ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Какого цвета гашеная известь. Применение негашеной извести в огороде

Известь используют в производстве материалов для штукатурки, окрасочных средств, шлакобетона или силикатного кирпича. С таким материалом можно выполнять работы при минусовой температуре, так как после её гашения выделяется тепло. Известь не используют для отделки печей и каминов, так как при нагревании выделяется углекислый газ, который оказывает вред здоровью. Также известь активно применяется в садоводстве и сельском хозяйстве, ею обрабатывают деревья, удобряют почву, избавляются от сорной травы, добавляют в различные корма для животных. С помощью извести производят побелку как жилых, так и нежилых построек.

Что представляет собой негашеная известь?

Известь негашеного вида имеет кристаллическую структуру, она формируется при обжиге известняка. В этом материале могут быть и примеси, их обычно не более 8 процентов. Известь производят из карбонатной породы, а также применяют минеральные добавки, кварцевый песок или специальный шлак. Известь изготавливается с соблюдением ГОСТа, она относится к второму классу опасности.

На сегодняшний день негашеную известь не используют вместо цемента, то есть для отделки стен, так как она способна впитывать влагу, в результате чего появляется плесень и грибок. Её применяют для производства различных строительных материалов, таких как, шлакобетон, штукатурные составы, красочные средства и так далее.

Как производят известь негашеного типа?

Раньше для получения извести известняк обрабатывался тепловым способом, сейчас этот метод практически не используют, так как при этом происходит выделение диоксида углерода. Заменой такого способа является разложение солей кальция, которые содержат кислород, при термической обработке.

Вначале известняк добывают из карьера, затем его дробят, сортируют, подвергают обжигу в специальных печах. В основном для таких работ используют газовые печи шахтного вида, их топки могут быть пересыпными или выносными. Пересыпные топки работают на антраците или другом угле, это приводит к значительной экономии. Такие печи способны производить большое количество материала, до 100 тонн за сутки. Единственным недостатком является засорение золой.

Выносная топка дает известь более чистого вида, она работает на угле, дровах, торфе или газе, но мощность такой печи будет гораздо ниже. Самое высокое качество извести получается из печи вращающегося вида, но очень редко используют.

Что представляет собой гашеная известь, и как она образуется?

Известь гашеного вида образуется в результате попадания на неё воды. Негашеная известь называется оксид кальция, а гашеная – гидроксид кальция, при таком процессе активно выделяется теплый пар. В результате гашения извести можно получить различные продукты, например, известковое молоко, пушонку или гидроксид кальция в сухом виде, а также известковую воду.

Основные правила гашения извести

При добавлении воды к известковому порошку, происходит реакция с оксидом кальция. При этом обильно выделяется теплый пар, и происходит образование гидроксида кальция. Испаряемая вода приводит смесь к разрыхлению, и из комков известь превращается в мелкий порошок.

Известь делится на разные типы, это зависит от времени её гашения:

  1. Быстрогасящийся продукт, на весь процесс уходит около 8 минут;
  2. Продукт среднего гашения, на это уходит максимум около 25 минут;
  3. Продукт медленного гашения, минимальное время проведения процесса 25 минут.

Время гашения вычисляют с момента смешивания извести с водой до того, пока температура состава перестанет подниматься. При приобретении извести, на упаковке должно быть указано это время.

С помощью такого процесса можно произвести известковое тесто или пушонку, то есть известь гидратного типа. Чтобы получить пушонку, необходимо добавить количество воды равное массе негашеной извести. Этот процесс происходит в заводских условиях, с применением специальных гидротор.

Для изготовления теста известкового вида, берут воду и порошок, используя следующие пропорции 3*1. Такой процесс можно проводить на строительной площадке, а чтобы получить состав пластичного вида, его выдерживают около 14 дней в подготовленной яме.

Негашеная известь может иметь отличия по своим свойствам, поэтому лучше взять большее время для её гашения, чтобы в дальнейшем оштукатуренные стены не паровали от попадания влаги. Известь медленного гашения заливают несколько раз. Известь быстрого или среднего гашения необходимо заливать до тех пор, пока прекратится выделение пара. При работе необходимо защитить глаза и руки с помощью перчаток и очков, чтобы не получить ожоги во время выделения теплого пара.

Количество добавляемой воды зависит от того, какое вещество планируется получить в результате гашения.

Какая разница между гашеной и негашеной известью?

Негашеная известь считается чистой породой, которую добывают из карьера, она может содержать примеси глины, и идет в виде твердых камней. При попадании на неё воды, возникает реакция, в результате которой выделяется значительное количество тепла, и получается гашеная известь в порошковом виде.

Известь негашеного вида используется очень редко, её добывают термическим методом разложения кальциевой соли. Несмотря на то, что материал способен сильно впитывать влагу, его применяют как нейтрализацию ям сточного вида, а также в производстве различных строительных элементов.

Самостоятельное погашение извести

При гашении извести, необходимо соблюдать основные правила, чтобы не было остатка оксида металла, в противном случае качество материала испортится. Чтобы гашение произошло в полной мере, для этого необходимо около 36 часов.

  1. Вначале необходимо приготовить емкость для извести, допускаются изделия из металла с отсутствием коррозии. Известь насыпают в подготовленную тару.
  2. После этого порошок заливается водой, чтобы получить пушонку добавляют 1 литр жидкости, для известкового теста половину литра на килограмм материала.
  3. Затем весь состав начинают перемешивать, делают это постепенно, пока пар не начнет исчезать.

Основные требования при гашении извести:

  1. При использовании извести медленного гашения, воду добавляют несколькими порциями.
  2. Если работа проводится с известью быстрого и среднего гашения, то вода добавляется до тех пор, пока не перестанет выделяться пар, таким образом, порошок не будет перегорать.
  3. Необходимо знать, что для побелки стен, и обработки деревьев, известь разводится и отстаивается по-разному.
  4. При опрыскивании известью растений от избавления вредителей, смесь делают за два часа до использования. Добавляют значительное количество воды, и кладут медный купорос.
  5. При работе с известью, необходимо защитить глаза и руки от ожогов, поэтому следует надевать очки и перчатки из резины. Во время приготовления состава запрещается низко наклоняться над емкостью, чтобы предотвратить получение ожогов парами.

Преимущества и недостатки материала

У извести негашеного типа есть свои преимущества перед гашеным порошком:

  • Отходы при работе с таким материалом практически отсутствуют.
  • Известь негашеного типа впитывает меньше влажности, чем гашеный материал.
  • С такими средствами можно работать при минусовых температурах, то есть зимой, так как они способны выделять тепло, и не поддаются промерзанию.
  • Уровень прочности является высоким, а область применения имеет широкий спектр.

Главным недостатком извести является вред, который она несет здоровью. Теплые пары могут привести к ожогам, поэтому при работе необходимо применять средства защиты.

Работу проводят в хорошо проветриваемом помещении или на открытом воздухе. Если помещение не проветривается, то необходимо надевать специальную повязку или респиратор, чтобы не повредить органы дыхания. Специальные очки помогут защитить глаза от ожога.

Известь негашеного вида можно встретить очень редко, её практически не используют. Гашение производится с помощью добавления воды, при этом известь из камня превращается в порошок. Используют такое средство, как для изготовления материалов строительного типа, так и в сельском хозяйстве, ею обрабатывают деревья, удобряют почву, избавляются от сорной травы. Все работы по погашению извести необходимо проводить с осторожностью, использовать специальные средства защиты и проветривание помещения, чтобы не получить отравления или ожогов.

Ее применение.

Гашеная известь (формула – Ca(OH)2) является сильным основанием. Может часто встречаться в некоторых источниках под названием гидроксида кальция или "пушонки".

Свойства: Представлена белым порошком, который мало растворим в воде. Чем меньше температура среды, тем меньше растворимость. Продуктами его реакции с кислотой являются соответствующие соли кальция. Например, при опускании гашеной извести в серную кислоту получатся сульфат кальция и вода. Если оставить раствор "пушонки" на воздухе, то она будет взаимодействовать с одной из составляющих последнего – углекислым газом. При данном процессе раствор мутнеет. Продукты этой реакции представлены карбонатом кальция и водой. Если продолжать барботацию углекислого газа, реакция закончится образованием гидрокарбоната кальция, который разрушается при повышении температуры раствора. Гашеная известь и угарный газ будут взаимодействовать при t около 400оС, его продуктами станут уже известный карбонат и водород. Вещество может реагировать и с солями, но только в том случае, если процесс закончится выпадением осадка, например, если смешать "пушонку" с сульфитом натрия, то продуктами реакции станут гидроксид натрия и сульфит кальция.

Из чего делают известь: Само название "гашеная" уже говорит о том, что для получения этого вещества что-то погасили. Как всем известно, любое химическое соединение (да и вообще что-либо) обычно гасят водой. А ей есть с чем реагировать. В химии существует вещество с названием "негашеная известь". Так вот, добавляя к ней воду, получают искомое соединение.

Применение: Гашеную известь используют для побелки любого помещения. Также с ее помощью смягчают воду: если добавить "пушонку" к гидрокарбонату кальция, то образуется оксид водорода и нерастворимый осадок – карбонат соответствующего металла. Гашеную известь применяют в дублении кож, каустификации карбонатов натрия и калия, получении соединений кальция, различных органических кислот и множества других веществ.

С помощью раствора "пушонки" – небезызвестной известковой воды – можно обнаружить наличие углекислого газа: при реакции с ним она мутнеет (фото). Стоматология не может обойтись без обсуждаемого сейчас гидроксида кальция, ведь благодаря ему в этой отрасли медицины можно дезинфицировать корневые каналы зубов. Также с помощью гашеной извести делают известковый строительный раствор, смешивая ее с песком. Подобная смесь использовалась еще в древние времена, тогда без нее не обходилась ни одна строительная кладка. Однако сейчас из-за ненужного выделения воды при реакции "пушонки" с песком данный раствор успешно заменяют цементом. С помощью гидроксида кальция производят известковые удобрения, также он является пищевой добавкой E526… И еще многие отрасли не могут обойтись без его использования.

Негашеная известь – Негашеная известь (неочищенный оксид кальция) получается кальцинированием известняка, содержащего очень мало глины или не содержащего ее совсем. Она очень быстро соединяется с водой, выделяя значительное количество тепла и образуя гашеную известь (гидроксид кальция).

Известь негашеная имеет множество полезных свойств, за счет этого находит широкое применение в строительстве, промышленности сельском хозяйстве.

Свойства: мелкопористые куски СаО размером 5…10 см, получаемые после обжига сырья, средняя плотность 1600…1700 кг/м3.
В зависимости от содержания оксида магния воздушную известь разделяют на кальциевую (70…90 % СаО и до 5 % МО), магнезиальную (до 20% М§0) и высокомагнезиальную или доломитовую (М§0 от 20 до 40 %).
Негашеную воздушную известь выпускают трех сортов. В зависимости от времени гашения извести всех сортов различают: быстрогасящуюся известь (время гашения до 8 мин); среднегасяющуюся (до 25 мин), медленногасящуюся (свыше 25 мин).

Строительная воздушная известь разделяется на три сорта.
Плотность негашеной извести колеблется в пределах 3,1-3,3 г/см3 и зависит главным образом от температуры обжига, наличия примесей, недожога и пережога.
Плотность гидратной извести зависит от степени ее кристаллизации и равна для Са(ОН)2, кристаллизованной в форме гексагональных пластинок, 2,23, аморфной - 2,08 г/см3.
Объемная масса комовой негашеной извести в
куске в большой мере зависит от температуры обжига и возрастает с 1,6 г/см3 (известь, обожженная при температуре 800° С) до 2,9 г/см3 (длительный обжиг при температуре 1300° С).
Объемная масса для других видов извести следующая: для молотой негашеной извести в рыхлонасып-ном состоянии 900-1100, в уплотненном 1100-1300 кг/м3; для гидратной извести (пушёнки) в рыхлонасыпном состоянии - 400-500, в уплотненном 600-700 кг/м3; для известкового теста-1300-1400 кг/м3.
Пластичность, обусловливающая способность вяжущего придавать строительным растворам и бетонам удо-бообрабатываемость, -важнейшее свойство извести. Пластичность извести связана с ее высокой водоудержи-вающей способностью. Тонкодисперсные частички гидрата окиси кальция, адсорбционно удерживая на своей поверхности значительное количество воды, создают своеобразную смазку для зерен заполнителей в растворной или бетонной смеси, уменьшая трение между ними. Вследствие этого известковые растворы обладают высокой удобообрабатываемостью, легко и равномерно распределяются тонким слоем на поверхности кирпича или бетона, хорошо сцепляются с ними, отличаются водо-удерживающей способностью даже при нанесении на кирпичные и другие пористые основания.

Применение: Данное вещество достаточно широко используется в разных сферах человеческой деятельности. К наиболее крупным потребителям следует отнести: черную металлургию, сельское хозяйство, сахарную, химическую, целлюлозно-бумажную промышленность. Используется СаО и в строительной индустрии. Особое значение соединение имеет в сфере экологии. Известь используется для очистки от оксида серы дымовых газов. Соединение также способно смягчать воду и осаждать присутствующие в ней органические продукты и вещества. Кроме того, применение негашеной извести обеспечивает нейтрализацию природных кислых и сточных вод. В сельском хозяйстве при контакте с почвами соединение устраняет кислотность, вредную для культурных растений. Известь негашеная обогащает грунт кальцием. За счет этого повышается обрабатываемость земли, ускоряется гниение гумуса. Вместе с этим сокращается необходимость внесения азотных удобрений в больших дозах.

Гидратная смесь применяется в птицеводстве и животноводстве для подкормки. Так устраняется недостаток кальция в рационе. Кроме того, соединение используют для улучшения общих санитарных условий при содержании и разведении скота. В химической промышленности гидратная известь и сорбенты применяются для получения фторида и гидрохлорида кальция. В нефтехимической промышленности соединение нейтрализует кислые гудроны, а также выступает в качестве реагента в основном неорганическом и органическом синтезе. Достаточно широко используется известь в строительстве. Это обусловлено высокой экологичностью материала. Смесь используют при приготовлении вяжущих материалов, бетонов и растворов, производства изделий для строительства.

Коррозия металлов и способы защиты от коррозии

Коррозия металлов - процесс разрушения металлов и сплавов вследствие химического или электрохимического взаимодействия с внешней средой, в результате которого металлы окисляются и теряют присущие им свойства. Коррозия - враг металлических изделий. Ежегодно в мире в результате коррозии теряется 10…15% выплавляемого металла, или 1… 1,5% всего металла, накопленного и эксплуатируемого человеком.

Химическая коррозия - разрушение металлов и сплавов в результате окисления при взаимодействии с сухими газами при высоких температурах или с органическими жидкостями - нефтепродуктами, спиртом и т. п.

Электрохимическая коррозия - разрушение металлов и сплавов в воде и водных растворах. Для развития коррозии достаточно, чтобы металл был просто покрыт тончайшим слоем адсорбированной воды (влажная поверхность). Из-за неоднородности строения металла при электрохимической коррозии в нем образуются гальванические пары (катод - анод), например между зернами (кристаллами) металла, отличающимися один от другого химическим составом. Атомы металла с анода переходят в раствор в виде катионов. Эти катионы, соединяясь с анионами, содержащимися в растворе, образуют на поверхности металла слой ржавчины. В основном металлы разрушаются от электрохимической коррозии.

Коррозия металлов наносит большой экономический ущерб, вследствие коррозии выходят из строя оборудование, машины, механизмы, разрушаются металлические конструкции. Особенно сильно подвержен коррозии оборудования, контактирующего с агрессивной средой, например растворами кислот, солей.

При обычных условиях металлы могут вступать в химические реакции с веществами, содержащимися в окружающей среде, – кислородом и водой. На поверхности металлов появляются пятна, металл становится хрупким и не выдерживает нагрузок. Это приводит к разрушению металлических изделий, на изготовление которых было затрачено большое количество сырья, энергию и количество человеческих усилий.
Коррозией называют самопроизвольное разрушение металлов и сплавов под воздействием окружающей среды.
Яркий пример коррозии – ржавчина на поверхности стальных и чугунных изделий. Ежегодно из-за коррозии теряют около четверти всего производимого в мире железа. Затраты на ремонт или замену судов, автомобилей, приборов и коммуникаций, водопроводных труб во много раз превышают стоимость металла, из которого они изготовлены. Продукты коррозии загрязняют окружающую среду и негативно влияют на жизнь и здоровье людей.
Химическая коррозия происходит в различных химических производствах. В атмосфере активных газов (водорода, сероводорода, хлора), в среде кислот, щелочей, солей, а также в расплавах солей и других веществ происходят специфические реакции с привлечением металлических материалов, из которых сделаны аппараты, в которых осуществляется химический процесс. Газовая коррозия происходит при повышенных температурах. Под ее влияние попадают арматура печей, детали двигателей внутреннего сгорания. Электрохимическая коррозия происходит, если металл содержится в любом водном растворе.
Наиболее активными компонентами окружающей среды, которые действуют на металлы, является кислород О2, водяной пар Н2О, карбон (IV) оксид СО2, серы (IV) оксид SО2, азота (IV) оксид NО2. Очень сильно ускоряется процесс коррозии при контакте металлов с соленой водой. По этой причине корабли ржавеют в морской воде быстрее, чем в пресной.
Суть коррозии заключается в окислении металлов. Продуктами коррозии могут быть оксиды, гидроксиды, соли и т.д. Например, коррозии железа можно схематично описать следующим уравнением:
4Fe + 6H2O + 3O2 → 4Fe (OH) 3.
Остановить коррозию невозможно, но ее можно замедлить. Существует много способов защиты металлов от коррозии, но основным приемом является предотвращение контакта железа с воздухом. Для этого металлические изделия красят, покрывают лаком или покрывают слоем смазки. В большинстве случаев этого достаточно, чтобы металл не разрушался в течение нескольких десятков или даже сотен лет. Другой способ защиты металлов от коррозии электрохимическое покрытие поверхности металла или сплава другими металлами, устойчивых к коррозии (никелирование, хромирование, оцинковка, серебрение и золочение). В технике очень часто используют специальные коррозионностойкие сплавы. Для замедления коррозии металлических изделий в кислой среде также используют специальные вещества – ингибиторы.

Жизнь и деятельность А.М.Бутлерова

Александр Бутлеров родился в 1828 году в Бутлеровке – небольшой деревушке неподалеку от Казани, где находилось имение отца. Матери своей Саша не помнил, она умерла через 11 дней после его рождения. Воспитанный отцом, человеком образованным, Саша хотел во всем походить на него.

Сначала он ходил в пансион, а затем поступил в Первую казанскую гимназию, учителя которой были очень опытные, хорошо подготовленные, они умели заинтересовать учеников. Саша легко усваивал материал, так как с раннего детства его приучили к систематической работе. Особенно привлекали его естественные науки.

После окончания гимназии, вопреки желанию отца, Саша поступил на естественнонаучное отделение Казанского университета, правда, пока только слушателем, так как он был еще несовершеннолетним. Лишь в следующем, 1845 году, когда юноше исполнилось 17 лет, его фамилия появилась в списке принятых на первый курс.

В 1846 году Александр заболел тифом и чудом выжил, а вот заразившийся от него отец скончался. Осенью вместе с тетей они переехали в Казань. Постепенно молодость брала своё, к Саше вернулись и здоровье, и веселье. Молодой Бутлеров занимался с исключительным усердием, но, к своему удивлению, заметил, самое большое удовольствие доставляют ему лекции по химии. Лекции профессора Клауса его не удовлетворяли, и он стал регулярно посещать лекции Николая Николаевича Зинина, которые читались для студентов физико-математического отделения. Очень скоро Зинин, наблюдая за Александром во время лабораторных работ, заметил, что этот светловолосый студент необыкновенно одарен и может стать хорошим исследователем.

Бутлеров занимался успешно, но все чаще задумывался над своим будущим, не зная, что ему, в конце концов, выбрать. Заняться биологией? Но, с другой стороны, разве отсутствие ясного представления об органических реакциях не предлагает бесконечные возможности для исследования?

Чтобы получить ученую степень кандидата, Бутлеров должен был представить диссертацию по окончании университета. К этому времени Зинин уехал из Казани в Петербург и ему не оставалось ничего иного, как заняться естественными науками. Для кандидатской работы Бутлеров подготовил статью «Дневные бабочки Волго-Уральской фауны». Однако обстоятельства сложились так, что Александру все-таки пришлось вернуться к химии.

После утверждения Советом его ученой степени Бутлеров остался работать в университете. Единственный профессор химии Клаус не мог вести все занятия сам и нуждался в помощнике. Им стал Бутлеров. Осенью 1850 года Бутлеров сдал экзамены на ученую степень магистра химии и немедленно приступил к докторской диссертации «Об эфирных маслах», которую защитил в начале следующего года. Параллельно с подготовкой лекции Бутлеров занялся подробным изучением истории химической науки. Молодой ученый усиленно работал и в своем кабинете, и в лаборатории, и дома.

По мнению его теток, их старая квартира бала неудобной, поэтому они сняли другую, более просторную у Софьи Тимофеевны Аксаковой, женщины энергичной и решительной. Она приняла Бутлерова с материнской заботой, видя в нем подходящую партию для дочери. Несмотря на постоянную занятость в университете, Александр Михайлович оставался веселым и общительным человеком. Он отнюдь не отличался пресловутой «профессорской рассеянностью», а приветливая улыбка и непринужденность в обращении делали его желанным гостем повсюду. Софья Тимофеевна с удовлетворением замечала, что молодой ученый был явно не равнодушен к Наденьке. Девушка и в самом деле была хороша: высокий умный лоб, большие блестящие глаза, строгие правильные черты лица и какое-то особое обаяние. Молодые люди стали добрыми друзьями, а со временем начали все чаще ощущать необходимость быть вместе, делится самыми сокровенными мыслями. Вскоре Надежда Михайловна Глумилина – племянница писателя С.Т. Аксакова стала женой Александра Михайловича.

Бутлеров был известен не только как незаурядный химик, но и как талантливый ботаник. Он проводил разнообразные опыты в своих оранжереях в Казани и в Бутлеровке, писал статьи по проблемам садоводства, цветоводства и земледелия. С редкостным терпением и любовью наблюдал он за развитием нежных камелий, пышных роз, выводил новые сорта цветов.

4 июня 1854 года Бутлеров получил подтверждение о присуждении ему ученой степени доктора химии и физики. События разворачивались с невероятной быстротой. Сразу же после получения докторской степени Бутлеров был назначен исполняющим обязанности профессора химии Казанского университета. В начале 1857 года он стал уже профессором, а летом того же года получил разрешение на заграничную командировку.

Бутлеров прибыл в Берлин в конце лета. Затем он продолжил поездку по Германии, Швейцарии, Италии и Франции. Конечной целью его путешествия был Париж – мировой центр химической науки того времени. Его влекла, прежде всего, встреча с Адольфом Вюрцем. Бутлеров работал в лаборатории Вюрца два месяца. Именно здесь он начал свои экспериментальные исследования, которые в течение последующих двадцати лет увенчались открытиями десятков новых веществ и реакций. Многочисленные образцовые синтезы Бутлерова этанола и этилена, третичных спиртов, полимеризации этиленовых углеводородов лежат у истоков ряда отраслей промышленности и, таким образом, оказали на нее самое непосредственное стимулирующее влияние.

Занимаясь изучением углеводородов, Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый заметил, что здесь существует строгая закономерность. Она и легла в основу созданной им теории химического строения.

Его доклад в Парижской академии наук вызвал всеобщий интерес и оживленные прения. Бутлеров говорил: «Может быть, настало время, когда наши исследования должны стать основой новой теории химического строения веществ. Эта теория будет отличаться точностью математических законов и позволит предвидеть свойства органических соединений». Подобных мыслей никто до сих пор не высказывал.

Через несколько лет, во время второй заграничной командировки, Бутлеров представил на обсуждение созданную им теорию. Сообщение он сделал на 36-м съезде немецких естествоиспытателей и врачей в Шпейере. Съезд состоялся в сентябре 1861года.

Он выступил с докладом перед химической секцией. Тема носила более чем скромное название: «Нечто о химическом строении тел».

Бутлеров говорил просто и ясно. Не вдаваясь в ненужные подробности, он познакомил аудиторию с новой теорией химического строения органических веществ: его доклад вызвал небывалый интерес.

Термин «химическое строение» встречался и до Бутлерова, но он переосмыслил его и применил для определения нового понятия о порядке межатомных связей в молекулах. Теория химического строения служит теперь основой всех без исключения современных разделов синтетической химии.

Итак, теория заявила своё право на существование. Она требовала дальнейшего развития, и где же, как не в Казани, следовало этим заниматься, ведь там родилась новая теория, там работал ее создатель. Для Бутлерова ректорские обязанности оказались тяжким и непосильным бременем. Он несколько раз просил освободить его от этой должности, но все его просьбы оставались неудовлетворенными. Заботы не покидали его и дома. Только в саду, занимаясь любимыми цветами, он забывал тревоги и неурядицы прошедшего дня. Часто вместе с ним в саду работал его сын Миша; Александр Михайлович расспрашивал мальчика о событиях в школе, и рассказывал любопытные подробности о цветах.

Наступил 1863 год – самый счастливый год в жизни великого ученого. Бутлеров был на правильном пути. Ему удалось впервые в истории химии получить самый простой третичный спирт – третичный бутиловый спирт, или триметилкарбинол. Вскоре после этого в литературе появились сообщения об успешно проведенном синтезе первичного и вторичного бутиловых спиртов.

Ученым был известен изобутиловый спирт еще с 1852 года, когда он был впервые выделен из природного растительного масла. Теперь уже ни о каком споре и речи быть не могло, так как существовало четыре различных бутиловых спирта, и все они – изомеры.

В 1862 – 1865 годах Бутлеров высказал основное положение теории обратимой изомеризации таутомерии, механизм которой, по Бутлерову, заключался в расщеплении молекул одного строения и соединении их остатков с образованием молекул другого строения. Это была гениальная мысль. Великий ученый утверждал необходимость динамического подхода к химическим процессам, то есть рассматривать их как равновесные.

Успех принес ученому уверенность, но в то же время поставил перед ним новую, более трудную задачу. Необходимо было применить структурную теорию ко всем реакциям и соединениям органической химии, а главное, написать новый учебник по органической химии, где все явления рассматривались бы с точки зрения новой теории строения.

Бутлеров работал над учебником почти два года без перерыва. Книга «Введение к полному изучению органической химии» вышла из печати тремя выпусками 1864 – 1866 годах. Она не шла ни в каком сравнение, ни с одним из известных тогда учебников. Этот вдохновенный труд был откровением Бутлерова – химика, экспериментатора и философа, перестроившего весь накопленный наукой материал по новому принципу, по принципу химического строения.

Книга вызвала настоящую революцию в химической науке. Уже в 1867 году началась работа по ее переводу и изданию на немецком языке. Вскоре после этого вышли издания почти на всех основных европейских языках. По словам немецкого исследователя Виктора Мейера, она стала «путеводной звездой» в громадном большинстве исследований в области органической химии.

С тех пор как Александр Михайлович закончил работу над учебником, он все чаще проводил время Бутлеровке. Даже во время учебного года семья по нескольку раз в неделю выезжала в деревню. Бутлеров чувствовал здесь себя свободным от забот и целиком отдавался любимым увлечениям: цветам и коллекциям насекомых.

Теперь Бутлеров меньше работал в лаборатории, но внимательно следил за новыми открытиями. Весной 1868 года по инициативе знаменитого химика Менделеева, Александра Михайловича пригласили в Петербургский университет, где он начал читать лекции и получил возможность организовать собственную химическую лабораторию. Бутлеров разработал новую методику обучения студентов, предложив ныне повсеместно принятый лабораторный практикум, в котором студенты обучались приемам работы с разнообразной химической аппаратурой.

Одновременно с научной деятельностью Бутлеров активно включается и в общественную жизнь Петербурга. В то время прогрессивную общественность особенно волновал вопрос об образовании женщин. Женщины должны иметь свободный доступ к высшему образованию! Были организованы Высшие женские курсы при Медико-хирургической академии, начались занятия и на Бестужевских женских курсах, где Бутлеров читал лекции по химии.

Многосторонняя научная деятельность Бутлерова нашла признание Академии наук. В 1871 год его избрали экстраординарным академиком, а три года спустя – ординарным академиком, что давало право получить квартиру в здании Академии. Там жил и Николай Николаевич Зинин. Близкое соседство еще больше укрепило давнюю дружбу.

Годы шли неумолимо. Работа со студентами стала для него слишком тяжела, и Бутлеров решил покинуть университет. Прощальную лекцию он прочитал 4 апреля 1880 года перед студентами второго курса. Они встретили сообщение об уходе любимого профессора с глубоким огорчением. Ученый совет принял решение просить Бутлерова остаться и избрал его ещё на пять лет.

Ученый решил ограничить свою деятельность в университете лишь чтением основного курса. И все-таки несколько раз в неделю появлялся в лаборатории и руководил работой.

Через всю жизнь Бутлеров пронес ещё одну страсть – пчеловодство. В своем имении он организовал образцовую пасеку, а в последние годы жизни настоящую школу для крестьян-пчеловодов. Своей книгой «Пчела, ее жизнь и правила толкового пчеловодства» Бутлеров гордился едва ли не больше, чем научными работами.

Бутлеров считал, что настоящий ученый должен быть и популяризатором своей науки. Параллельно с научными статьями он выпускал общедоступные брошюры, в которых ярко и красочно рассказывал о своих открытиях. Последнюю из них он закончил за полгода до смерти.

Известь, или оксид кальция – это химическое вещество, получаемое в результате переработки известняка. Она нашла свое применение в строительстве, и множестве других сферах. Это обусловлено ее свойством скрепления мелких частиц песка, дезинфекции, высокой скорости поглощения влаги и бурному течению химической реакции с водой, в результате которой выделяется тепло.

Как производится известь

Процесс получения извести начинается со сбора известняка. Данная каменистая порода добывается открытым способом в карьерах путем проведения взрывов. Известняк доставляется на производство, где осуществляется его обжиг. Сначала каменные глыбы разрушаются с помощью дробильной установки на более мелкие куски. Размолотая порода калибруется по размеру, поскольку для обжига требуется использование сырья одинакового сечения. При нагревании породы до температуры +800 градусов из нее начинается активное выделение углекислого газа. Термическое разложение известняка заканчивается при температуре +1200 градусов. В результате чего образовывается негашеная известь, также известная как оксид кальция.

Изначально готовый материал представляет собой груду белого цвета, которая уже пригодна к использованию, но еще обладает не достаточными удобствами для применения. В связи с этим проводится ее помол в порошок. Именно он является готовым продуктом производства.

Виды извести

Изначально при переработке известняка осуществляется производство негашеной извести. В таком виде она имеет повышенные щелочные свойства, что затрудняет использование во многих сферах. В связи с этим осуществляется ее переработка в другие агрегатные виды:

  • Гашеная.
  • Хлорная.
  • Натриевая.
Гашеная

В первую очередь осуществляется переработка оксида кальция для получения гашеной извести. Для этого негашеное сырье заливается обычной водой. В результате начинается активная химическая реакция, от которой осуществляется сильное выделение тепла. После ее окончания может быть получено 2 продукта – известковое молоко или тесто. Молоко представляет собой жидкость, в которой присутствует большой объем воды. Свое название она получила благодаря белому цвету. Что касается известкового теста, то оно получается если воды было добавлено меньше, поэтому ее концентрации недостаточно, чтобы добиться жидкого состояния.

При реализации гашеной извести обычно применяется агрегатное состояние теста, которое также именуется как известковая паста. Материал продается в запаянных герметичных полиэтиленовых пакетах весом от 2 кг и более.

Хлорная

Данная разновидность извести получается в результате смеси гидрохлорида или хлорида с гидроксидом кальция, так называемой гашеной известью. Данное вещество является мощным отбеливающим средством, изобретенным еще в 1799 году. Его альтернативными названиями являются белильная известь или просто хлорка. Это активное вещество, относящиеся ко второму классу опасности. В связи с этим при его применении требуется предельная внимательность.

Натриевая

Данная разновидность извести получается в результате смешивания гидроксида кальция и натрия. Обычно это делают в лаборатории. Для производства возможно использование и оксида кальция в количестве 2 части к 1 части чистого едкого натрия с добавлением воды. Масса смешивается, после чего вода выпаривается в железной емкости. Получаемый в результате камень разбивается и просеивается через сито. Данное вещество хранится только в хорошо закрытых сосудах с минимальным контактом воздухом. Это обусловлено свойством поглощения натриевой известью углекислого газа. Качество данного материала оценивается в результате нагрева после смешивания с сахаром. В результате термообработки смесь не должна выделять запах аммиака. При его присутствии это говорит о наличии азотнокислых солей, являющихся нежелательной примесью.

Сферы использования извести

Направление применения каждой разновидности извести отличается, что обусловлено разными химическими свойствами каждой из них. В первую очередь у них наблюдается отличие по щелочной реакции.

Применение негашеной извести

Оксид кальция встречается в продаже в виде белого кристаллического порошка. Он плохо растворяется в воде, оставляя осадок. Данное вещество входит в основу силикатного кирпича и строительные растворы для кирпичной кладки. Нередко этот материал применяют для получения гашеной извести, сфера использования которой более широка. Для этого осуществляется смешивание готового продукта с водой. Полученный в результате раствор сразу пригоден к применению. Чаще всего оксид кальция используют для получения известкового цемента, но с появлением более современных материалов надобность в нем уменьшилась.

Вещество нашло свой отклик и в лабораторной практике. Его используют в качестве дешевого агента, способного быстро впитывать излишнюю жидкость растворов. Из негашеной извести делают химпакеты для разогрева консервов в солдатских и туристических сухпайках. Оксид кальция помещается в полиэтиленовый пакет рядом с законсервированным продуктом, который нужно разогреть. В пакет добавляется вода, после чего осуществляется бурная химическая реакция с выделением тепла. В результате обед разогревается.

Оксид кальция также используется в пищевой промышленности. Потребителям он более известен как добавка Е529. Конечно, она не добавляется в продукты для непосредственного употребления, но применяется в химических реакциях, к примеру, на этапе переработки свеклы в сахар-песок.

Использование гашеной извести

Гидроксид кальция более распространен. Его можно приобрести в виде влажного теста помещенного в герметичные пакеты. Основное предназначение данного материала заключается в побелке помещений. Именно этим веществам окрашиваются в белый цвет бордюры и стволы деревьев. При смешивании части гидроксида кальция с водой и четырьмя частями песка получается раствор для кладки кирпича и камня. Сейчас от данного материала уже практически отказались, поскольку по прочности он уступает хорошему цементу. Кроме этого застывший раствор постоянно поглощает и отдает влагу. Это приводит к его разрушению при отрицательных температурах.

Гашеная известь, также как и негашеная, может применяться при производстве силикатного кирпича. Также она используется при дублении кож, с целью увеличения их мягкости. Гидроксид кальция используется и в пищевой промышленности, где он более известен как добавка Е526.

При осуществлении побелки необходимо провести смешивание гашеной извести с водой для получения молока. Суспензия может наноситься или с помощью . Если дать ей отстояться, то присутствующая известковая взвесь осядет на дно. В результате вещество расслоится на прозрачную воду вверху и осадок. Очищенная таким образом жидкость называется известковая вода. Данный раствор является индикатором углекислого газа. Вода мутнеет, обретая белесый цвет при контакте с ним.

Использование гашеной извести характерно и для стоматологии. В частности с ее помощью осуществляется дезинфекция корневых каналов зубов. Множество химических веществ изготовляют из гидроксида кальция, к примеру, бордосская жидкость и другие фунгициды.

Назначение хлористой извести

Хлорка используется как отбеливающее и дезинфицирующее вещество. С ее помощью осуществляется стирка тканей с целью придания им белого цвета. При добавлении воды получаемый раствор применяется для обработки зон с повышенной концентрацией бактерий. Практически все химические вещества для чистки унитазов содержит в себе хлорную известь.

Хлорка также добавляется в водопроводную воду. Этот процесс более известен как хлорирование. Его применяют для проведения дезинфекции коммуникационных труб. Чаще всего этот метод используется в жаркий сезон в период всплеска развития бактерий. Насыщенная известью вода имеет характерный запах хлорки. Несмотря на это такой способ дезинфекции используется чаще всего, поскольку относится к самым дешевым и эффективным. При нахождении такой воды на открытом воздухе активные частицы хлора в результате контакта с ним нейтрализуются. После этого воде возвращаются нормальные свойства.

Применение натриевой извести

Сфера применения извести в такой форме самая скромная. Данное вещество имеет высокое поглощение углекислого газа, благодаря чего его используют в качестве его уловителя в замкнутых системах. Оно встречается в противогазах и водолазном снаряжении. Такая известь, всего в количестве 5 кг, способна поглотить весь углекислый газ, который выделяет человек в результате дыхания за сутки. Раньше она применялась в космических кораблях, но данная технология отошла в прошлое.

Особенности работы с известью

Все разновидности извести являются опасными веществами, обладающими сильными щелочными свойствами. В связи с этим при работе с ними требуется позаботиться о наличии индивидуальных средств защиты. Важно предотвратить контакты вещества с открытыми участками кожи. На руках необходимо применять резиновые перчатки. Используя гашеную и негашеную известь в идеале пользоваться индивидуальными средствами защита дыхательных путей.

Подавляющее большинство материалов, содержащих известь, лучше избегать. Одним из немногих исключений является силикатный кирпич, который в результате проведения обработки с обжигом теряет щелочные свойства своего компонента.

При применении известкового молока с целью побелки нужно учитывать, что при его нанесении на поверхность, та становится слегка сероватой. Белизна проявляется постепенно только при высыхании.

Штукатурные растворы на основе извести не могут использоваться во влажных помещениях, таких как ванная комната, подвал и так далее. Они обладают довольно высокой пористостью, поэтому плохо подходят для нежной финишной отделки, такой как покраска или поклейка обоев.

Любой активно используемый в сельском хозяйстве грунт со временем начинает окисляться. Применение извести в этом случае помогает отрегулировать баланс pH и повысить плодородность почвы. Специалисты советуют, как и в каких случаях уместно использовать гашеную и негашеную окись кальция.

Применение извести на дачном участке: технология

Известь - хорошее удобрение для участка. Но при неправильном использовании оно будет бесполезным. Обращение с веществом требует соблюдения таких условий:

  1. Точность дозировки. Превышение нормы станет причиной излишнего смещения баланса в сторону щелочности, что тоже негативно скажется на культурах. Количество внесённого удобрения определяется видом растения и уровнем кислотности грунта.
  2. Своевременность внесения. В зависимости от типа извести её добавляют в грунт весной или осенью.
  3. Корректное сочетание с другими подкормками и удобрениями. В частности, окись кальция нейтрализует действие . Одновременно вносить оба удобрения не эффективно.

Внимание! В значительном количестве известь содержится в молотом мелу, доломитовой муке, мартеновском шлаке, озёрных известковых отложениях, цементной пыли, туфе, сланцевой золе и др. удобрениях.

Крупные хозяйства для имеют научно-техническую основу: специальное оборудование или реактивы (лакмусовую бумагу). В условиях приусадебного участка или дачи определить уровень pH и целесообразность можно на основе внешних признаков:

  • весной землю буйно и в короткий срок покрывают мощные сорняки;
  • поверхность почвы застилается белёсым налётом;
  • в ямках образуются озерца с водой ржавого оттенка и радужной плёнкой на поверхности.

Следуйте инструкции

О кислом состоянии грунта свидетельствуют мох, дикая горчица, василёк, лапчатка, маргаритка, щавель, мята, подорожник. О нейтральном - крапива, клевер, лебеда. На слегка щелочном грунте растут ягодные кустарники. Но чем выше этот показатель, тем меньше растений способно жить в такой земле.

Совет. В бытовых условиях кислотность земли на участке несложно определить с помощью домашнего эксперимента. Возьмите образец грунта с грядки, налейте на него несколько капель столового уксуса. Если почва зашипит, значит прошла реакция уксусной кислоты с щёлочью. Почва в этом случае может быть либо нейтральной, либо щелочной.

Как применяют гашёную известь

Основное направление - улучшение плодородности почвы путём воздействия на её структуру и уровень pH. Применение извести актуально, когда этот параметр составляет 5,5 (иногда 6,0) или ниже. Кроме того, окись кальция используют для:

  • побелки деревьев;
  • дезинфекции инструмента;
  • противодействия вредителям и их личинкам;
  • защиты кирпичных и деревянных поверхностей от плесени.

Для воздействия на кислотность известь можно просто рассыпать на грядках в сухом состоянии. После полива или дождя она растворится в воде и проникнет вглубь. Детализация норм внесения вещества для разных типов почв:

  • pH не выше 4,5: для глинистых - 0,5 кг/кв. м, для песчаных - 0,3 кг/кв. м;
  • pH 4,6-5: глинистые - 0,3 кг/кв. м, песчаные - 0,2 кг/кв. м;
  • pH 5,1-6: только глинистые - 0,2 кг/кв.м.

Внимание! Нормы извести корректируются в зависимости от растения. Часто эти поправки определяются глубиной залегания корней.

Обеззараживающие свойства извести используют для всевозможных работ на участке. В частности, давно и успешно с её помощью производят весеннюю побелку ствола:

  • на 1 ведро воды (8-10 л) разведите 2 кг вещества, 1,5 кг глины и 300 г медного купороса. Альтернативный вариант - в тот же объём жидкости добавьте 2,5 кг извести, 100 г столярного клея, 500 г медного купороса;

  • тщательно размешайте до сметанной густоты. Во втором варианте раствора ему необходимо дать настояться;
  • равномерно тонким слоем 3-4 мм нанесите на ствол;
  • через время повторите нанесение.

Совет. Следите, чтобы в процессе работы на стволе не образовались потёки. Побелку в отдельных случаях допускается проводить осенью. Иногда к раствору добавляют немного чемерицы, чтобы защитить древесину от грызунов.

Применение извести в негашеном состоянии

Такое вещество представляет собой кусочки после термической обработки известняка. Оно остаётся негашеным до взаимодействия с влагой и пригодно для борьбы с сорняками:

  • сначала очистите территорию от нежелательных растений;
  • засыпьте грядки измельчённым гербицидом.

Внимание! Подобным способом можно вносить негашеную известь только дважды в сезон в дозировке 150 г/кв. м.

Специалисты рекомендуют пустить вещество в дело сразу после приобретения, поскольку хранить в негашёном состоянии его сложно. Известь также можно комбинировать с другими удобрениями. Например, она хорошо взаимодействует с золой. В исключительных случаях дозировку можно увеличить до 200 г/кв.м.

Правильное внесение негашеной извести - под перекопку на глубину примерно 20 см. Если вы собираетесь урезать дозу, то зарывать её нужно не так глубоко. Такого вида известью вы также сможете обработать кусты или деревья, вооружившись широкой кистью. Только сначала очистите ствол от гниющей или старой коры. Известь имеет обширное применение на участке, но пользоваться ею нужно только с предварительными расчётами.

Как вносить известь в грунт: видео

Известь гашеная (другие названия: гидроокись кальция, известь гашеная пушонка, известь гидратная гашеная) получается путем взаимодействия воды и окиси кальция (негашеной извести). Негашеную известь – комовую или молотую обливают водой. От соотношения количества воды и негашеной извести можно получить различные смеси. Если вода составляет 60-80% от количества извести – получаем пушонку, путем дальнейшего разведения водой получается известковое тесто и известковое молоко соответственно.

Процесс получение гашеной извести (дегидратации)

Процесс дегидратации происходит на открытых площадях или в специальных творильнях (деревянный ящик, либо просто яма). Скорость гашения может быть разной, в связи с этим различают виды и имеет известь гашеная характеристики следующие:

  • быстрогасящаяся известь (около 8 минут),
  • среднегасящаяся (около 25 минут),
  • медленногасящаяся (свыше 25 минут).

Сам процесс сопровождается выделением тепла, чтобы не снижать температуру, вода должна добавляться постепенно. В свежегашеной извести могут содержаться остатки исходного сырья, их используют повторно, в конечном итоге утилизируют.

Плотность полученной гашеной извести можно регулировать добавлением воды путем замешивания. Прекратить добавлять воду следует тогда, когда последняя перестанет впитываться раствором.

Количество напрямую зависит от качества первичного сырья. Чем выше качество, тем выход больше. Так из 1 кг сырья первого сорта можно получить больше 2-ух кг известкового теста, из второсортного сырья выход будет меньше.

Хранение гашеной извести

Раствор помещается в специальную яму, сверху накладывается двадцатисантиметровый слой мелкозернистого песка. В холодное время года, чтобы избежать промерзания раствора, дополнительно укладывается земляной слой (приблизительно 70 см). Место хранения огораживается специальными метками и выдерживается до тех пор, пока погасятся самые мелкие частички. Попадание непогашенных крупиц в растворы недопустимо, так как они могут спровоцировать вздутие покрытия.

В зависимости от дальнейшего использования гашеной извести зависит время выдержки. Для использования в растворах и смесях для кладки достаточно двухнедельной выдержки, а для применения в строительных растворах для оштукатуривания – выдержка должна быть не меньше месяца.

Применение

Область применения гашеной извести довольно обширна. Ее используют при изготовлении удобрений, для смягчения воды, известь гашеная для побелки и даже в стоматологии. Но как отличный связующий материал, известь нашла широкое применение в строительстве. Гашеная известь или известковое тесто широко применяется как добавка в строительные смеси, так как обладает свойствами, способными бороться с грибком и плесенью, а также является превосходным средством защиты от вредителей (грызунов и насекомых).

В отличие от негашеной извести (кипелки), гашеная известь в тесто имеет очень долгий срок хранения, причем, чем дольше хранится, тем качественные показатели становятся лучше.
Практически все строительные растворы производятся на основе песка и воды с добавлением различных дополнительных компонентов. Известковые растворы готовят таким же образом, только с добавлением гашеной извести.

Процесс приготовления известкового раствора несложный - добавляется вода и постепенно вводится просеянный песок при постоянном помешивании. Полученный раствор желательно пропустить через сито для отсеивания посторонних фракций и для большей однородности. Из-за того, что чистый известковый раствор долго твердеет, в него добавляют гипс либо цемент.

Известь широко используется с давних времен, в настоящее время растворы с известью широко используются при строительстве сельскохозяйственных зданий, при постройке загородных домов, да и просто в качестве побелки. Обусловлено это дешевизной таких растворов.