненный факт, что композитные материалы все чаще разрабатываются под специфические требования к системам внутренних подключений, несмотря на усложнение как их конструкции, так и производственного процесса их изготовления, эти материалы благодаря своим свойствам стоят того, чтобы их использовать. Камень преткновения при использовании композитов – обычно их стоимость. Хотя сами производственные процессы изготовления, когда используются композитные материалы, часто более эффективны, однако само сырье – дорого. Конечно, композиты никогда не смогут полностью заменить традиционные материалы, такие, например, как сталь, однако существенные преимущества композитов дают реальную экономию средств, уменьшая расход горючего и экономя на обслуживании системы в целом, увеличивают срок службы для большого количества изделий оборонного и космического назначения. Без сомнения, мы должны знать обо всех возможностях, которые композиты могут нам дать.

По материалам сайта www.connectorsupplier.com
Дженни Бикша (Jenny Bieksha, Bishop & Associates Inc.)
Перевод: Владимир Рентюк
Статья опубликована в журнале «Вестник Электроники» №1 2014