ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Защита металла железобетона от химического воздействия. Защита от коррозии бетона. Что представляет собой коррозия бетона

Что это такое — коррозия бетона и железобетона? Почему в железобетонных конструкциях возникают коррозионные процессы? Какими способами можно предотвратить их развитие? В статье мы постараемся ответить на эти вопросы.

Что это такое

Коррозия бетона — процесс падения и железобетонных конструкций, связанный с агрессивным воздействием окружающей среды. Думается, читателю не нужно объяснять, как протекает коррозия металлических конструкций. С бетоном в общих чертах происходит то же самое: со временем он частично перерождается в другие материалы, обладающие совсем другими механическими свойствами.

Уточним: от обычной ржавчины железобетонные конструкции, понятное дело, тоже страдают. В большинстве случаев армирование не отличается высокой коррозионной стойкостью.

Виды и механизмы

Помните пословицу «где тонко, там и рвется»? Она в полной мере относится к деградации любых конструкционных материалов.

Железобетон — композит из нескольких видов сырья, различающихся механической прочностью и устойчивостью к разного вида внешним воздействиям.

Материал Свойства
Песок Кристаллы кварца исключительно химически стабильны, не деградируют со временем
Щебень В качестве заполнения обычно используется щебенка скальных пород, своими химическими и механическими свойствами мало отличающаяся от кварцевого песка. На ее прочность могут повлиять разве что концентрированные щелочи и кислоты.
Арматура Контакт стали в водой и воздухом (а бетон, как мы помним, паропроницаем) всегда дает очень предсказуемый результат. Даже под защитным слоем бетона армирование будет постепенно ржаветь. Выход арматуры на поверхность вследствие разрушения конструкции многократно ускорит процесс.
Цементный камень Связующее — цемент — после схватывания превращается в сравнительно прочный, но не отличающийся химической инертностью цементный камень. Один из его основных компонентов — гашеная известь Ca(OH)2 — легко растворяется водой и вступает в реакции с прочими химикатами. Именно с разрушения цементного камня обычно начинается коррозионный процесс.

Давайте разберем основные виды коррозии и механизмы их возникновения.

Вымывание

Несмотря на высокую плотность, бетон — материал пористый. Причина — в том, что схватывание цемента и последующая сушка раствора сопровождаются существенным уменьшением его объема.

Обратите внимание: поризованные газо- и пенобетон — отдельный разговор. В их случае поры создаются намеренно — введением в раствор пены или газообразующих компонентов (как правило, алюминиевого порошка). Цель — придание бетону максимальных теплоизоляционных качеств.

Увлажнение бетона с последующим неравномерным испарением воды приведет к постепенному движению воды через поры. В процессе движения та самая гашеная известь Ca(OH)2 будет постепенно вымываться; ну, а раз связующего в толще бетона становится меньше — его прочность падает.

Наиболее наглядно процесс вымывание демонстрируют высолы — белые разводы и наросты на поверхности бетона, остающиеся там, где он часто мокнет. Их наличие говорит о том, что конструкция стремительно утрачивает прочность.

Разложение кислотами

Под воздействием кислот и их водных растворов в бетоне может протекать множество деструктивных процессов.

Разберем наиболее простые.

  • При воздействии кислот гашеная известь соединяется с атмосферной углекислотой с образованием нерастворимой соли и воды . Формула, описывающая реакцию, имеет вид Ca(OH)2 + CO2 = CaCO3 + H2O.

Казалось бы — чему огорчаться, если растворимое соединение кальция заменено более стабильным? Ведь процесс вымывания в этом случае должен полностью прекратиться. Не тут — то было: кристаллы CaCO3 не просто заполняют поры — они стремятся расширить, взломать их; в результате бетон начинает растрескиваться.

  • При избытке воды (проще говоря — во влажном бетоне) дальнейшее преобразование минералов приобретает вид CaCO3 + CO2 + H2O = Ca(HCO3)2 . Полученный бикарбонат кальция снова растворим для воды; более того — слишком растворим: он стремительно вымывается, оставляя после себя поры и… падение конструкционной прочности.
  • В присутствии раствора соляной кислоты гашеная известь превращается в хлористый кальций: Ca(OH)2 + 2HCl = CaCl2 + 2H2O . И эта соль исключительно легко растворяется в воде; результат вполне предсказуем — опять-таки ослабление конструкции.

Сульфатное разложение

В условиях предприятий химической промышленности (в частности, производящих удобрения) довольно распространенным случаем является так называемая сульфатная коррозия бетона.

В результате взаимодействия с сульфатами гашеной извести и присутствующих в цементе алюминатов образуется, в частности, гидросульфоалюминат эттрингит (3СaO Al2O3 3CaSO4 32H2O). Кристаллы в процессе роста вызывают значительные напряжения, существенно превышающие прочностные показатели цементного камня.

Ржавление арматуры

Здесь все просто и понятно: контакт низкоуглеродистых сталей с водой и воздухом приводит к образованию малопрочного Fe2O3 и более сложных окислов и солей. Армирование должно воспринимать нагрузки на растяжение; при падении прочности арматуры существенные нагрузки на изгиб приводят к появлению трещин и… ускоренному падению прочности уцелевшего армирования вследствие прямого контакта с водой и воздухом ().

Биологическое разложение

Последствия высокой влажности при температурах выше нуля общеизвестны: конструкции из кирпича, камня и бетона обживаются мхом и плесенью.

В результате разрушение идет двумя путями:

  1. Пресловутая известь и ее соединения служат грибку пищей.
  2. Накопление продуктов метаболизма в порах приводит к росту внутренних напряжений.

Морозное разрушение

Представьте себе, что происходит с участком влажной бетонной конструкции при падении температуры ниже нуля.

  1. Вода в ее порах начинает кристаллизоваться.
  2. Лед, имеющий больший по сравнению с водой объем, стремится расширить поры. В конструкции появляются микротрещины; по мере их расширения к разрушению железобетона подключается коррозия арматуры.

Способы защиты

Итак, механизмы разрушения нами изучены. Возможна ли защита бетонных и железобетонных конструкций от коррозии? Могут ли соответствующие меры быть предприняты в домашних условиях, своими руками?

Стратегия

Для начала выясним, какими путями нам предстоит двигаться.

Комплекс мер Разъяснения
Защита арматуры Повышение коррозионной стойкости армирующего каркаса предотвратит его ржавление внутри бетона и при выходе на поверхность.
Уплотняющие химические добавки Как правило, они уменьшают количество пор или делают поры замкнутыми. В результате снижается проницаемость материала для воды и воздуха, реже нестабильная гашеная известь заменяется более химически стойкими соединениями.
Заполнение пор Готовая бетонная конструкция может быть модифицирована проникающими пропитками, нагнетаемыми через пробуренные в ней шурфы или просто нанесенными на поверхность.
Поверхностная защита Сюда относятся всевозможные меры по гидроизоляции (рулонной и обмазочной). В эту же категорию попадает покраска лакокрасочными материалами.
Биозащита Антисептические пропитки сводят на нет биологическое разложение, убивая саму плесень, ее споры и препятствуя их повторному появлению.

Тактика

А теперь давайте немного конкретизируем перечень возможных мер, описав некоторые из них.

Промышленные условия

Как защита железобетонных конструкций от коррозии осуществляется в условиях промышленных предприятий, многоквартирного строительства и т.д. — проще говоря, когда есть возможность использовать сложные технологии, требующие специального оборудования?

Упомянем несколько часто применяющихся решений.

  • Цементизация . Через пробуренные в толще конструкции отверстия под давлением нагнетается цементное молочко, приготовленное в пропорции 1:10 (цемент-вода), с небольшой (не более 7% от массы цемента) добавкой хлористого кальция. Заполнение пор способствует увеличению плотности бетона и уменьшению количества открытых пор в нем.
  • Силикатизация сводится к последовательному нагнетанию натриевого жидкого стекла и хлористого кальция. В процессе обработки поры заполняются смесью слаборастворимого гидросиликата кальция и нерастворимого кремнезема.

  • Битумизация — процесс заполнения пор битумом при температуре 200-220С. Метод исключительно эффективен, но может проводиться лишь при минимальной влажности конструкции.

Полезно: основная проблема при бурении шурфов для закачки растворов — не вызвать роста внутренних напряжений в толще конструкции. С этой точки зрения оптимально алмазное бурение отверстий в бетоне: оно не создает ударных нагрузок и не вызывает скола краев отверстия.

Для вскрытия и демонтажа элементов конструкции применяется резка железобетона алмазными кругами: они обладают куда большим по сравнению с абразивными кругами по камню ресурсом и, главное, прекрасно режут арматуру.

Домашние условия

Разумеется, защита бетона от коррозии возможна и без применения высокотехнологичного оборудования.

  • Защитная покраска — самое простое и очевидное решение. В частности, можно рекомендовать так называемые резиновые водно-дисперсионные красители: они надежно гидроизолируют поверхность бетона при минимальных затратах времени и сил. Цена килограмма резиновой краски начинается примерно от 130 рублей.

  • Обработка жидким стеклом тоже способна защитить бетон от разрушения. Инструкция по его применению предельно проста: натриевое жидкое стекло разводится водой 1:1 и наносится на поверхность бетона кистью или валиком в 2-3 слоя без промежуточной просушки.
  • Наиболее эффективное решение — проникающие гидроизоляционные пропитки (Пенетрон и его аналоги). Они наносятся по влажному бетону и проникают на глубину до метра. Пенетрон вызывает кристаллизацию соединений кальция, полностью заполняющих поры.
  • На стадии приготовления бетона в него могут вводиться разнообразные укрепляющие добавки. Вот названия нескольких отечественных препаратов: Мылонафт, СДБ (сульфитно-дрожжевая бражка), ГКЖ-94 (кремнийорганическая жидкость).

Кремнийорганические (силиконовые) пропитки могут применяться и для гидрофобизации готовых конструкций. На фото — силиконовый гидрофобный грунт Типром Д.

Заключение

Разумеется, в рамках небольшой статьи нами затронуто лишь несколько из длинного перечня возможных решений (

Или железобетона долговечен и должен функционировать на протяжении многих десятилетий. Однако бетон не является химически стойким материалом. Он подвержен коррозии, потому требует не только , но и нуждается в защите.

Под коррозией понимают процесс разрушения первоначальной структуры – бетон становится хрупким. В входят цементный и заполнители. Наименее стойким является цементный камень и именно с него начинается коррозия. Агрессивное воздействие могут оказывать сотни веществ, контактирующие с бетоном: грунтовые и сточные , кислые газы в атмосфере и т.д.

Так, грунтовые воды на территории химических и металлообрабатывающих заводов загрязняются органическими и минеральными кислотами; нитратами, хлоридами, сульфатами; солями железа, аммония, меди, никеля, цинка; щелочами. В воздухе вокруг промышленных предприятий могут содержаться загрязнения сернистым газом, хлористым водородом, оксидами азота и др. Несмотря на то, что их концентрация, возможно, соответствует санитарным норма, и не вредна для здоровья человека, её бывает достаточно для разрушения бетона с течением времени.

Коррозия бетона

Различают следующие виды коррозии бетона:

  • растворение составляющих цементного камня – наиболее распространенный вид коррозии бетона. В состав бетона входит гидроксид кальция (гашеная известь) – Ca(OH) 2 , которыйрастворяется со временем и вымывается (выщелачивается), структура бетона нарушается;
  • цементный камень вступает в реакцию с кислотами, находящимися в окружающей среде — в результате возможны: увеличение объема бетона либо вымывание легкорастворимых известковых соединений. В первом случае образуется нерастворимый в воде карбонат кальция (CaCO 3), который откладывается в порах бетона, за счет чего увеличивается его объем, в дальнейшем растрескивание и разрушение. Во втором случае, образуются легкорастворимые соединения кальция (гидрокарбонат кальция (Ca(HCO 3) 2), хлористый кальций(CaCl 2)), которые постепенно вымываются из бетона и он становится ноздреватой массой малой прочности;
  • образование и кристаллизация труднорастворимых веществ в порах бетона – в результате в стенках пор и капилляров возникают значительные напряжения, что разрушает структуру бетона;
  • биокоррозия – в поры бетона проникают бактерии и грибки, продукты метаболизма которых разрушительно действуют на структуру бетона.

Часто разрушение бетона связано с коррозией нескольких видов одновременно.

Коррозия арматуры в бетоне

Железная арматура, применяемая для бетона, также подвержена коррозии, что может быть вызвано водой, сероводородом, хлором, сернистыми газами, содержащимися в окружающей среде. Под их воздействием арматура ржавеет, а продукты коррозии железа вызывают внутренние напряжения и растрескивание бетона.

Через поры в бетоне воздух и влага проникают к арматуре. Процесс этот неравномерный, поэтому на разных участках возникают разные потенциалы, начинается электрохимическая коррозия. Чем выше влагопроницаемость и пористость бетона, тем выше скорость электрохимической коррозии арматуры. Растворенные в воде вещества также могут усиливать коррозию арматуры, так как повышают концентрацию электролита.

Если бетон в течение длительного периода времени выдерживают на воздухе, то на его поверхности под воздействием углекислоты, содержащейся в воздухе, образуется тонкая защитная пленка (процесс карбонизации), нерастворимая в воде и не взаимодействующая с сульфатам. Карбонизация защищает бетон от коррозии, но увеличивает коррозию арматуры.

Также коррозию арматуры (и на воздухе, и в воде) ускоряет хлористый кальций (CaCl 2), поэтому бетон, в состав которого он входит, армировать нельзя.

Защита арматуры от коррозии

Вокруг арматуры способен защитить её от коррозии. Защитное действие основано на способности цементного камня пассировать сталь: поровая жидкость бетона имеет высокую щелочность, а сталь пассивна в щелочной среде. В обычном бетоне на портландцементе достаточно гидроксида кальция для обеспечения щелочной среды.

В том случае, если в добавляют активные гидравлические , то последние связывают значительную часть гидроксида кальция. Тепловая обработка бетона (например, при получении ячеистого бетона) увеличивает такое связывание, что влечет значительное снижение щелочности поровой жидкости.

Защиту арматуры обеспечивают:

  • посредством повышения плотности бетона;
  • уменьшением проницаемости бетона;
  • введением в бетон ингибирующих и уплотняющих добавок;
  • при армировании бетона с пониженным значением щелочности паровой жидкости (бетоны автоклавного твердения, бетоны на гипсоцементно-пуццолановом вяжущем) на арматуру наносят специальные покрытия: цементно-битумные, цементнополистирольные, цементно-латексные;
  • для усиления защитных свойств пленки, образующейся на арматуре под воздействием щелочной среды бетона, в бетонную смесь добавляют пассиваторы, например, нитрат натрия (2-3% от веса цемента).

Защита бетона от коррозии

Для защиты бетона целесообразно применение комплекса мер: нейтрализация агрессивных сред; герметизация; вентиляция.

В качестве первичной защиты бетона в бетонную смесь вводят специальные добавки: пластифицирующие, стабилизирующие, водоудерживающие, химические модификаторы и др. Например, применяют пуццоланизацию: добавляют кислые гидравлические добавки, содержащие активный кремнезем. В результате образуется гидросиликат кальция, который более устойчив, чем гидроксид кальция.

Химические добавки помогают:

  • повысить плотность бетона – замедляется скорость передвижения агрессивных веществ в порах бетонного камня; коррозия арматуры в плотном бетоне сокращается;
  • увеличить количество замкнутых пор в бетоне – морозостойкость увеличивается в разы.

Химические добавки для защиты бетона от коррозии: пластифицирующие; уплотняющие; противоморозные; воздухововлекающие; газообразующие; гидрофобизирующие; замедлители схватывания; ингибиторы коррозии арматуры. Одни добавки могут улучшать несколько показателей одновременно, другие – улучшая один показатель, ухудшать другой.

Распространенные добавки:

  • мылонафт – пластифицирующая добавка: повышает однородность бетонной смеси, уменьшает трение между отдельными зернами заполнителя; вовлекает воздух; повышает: трещиноустойчивость, устойчивость к действию растворов минеральных солей, морозостойкость в два раза, по водонепроницаемости на два пункта. Производится в виде паст. Добавляется в бетонную смесь в размере 0,05% — 0,15% от массы цемента (в пересчете на сухое вещество). Превышение дозировки ведет к снижению прочности бетона на сжатие;
  • сульфитно-дрожжевая бражка (СДБ) – пластифицирующая добавка: повышает подвижность бетонной смеси; вовлекает воздух; уменьшает слипание цементных зерен; повышает: трещиноустойчивость, устойчивость к действию растворов минеральных солей, морозостойкость в полтора — два раза, марку бетона по водонепроницаемости на один пункт, прочность на 5%-10%. Производится в виде концентратов (твердых и жидких). Дозировка: 0,15%-0,3% от массы цемента (в пересчете на сухое вещество). Наилучший эффект при добавлении в бетонную смесь на основе высокоалюминатных и быстротвердеющих портландцементов;
  • кремнийорганическая жидкость (старое название ГКЖ-94) – гидрофобизирующая и газообразующая добавка: действие основано на выделении в бетонной смеси водорода и образования значительного количества замкнутых пор; оказывает гидрофобизирующее воздействие на стенки пор и капилляров; значительно замедляет затвердевание бетона в начальной стадии. Повышает: морозостойкость в три-четыре раза, марку бетона по водонепроницаемости на два пункта; стойкость к увлажнению-высушиванию и растяжению. Производится в виде 50%-й водной эмульсии, а также 100%-й жидкости. Дозировка жидкости: 0,03% — 0,08%.

Вторичная защита бетона от коррозии подразумевает его

Комментариев:

Защита бетона от воздействия агрессивных факторов является важным вопросом обеспечения надежности конструкций. Ведь бетон в качестве строительного материала не имеет границ по своему применению. В то же время всевозможные воздействия вызывают постепенное разрушение материала.

Защита бетона от коррозии, влаги и других воздействий волнует многих разработчиков и производителей материала. В настоящее время известны достаточно эффективные способы борьбы с разрушением таких составов.

Механизм разрушения бетона

К основным воздействующим факторам, приводящим к , можно отнести воду, агрессивные компоненты воздуха, температуру (нагрев, мороз, циклические нагрузки), пар, механические нагрузки, биологические организмы. Они действуют напрямую, вступая в химическое взаимодействие, и косвенно, путем постепенного накопления микротрещин.

Одним из самых опасных видов разрушения материала является коррозия, развивающаяся в нескольких направлениях. Растворение структурных элементов — наиболее типичное коррозионное повреждение бетона. Бетонные конструкции находятся под воздействием осадков и других жидких веществ. Присутствующая в составе гашеная известь легко растворяется и постепенно вымывается наружу, нарушая структуру бетона.

Взаимодействие составных компонентов с кислотной составляющей воды разрушительно действует на бетон, вызывая расширение или вымывание известковых составляющих. Процесс вызывает отложение соединений кальция в порах цемента, из-за чего происходит расширение материала, затем на нем появляются трещины и происходит его медленное разрушение. Заметное разрушение цементной составляющей протекает под влиянием сульфатов воды, чем обосновывается применение стойких к ним пуццоланового и сульфатостойкого портландцемента.

В случае применения железобетона замечен еще один тип разрушения — коррозия арматуры в материале. Под воздействием влаги и присутствующих в воздухе хлора и сернистых газов арматура внутри бетона ржавеет, с образованием продуктов реакции железа. Они увеличивают объем арматуры, вызывающий внутренние напряжения, а затем и растрескивание.

Вернуться к оглавлению

Основные принципы защиты

Наиболее сильное разрушение бетона характерно при совместном воздействии трех факторов: влаги, электролитических веществ (соли, кислотные и щелочные составляющие) и мороза. Таким образом, защита бетона во многом определяется увеличением влагостойкости (снижением водопоглощения и водопроницаемости), повышением морозостойкости и коррозионной стойкости состава.

В общем случае защита и могут осуществляться двумя способами: внутренним (первичная защита) и внешним (вторичная защита).

Первый способ подразумевает структурное упрочнение за счет введения в бетонную смесь специальных добавок. Добавки в виде модификаторов и пластификаторов позволяют увеличить морозостойкость, водостойкость и химическую стойкость самого цемента.

Вторичная защита может быть осуществлена пропиткой гидрофобными составами или формированием защитной пленки на поверхности материала. Цель такой защиты — заполнение воздушных образований и структурных капилляров стойкими составами и создание слоя гидроизоляции на поверхности. Оба пути реализуются как для защиты на стадии строительства, так и для ремонта поврежденных конструкций.

Вернуться к оглавлению

Необходимый для работ инструмент

Инструменты необходимые для работы: мастерок, шпатель, кисть малярная, ножницы, уровень.

При проведении работ по защите и ремонту бетонных конструкций потребуется следующий инструмент:

  • миксер;
  • лопата;
  • шпатель;
  • мастерок;
  • весы;
  • кисть малярная;
  • валик малярный;
  • фен строительный;
  • ножницы;
  • уровень.

Вернуться к оглавлению

Внутренняя защита

Первичная, т.е. внутренняя, защита бетона от коррозии и других воздействий производится на стадии подготовки бетонной смеси. Один из самых эффективных методов — химические модификаторы. Повышение стойкости вяжущей основы обусловлено пластифицирующим действием. Химические добавки, например, на основе лигносульфоната, предотвращают разрушение портландцемента под воздействием сульфатов, повышая коррозионную стойкость структуры.

Разрушение цементной основы останавливается внесением активных минеральных добавок на основе аморфного кремнезема. Они приводят к уменьшению содержания оксида кальция при отвердении структуры, что способствует увеличению прочностных характеристик материала. Применение электролитических добавок ускоряет отвердение бетонной смеси, нейтрализует оксиды и формирует достаточно стойкую структуру. Эффективные добавки — поташ, кальцинированная сода, карбонаты щелочных металлов.

Можно отметить добавки двойного действия, для упрочнения структуры бетона и защиты от коррозии арматуры железобетона. Интерес представляют химические добавки с пластифицирующим эффектом. Мылонафт увеличивает гидроизоляционные свойства, морозостойкость, стойкость к воздействию солей. Сульфитно-дрожжевая бражка наиболее эффективна для бетонов на основе портландцемента с быстрым отвердением. Кремнийорганическая жидкость ГКЖ-94 способна увеличить морозостойкость почти в 3 раза.

Вернуться к оглавлению

Вторичная или внешняя защита

Вторичная, т.е. внешняя, защита используется на стадии строительства или при ремонте бетонных конструкций. Основные способы такой защиты:

  1. Аэрозольные тонкие покрытия лаком или краской.
  2. Мастичные покрытия.
  3. Оклеечные пленки.
  4. Полимерная облицовка.
  5. Жидкая пропитка.
  6. Метод гидрофобизации.
  7. Использование биоцидных составов.

Лакокрасочные, в том числе акриловые, покрытия защищают от воздействия на бетон жидких и газообразных сред. Защитная пленка надежно предохраняет поверхность материала от агрессивных компонентов воздуха, влаги и многочисленных микроорганизмов. Защита мастиками предотвращает воздействие влаги. Наибольшее применение находят мастики на смоляной основе (смолизация). Пропиточные составы используются для всех эксплуатационных сред (жидкость, газ), особенно имеющих повышенную влажность, а перед лакокрасочным покрытием — очень часто. Пропитка заполняет наружный слой бетона, увеличивая гидрофобные свойства. Биоцидные средства необходимы для защиты бетона от разрушения грибками, плесенью, микроорганизмами. Химически активные вещества заполняют структуру материала и уничтожают биологических вредителей.

Оклеечные пленки нужны при эксплуатации бетонных конструкций в жидкостях, почве с высокой влажностью, зонах воздействия электролитических веществ. Например, конструкции, находящиеся в воде, оклеиваются полиизобутиленовыми пленками или пластинами.

Находит широкое применение полиэтиленовая пленка и рулонный нефтебитум, которые исполняют роль гидроизоляции.

Практика показывает, что защита бетона становится наиболее надежной при комплексном подходе — сочетании первичной и вторичной защиты.

Бетон – это искусственный каменный материал, состоящий из цемента, песка, воды и щебня. При затвердевании уплотненной смеси вяжущего вещества (цемент) с заполнителем образуется бетон. В качестве заполнителя может быть использован щебень, песок, гравий.

– процесс разрушения его структуры, охрупчивания под воздействием окружающей среды. бетона может быть трех видов.

Виды коррозии бетона:

1. Растворение составных частей цементного камня.

Это наиболее распространенный вид коррозионного разрушения бетона . Бетонные изделия эксплуатируются в основном на открытом воздухе. При этом они подвергаются воздействию атмосферных осадков и других жидких сред. Составной частью бетона является образовавшийся гидрат окиси кальция (Са(ОН) 2) – гашеная известь. Это самый легкорастворимый компонент, поэтому со временем он растворяется и постепенно выносится, нарушая при этом структуру бетона.

2. Коррозия бетона при взаимодействии цементного камня с содержащимися в воде кислотами.

Под воздействием кислот коррозия бетона протекает либо с увеличением его объема, либо с вымыванием легкорастворимых известковых соединений.

Увеличение объема происходит по реакции:

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

CaCO 3 не растворяется в воде. Постепенно происходит его отложение в порах цементного камня, за счет чего идет увеличение объема бетона, а в дальнейшем его растрескивание и разрушение.

При контакте бетона с водными растворами кислот образуется легкорастворимый бикарбонат кальция, который агрессивный для бетона, а при наличии воды растворяется в ней и постепенно вымывается из структуры бетонного камня. Образование бикарбоната кальция описывается реакцией:

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2 .

Помимо растворения наблюдается и протекание химической коррозии бетона:

Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O,

при этом вымываются соли хлористого кальция.

Если разрушение бетона происходит под воздействием сульфатов воды – применяют пуццолановый портландцемент, а также сульфатостойкий портландцемент.

3. Коррозия бетона вследствие образования и кристаллизации в порах труднорастворимых веществ.

Кроме вышеописанных коррозионных разрушений бетона при наличии микроорганизмов возможно протекание биокоррозии . Грибки, бактерии и некоторые водоросли могут проникать в поры бетонного камня и там развиваться. В порах откладываются продукты их метаболизма и постепенно разрушают структуру бетонного камня.

При коррозии бетона обычно одновременно протекает несколько видов разрушений.

Коррозия бетона (железобетонных конструкций) в экстремальных условиях эксплуатации

Экстремальными условиями можно назвать воздействие на бетонный камень очень низких температур и различных веществ, обладающих повышенной агрессивностью.

Достаточно распространенным случаем коррозии бетона в экстремальных условиях является разрушение материала под воздействием сульфатов (химическая коррозия бетона). В первую очередь, с сульфатами взаимодействуют алюминатные составляющие бетонного камня и гидроксид кальция. Очень нежелательным является взаимодействие алюминатных минералов и сульфатов. В результате образуется несколько модификаций гидросульфоалюмината, самым опасным из которых, является эттрингит (3СaO Al 2 O 3 3CaSO 4 32H 2 O). Данная соль по мере своего роста (увеличения кристаллов) образует внутри бетона очень высокие напряжения, которые значительно превышают прочностные характеристики цементного камня. В результате, под воздействием растворов, в состав которых входят сульфаты, коррозионное разрушение бетона протекает очень интенсивно.

При взаимодействии гидроксида кальция с сульфатами образуется CaSO 4 2H 2 O. Со временем вещество скапливается в поровом пространстве бетона, постепенно его разрушая.

Устойчивость к воздействию сульфатсодержащих сред очень сильно зависит от минералогического состава бетона. Если в цементе содержание минералов на основе алюминия и трехкальциевого силиката ограничено, то он в данной среде более стоек.

Если в конструкциях используют залитую бетоном железную арматуру, т.е. железобетон, возможно протекание еще одного вида разрушения – коррозии арматуры в бетоне. Под воздействием вод окружающей среды или при наличии в воздухе сероводорода, хлора, сернистых газов арматура в середине бетона ржавеет и образуются продукты коррозии железа. По объему они превышают начальный объем арматуры, что приводит к возникновению и росту внутренних напряжений, а в дальнейшем – растрескиванию бетона.

Сквозь поры в цементном камне к арматуре проникает воздух и влага. Подвод их к поверхности металла осуществляется не равномерно из-за чего на разных участках поверхности наблюдаются разные потенциалы – протекает электрохимическая коррозия . Скорость протекания электрохимической коррозии арматуры зависит от влагопроницаемости, пористости бетонного камня и наличия в нем трещин.

Наличие в воде растворенных веществ усиливает коррозию арматуры с повышением концентрации электролита.

При длительном выдерживании бетона на воздухе на поверхности образуется очень тонкая (5 – 10 мкм) защитная пленка, которая не растворяется в воде и не взаимодействует с сульфатами. Процесс возникновения защитной пленки под воздействием углекислоты воздуха называется карбонизацией. Карбонизация защищает бетон от коррозии, но способствует коррозии арматуры в бетоне.

Нельзя армировать бетон, в состав которого входит хлористый кальций (больше 2% от веса цемента). Хлористый кальций ускоряет коррозию арматуры как на воздухе, так и в воде.

Защита арматуры бетона от коррозии

Существует несколько способов защитить стальную арматуру в бетоне от коррозии: облагородить окружающую металл среду (т.е. использовать качественный бетон специального состава, введение ингибиторов); дополнительная защита арматуры бетона от коррозии (пленки и т.п.); улучшить характеристики самого металла.

Вокруг арматуры находится сам бетон, поэтому именно бетон является средой, окружающей металл. Для продления срока службы арматуры необходимо улучшить влияние бетонного камня на сталь. Прежде всего, нужно исключить или, если это невозможно, свести к минимуму вещества, входящие в состав бетона, которые способствуют интенсификации процесса коррозии арматуры в бетоне. К таким веществам относятся роданиды, хлориды.

Если железобетонное изделие эксплуатируется в условиях периодического смачивания, необходимо пропитывать бетон специальными пропитками (битумными, петролатумными и др.). Это значительно снизит проницаемость бетона. При постоянном насыщении бетонного камня коррозия арматуры в бетоне практически сводится к минимуму. Это объясняется тем, что очень сильно затрудняется проникновение кислорода к поверхности метала, происходит значительное торможение катодного процесса.

Для продления срока службы металлической основы железобетона – бетон облагораживают. Во время формирования бетонной смеси в состав вводят ингибиторы коррозии .

Для защиты от коррозии арматуры в конструкционно-теплоизоляционных бетонах широко используется способ омического ограничения. Суть заключается в том, что влажность самого бетона не должна превышать равновесное значение при относительной влажности воздуха 60%. Тогда процессы коррозии арматуры почти прекращаются, т.к. возникает высокое омическое сопротивление пленок влаги у поверхности арматуры. Этот способ не так уж прост и не эффективен в районах с высокой влажностью и частыми осадками.

Хороший бетон должен обладать первоначальным пассивирующим воздействием на арматуру. Бетонные изделия полностью просыхают примерно за 2-3 года. Если климат сухой, то немного быстрее. Именно в это время и происходит самое сильное коррозионное разрушение арматуры, т.к. она находится во влажной бетонной среде.

Хорошим способом защитить арматуру бетона от коррозии считается предварительное пассивирование поверхности арматуры, а также образование оксидных защитных пленок под воздействием водной щелочной среды бетонного камня. Усиливают защитные свойства пленки введением в бетонную смесь пассиваторов. Часто используют нитрит натрия в количестве 2 – 3 % от исходного веса цемента.

Защита бетона от коррозии

Для защиты бетона от коррозии и продления его срока службы не достаточно применения только одного вида защиты. Чтоб бетон не поддавался вредному влиянию окружающей среды уже на стадии проектирования проводят профилактические мероприятия по его защите.

Эксплуатационно-профилактические мероприятия предусматривают нейтрализацию агрессивных сред, герметизацию, интенсивную вентиляцию при эксплуатации цементного камня в помещении (для осушки воздуха).

Важную роль в предотвращении бетона от дальнейшего разрушения играет рациональное конструирование. При этом необходимо придавать бетонной поверхности конструкционной формы, которая будет исключать скопление в углублениях воды и различных органических веществ. Кроме того важно обеспечить свободный отход жидкости с поверхности. Этого можно достигнуть при использовании водоотводов или формировании бетонной поверхности под уклоном.

Защиту бетона от коррозии можно разделить на первичную и вторичную.

Первичная защита бетона от коррозии предусматривает при его изготовлении и формировании вводить в состав бетона специальные добавки, изменяя при этом его минералогический состав. Этот способ считается наиболее эффективным.

В качестве добавок могут служить различные водоудерживающие, пластифицирующие, стабилизирующие, химические модификаторы, аморфный кремнезем и др.

Кроме того, ориентируясь на условия эксплуатации цементного камня, при его формировании подбирают оптимальный для данных условий состав. Например, для цементов, эксплуатирующихся в сульфатсодержащих водах уменьшают содержание С 3 S.

Часто применяют пуццоланизацию. К портландцементу добавляют кислые гидравлические добавки, которые содержат активный кремнезем.

Са(ОН) 2 + SiO 2 nН 2 О = СаО SiO2 (n + 1) Н 2 О,

Образовавшийся гидросиликат кальция устойчивее чем Са(ОН) 2 .

Химические добавки могут очень сильно улучшить эксплуатационные свойства бетона. Повысить его плотность, в результате чего агрессивные агенты в порах замедляют скорость своего передвижения. Арматура, находясь в плотном бетоне менее подвержена коррозионным разрушениям.

Также при помощи химических добавок можно значительно увеличить количество условно замкнутых пор. В результате морозостойкость цементного камня возрастает в разы.

Самими распространенными химическими добавками, которые применяются для защиты бетона от разрушений являются: пластифицирующие, противоморозные, уплотняющие, гидрофобизирующие, воздухововлекающие, замедлители схватывания, газообразующие, ингибиторы коррозии арматуры.

Некоторые добавки оказывают двойное действие, т.е. улучшают сразу несколько показателей. Другие же, могут улучшать один, и понижать второй.

Самыми перспективными и распространенными являются следующие добавки.

Мылонафт. Это пластифицирующая добавка, состоящая из смеси натриевых солей нерастворимых в воде органических кислот. Она способствует повышению однородности бетонной смеси, уменьшая при этом трение между ее отдельными зернами. Также вовлекает воздух. Производится и поставляется в виде паст. В бетонную смесь необходимо вводить от 0,05 до 0,15 % от массы цемента (в перерасчете на сухое вещество). Если превысить указанную дозировку, снижается прочность бетона на сжатие.

Мылонафт повышает водонепроницаемость бетонного камня на две марки, морозостойкость – в два раза, устойчивость к воздействию растворов минеральных солей, трещиноустойчивость.

Сульфитно-дрожжевая бражка СДБ. Это химическая добавка пластифицирующего действия. Получают ее путем переработки кальциевых солей лигносульфоновых кислот. Вещество способствует повышению подвижности бетонной смеси, вовлечению в нее воздуха и уменьшению слипания цементных зерен. Производители могут поставлять СДБ в виде твердых или жидких концентратов. Для достижения защитного эффекта данной добавки нужно немного больше, чем мылонафта. В перерасчете на сухое вещество цемента, необходимо ввести 0,15 – 0,3% сульфитно-дрожжевой бражки. Она повышает в 1,5 – 2 раза морозостойкость, на 5 – 10% прочность, на одну марку – водонепроницаемость, стойкость к воздействию растворов минеральных солей и трещиностойкость.

Сульфитно-дрожжевая бражка оказывает наилучший эффект при введении ее в бетонный камень на основе высокоалюминатных и быстротвердеющих портландцементов.

Кремнийорганическая жидкость ГКЖ-94. Это гидрофобизирующая и газообразующая добавка, которая образуется в процессе гидролиза этилгидросилоксана. В результате взаимодействия цемента и данной добавки выделяется водород и образуется большое количество замкнутых, равномерно распределенных в бетоне пор. На капилляры и стенки пор бетона оказывает активное гидрофобизирующее воздействие. На реологические свойства смеси почти не влияет, но очень сильно замедляет процесс затвердевания бетона (начальные стадии). Поставляется в виде 50% водной эмульсии или 100% жидкости. Вторую вводят в бетонную смесь в количестве 0,03 – 0,08%.

Способствует повышению водонепроницаемости бетона на две марки, морозостойкости – в три-четыре раза. Кроме того, увеличивает стойкость к переменному увлажнению и высушиванию, воздействию растворов минеральных солей (в условиях капиллярного подсоса), растяжению.

Вторичная защита бетона от коррозии предусматривает нанесение на цементный камень различных лакокрасочных материалов, защитных смесей, покрытий и облицовку различными плитами. Т.е. гидроизоляцию бетона.

К вторичной защите также можно отнести карбонизацию (выдержку бетона на воздухе).

Защита бетона от коррозии лакокрасочными и акриловыми покрытиями применяется при воздействии на него твердых и газообразных сред. Образовавшаяся защитная пленка эффективно защищает поверхность бетона не только от воздуха и влаги, но и от воздействия различных микроорганизмов.

Защита бетона от коррозии мастиками применяется при воздействии на него влаги, контакте с твердыми средами. Часто применяются мастики на основе различных смол (смолизация).

Защиту бетона от коррозии уплотняющими пропитками используют почти во всех средах (жидкой, газообразной), особенно при повышенной влажности, кроме того применяют перед нанесением ЛКМ . Уплотняющие пропитки заполняют наружный слой бетона, придавая ему хорошие гидрофобные свойства, снижают водопоглощение.

Биоцидные материалы применяются для защиты бетона от воздействия различных видов грибков, плесени, бактерий, микроорганизмов. Химически активные вещества биоцидных добавок заполняют поры бетона и уничтожают бактерии.

Защита бетона от коррозии оклеечными покрытиями применяется при эксплуатации бетонного камня в жидких средах, грунтах с высокой влажностью и местах частого смачивания электролитом. Например, нижнюю часть бетонного волнореза оклеивают полиизобутиленовыми пластинами.

Как оклеечные покрытия могут быть использованы полиэтиленовая пленка, полиизобутиленовые пластины, рулоны нефтебитума. Они могут также выполнять роль непроницаемого подслоя в облицовочных покрытиях.

Наиболее эффективна комплексная защита бетона от коррозии, т.е. как первичная, так и вторичная.

Коррозийным разъеданием подвергаются многие строительные материалы, в том числе и бетон. Она представляет собой разрушение металлов под воздействием физико-химических или химических факторов окружающей среды. Чтобы предотвратить разрушение в сооружениях из бетона и железобетона существуют различные методы защиты. Это могут быть покрытия поверхности с помощью специального стойкого материала или разнообразными лаками, пропитками.

Определение коррозии

Коррозия представляет собой разъедание строительных материалов под влиянием физических, химических и биологических факторов при контакте с окружающей средой. Бетон имеет в своем составе наименее прочный компонент – это цементный камень. Именно с этой части материала начинается коррозийный процесс. Разрушение случается в результате воздействия различных видов вод, а именно:

  • сточных;
  • вод в траншеях или трубах;
  • морских;
  • речных;
  • грунтовых.

Наиболее опасны для бетонов грунтовые воды вблизи промышленных предприятий из-за наличия в них химических выбросов. Также при воздействии с бетоном и железобетоном наносят им весомый вред сточные воды. Коррозия бетона воздействует на гидротехнические сооружения, загрязняет воздух, однако, такая концентрация газа в окружающей среде не вредит здоровью человека, но способствует разрушению бетонных конструкций.

Разрушения строительных материалов разнообразны и могут находиться разрушающие микроорганизмы как в прямом контакте, так и внутри структур. Ускоряется разъедание в бетоне при повышенной влажности окружающей среды.

Виды и описание


Существуют разновидности бетонной коррозии:

  • Радиационная, которая зависит от дозы ионизирующего облучения и количества цементного камня. Вследствие чего искажается кристаллическая решетка минералов, расширяется заполнитель, который приводит к микротрещинам, макротрещинам в материале, а в дальнейшем к полному разрушению.
  • Химическая, происходящая вследствие атмосферных осадков и под воздействием углекислого газа, входящий в состав воздуха. Таким образом, в строительстве бывает газовая коррозия, которая особенно актуальна при большом количестве влаги.
  • Биологическая. Разъедания, связанные с биологической коррозией, появляются в результате воздействия химических веществ, получившиеся при эксплуатации бетонных конструкций.
  • Физико-химическая коррозия появляется в результате замерзания воды. В жидком состоянии вода попадает в поры материала, а в результате минусовых температур она замерзает. Образовавшийся лед расширяется и распирает постройки, в итоге образуются трещины.

Химические разъедания

Образуются под взаимодействием бетонного камня с веществами окружающей среды. Процессы химической коррозии относятся к трем категориям:

  • В результате кристаллизации материалов происходит растрескивание. Трещины являются последствием расширения объема материала из-за низких температур.
  • Выщелачивание мягкими водами с последующим образованием белого налета.
  • Цементная бацилла, которая является последствием влаги, разрушает бетонные конструкции. На них образуются трещины и растрескивания.

Физико-химическая


Схема процесса коррозии.

В этом случае цементный камень расходится в воде. В результате чего гидроксид кальция вымывается или растворяется. Растворение железобетона из-за воздействия воды случается с различной быстротой. Так, например, плотные массивные конструкции подвластны коррозии лишь по истечении многих десятилетий. В сооружениях с тонкими оболочками, вымывание кальция случается уже через 2-3 года. В момент прохождения вод через бетон, процесс разложения ускоряется во много раз, и уменьшаются прочностные характеристики материала.

Биологические разрушения

Коррозия с образованием больших объемов биологических соединений в камне, является итогом влияния проникающих в бетон различных веществ. Это способствует появлению внутреннего напряжения и трещин в бетонной конструкции. Биологическая коррозия определяется наличием на цементном камне бактерий, мхов, грибков или лишайников.

Биологические разрушения развиваются из-за прямого контакта микроорганизмов с материалом. А также биоорганизмы, которые могут нанести вред материалу, находясь на расстоянии. Развиваются биологические коррозии в условиях техногенной среды с большим содержанием влаги в атмосфере.

Радиационная

Коррозия бетона бывает радиационной, которая возникает в результате радиационного излучения. Она способствует удалению из бетонной конструкции кристаллизованной жидкости и тем самым приводит к нарушению прочности структуры. Продолжительное воздействие радиационного облучения приводит к жидкому состоянию кристаллических веществ. Появляется напряжение в бетонном растворе, и возникают трещины.

Факторы влияния

Коррозия бетона возникает под воздействием следующих обстоятельств, от которых зависит скорость разрушения зданий и сооружений:

  • умение поверхности бетонного раствора противодействовать веществам;
  • пористость материала;
  • вещества, находящиеся в атмосферных осадках;
  • капиллярность.

Главная составляющая бетона – это его пористость, которая определяет количество пор и наличие плотности в структуре материала. От пористости бетона зависит возможность влагопоглощения конструкции при таянии снежных масс или других атмосферных осадков . Материал со значительным количеством пор подвластен большей возможности разрушения в результате физико-химической коррозии. Поэтому защита бетона от коррозии должна начинаться на начальном этапе постройки зданий и сооружений, ведь все виды коррозии бетона приводят к разрушению построек.

Антикоррозийная защита


Виды коррозийных разрушений бетона различны и многообразны. Многих строителей интересует вопрос защиты бетонных конструкций от влияния негативных внешних факторов окружающей среды.

Зачастую подвергаются разрушению верхние слои бетона, тогда защита заключается в применении бетона с небольшим количеством капилляров в его структуре. Используя препарат от возникновения трещин еще на начальном этапе строительства, это поможет уберечь сооружения от выщелачивания и вымывания.

Защита от разрушений в виде ржавчины разделяется:

  • способы, изменяющие состав бетона, при этом, делая его более прочным и устойчивым к негативным воздействиям окружающей среды;
  • мероприятия, связанные с покрытием поверхности материала гидравлическими препаратами;
  • комбинированные мероприятия, которые включают в себя покрытие бетона антикоррозийным препаратом с дальнейшим его проникновением вглубь материала.

Применение в состав бетона белитового цемента позволит снизить количество выделяемого гидроксида кальция, что способствует испарению жидкости. Такой компонент позволит уплотнить материал и тем самым прекратит проникновение жидкости через бетонный раствор.

Еще один вид разрушения бетонного сооружения от ржавчины — сульфатная коррозия бетона. Она появляется в результате взаимосвязи сульфатов с камнем в цементе раствора. Разрушение наблюдается в виде искривлений конструкции и распирания конструктивных элементов.


Металлические части конструкции покрывают специальными защитными материалами.

Коррозию бетона, возникшую из-за воздействия вод, предотвращают разными путями. Используют разнообразные добавки, препараты на начальном этапе приготовления бетонного раствора: водоотводы или гидроизоляцию.

Защита бетона от разъеданий подразделяется на: первичную и вторичную. Также подвластны воздействию разъедания ржавчиной сооружения из железобетона. Для их спасения применяют ингибиторы металлической коррозии в момент приготовления бетонного раствора. Таким образом, на составляющих из железобетона образуется пленка, которая останавливает контакт металла с бетоном.