ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Как происходит преобразование тепловой энергии в электрическую. Преобразование тепловой энергии в электрическую с высоким КПД: способы и оборудование

Способ осуществляется использованием в качестве нагревательного элемента одного или более замкнутых витков проводника электрического тока, образующих вторичную обмотку электрического трансформатора, и введением теплоносителя в контакт с поверхностями проводника. Изобретение позволяет повысить надежность преобразования электрической энергии при теплообмене. 1 з.п.ф-лы, 1 ил.

Изобретение относится к технологии преобразования электрической энергии в тепловую и создания теплообмена. Оно может быть использовано при нагреве жидкости в системах предпускового подогрева двигателей внутреннего сгорания, отопления и горячего водоснабжения промышленных предприятий и жилых зданий, для нагрева плазмы и других веществ. Известен способ преобразования электрической энергии в тепловую и создания теплообмена, основанный на прямом пропускании электрического тока через теплоноситель, создаваемого за счет подачи напряжения питающей сети через токоподводы к электродам (см. А.П. Альтгаузен и др., "Низкотемпературный электронагрев", Москва, Энергия, 1968). Он используется для нагрева жидкости, бетона, для оттаивания грунтов, руды, песка и других веществ. Основными недостатками этого способа являются повышенная электроопасность из-за относительно высоких напряжений (380 В или 220 В), а также зависимость электронагрева и теплообмена от электрического сопротивления теплоносителя. В частности, в нагреваемую воду вносят специальные добавки, чтобы обеспечить заданное значение электрического сопротивления. Известен способ преобразования электрической энергии в тепловую и создания теплообмена между нагревательным элементом и теплоносителем, включающий подводку электропитания к нагревательному элементу, представляющему собой металлическую трубку, внутри которой находится нагревательная спираль, запрессованная в специальном наполнителе, пропускание электрического тока через нагревательную спираль (см. А.П. Альтгаузен и др., "Низкотемпературный электронагрев", Москва, Энергия, 1968). Такой способ получил широкое распространение в различных областях народного хозяйства. Трубчатый электрический нагреватель (ТЭН) можно помещать в воду, соли, жидкий металл, пресс-форму, картер двигателя внутреннего сгорания и т.д. Однако к нагреваемой спирали подводится электрическое напряжение непосредственно от питающей сети, а снизить подаваемое напряжение не позволяет относительно высокое электрическое сопротивление спирали, что влечет необходимость электроизоляции спирали для обеспечения электробезопасности и что в свою очередь снижает теплопроводность между спиралью и металлической трубкой, а следовательно, ухудшает теплообмен между ТЭН (ом) и теплоносителем в целом. Электроизоляция спирали не исключает вероятность ее электрического пробоя и попадания на металлическую трубку ТЭН(а) высокого электрического потенциала, что приводит к необходимости ее заземления. Кроме того, ТЭН (ы) имеют ограниченный срок службы из-за перегорания спирали. Известен способ преобразования электрической энергии в тепловую и создания теплообмена, получивший название "Контактная сварка" (см. Н.С. Кабанов, "Сварка на контактных машинах", Москва, изд. "Высшая школа", 1985; Ю.Н. Бобринский и Н.П. Сергеев, "Устройство и наладка контактных сварочных машин", Москва, изд. "Машиностроение", 1967; В.Г. Геворкян, "Основы сварочного дела", Москва, изд. "Высшая школа", 1991). В данном способе нагревательным элементом и теплоносителем является свариваемый металл, который замыкает вторичную обмотку сварочного трансформатора, в результате чего по замкнутой цепи протекает электрический ток, достаточный для нагрева и сварки металла. При этом каждый виток вторичной обмотки трансформатора является отдельным источником электроэнергии, так как он охватывает один и тот же магнитный поток, создаваемый в магнитопроводе первичной обмоткой трансформатора. Этот способ является прототипом. Недостаток способа заключается в том, что он применим только лишь для теплоносителей с относительно низким электрическим сопротивлением. В случае применения жидкости, например воды, пришлось бы отказаться от понижения напряжения с помощью трансформатора, и способ превратился бы в рассмотренный первый со всеми его недостатками. Безопасность и надежность преобразования электрической энергии в тепловую, эффективность теплообмена в предлагаемом способе достигаются путем использования в качестве нагревательного элемента замкнутого витка проводника электрического тока или нескольких витков, образующих вторичную обмотку трансформатора, и введения теплоносителя в контакт с поверхностями проводника. При замыкании витка проводника, охватывающего магнитопровод трансформатора, в нем наводится ЭДС меньше от подводимой к первичной обмотке в число ее витков, что обеспечивает электробезопасность, а протекающий по замкнутому витку ток резко возрастает из-за малого электрического сопротивления витка и осуществляет его нагрев независимо от электрического сопротивления теплоносителя. В то же время непосредственный контакт теплоносителя с поверхностями замкнутого витка проводника повышает эффективность теплообмена за счет резкого снижения тепловых потерь. Могут быть созданы условия, исключающие возможность перегорания витка, что обеспечивает надежность преобразования. На чертеже приведен пример оборудования, реализующего предлагаемый способ. Способ осуществляется следующим образом. С помощью переключателя K первичную обмотку трансформатора с числом витков W 1 подключают к сети переменного тока. В магнитопроводе 1 возникает переменный магнитный поток, который наводит ЭДС в замкнутых витках проводников 2 и 3 и вызывает в них электрический ток, нагревающий их. Проводник 2 выполнен в виде трубы, проводник 3 - из замкнутого пучка медных проводов. На вход A вводят холодный теплоноситель, например воду, которая попадает внутрь проводника 2 и омывает снаружи проводник 3. Через поверхности раздела проводников 2 и 3 и теплоносителя происходит теплообмен, теплоноситель нагревается и за счет конвекции поступает на выход Б. В одном частном случае проводник 3 может отсутствовать (он нужен тогда, когда электрическое сопротивление проводника 2 не согласуется с мощностью трансформатора). В другом частном случае, чтобы не допускать рассеяние тепла с наружной поверхности проводника 2, вместо проводника 2 может быть использована электроизоляционная труба, и тогда тепло в теплоноситель будет поступать только из проводника 3. В третьем случае проводником может являться сам теплоноситель, помещенный внутрь изоляционной трубы или в объем другой формы, охватывающей магнитопровод. Пример конкретного выполнения способа. Был взят радиатор стальной штампованный марки 2М3-500 (см. стр. 189, Справочник по специальным работам под редакцией Н.А. Коханенко, Москва, изд. литературы по строительству, 1964) с эквивалентной поверхностью нагрева 3,53 экм (эквивалент 11 - секционного чугунного радиатора М-140 по ГОСТ 8690-58) с емкостью 13,3 л. Из стальной трубы диаметром 3/4"" был изготовлен замкнутый виток, охватывающий магнитопровод трансформатора питания мощностью 1,5 кВт. Вход витка А был соединен с выходом (патрубок в нижней части радиатора, установленного вертикально), а выход витка Б - с входом радиатора (патрубок в верхней части) с помощью резиновых шлангов. В верхней части радиатора был установлен расширительный бачок емкостью 0,25 л. Затем система (радиатор - виток) была заполнена водой и первичная обмотка трансформатора включена в сеть с напряжением 220 В. Температура, окружающая радиатор до включения трансформатора, была 4,5 o C в объеме помещения 300 м 3 . После включения трансформатора были измерены электрическое напряжение на витке 0,8 В и электрический ток, проходящий по витку, который составил 1875 А. Через 20 мин температура воды в радиаторе возросла до 96 o C (первоначальная температура воды составляла 12 o C), после чего с помощью тиристорной системы управления потребляемая из сети мощность была уменьшена вначале до 800 Вт, что обеспечило поддержание температуры воды на уровне 82 o C, а затем через 2 часа до 500 Вт, что обеспечило поддержание температуры воды на уровне 60 o C. В результате 4-часового испытания температура в помещении достигла 18 o C. На следующий день система была включена на потребляемую мощность 1,5 кВт. Через 4 часа температура в помещении достигла 23 o C, после чего система была переведена на потребление 500 Вт и эксплуатируется в течение 1 месяца как обогревательное устройство. Были проведены испытания по нагреву системы отопления с емкостью 150 л по предлагаемому способу с потреблением мощности 800 Вт. В процессе испытаний был установлен нагрев воды от 16 o C до 58,5 o C за 7 часов, после чего система была переведена в режим, поддерживающий температуру на уровне 58 o C при потреблении мощности 500 Вт. Были проведены испытания по введению внутрь замкнутого витка из стальной трубы пучка из медных проводов, замкнутых с помощью пайки (проводник 3). В результате испытаний установлена возможность с помощью проводника 3 уменьшать эквивалентное электрическое сопротивление замкнутых витков практически в любых пределах и увеличивать потребляемую мощность до полной загрузки трансформатора. Испытания показали возможность снижения потребляемой электроэнергии в 1,5 -2 раза при использовании предлагаемого способа в сравнении с традиционными.

Формула изобретения

1. Способ преобразования электрической энергии в тепловую и создания теплообмена между нагревательным элементом и теплоносителем, использующий в качестве нагревательного элемента вторичную обмотку электрического трансформатора, выполненную в виде замкнутого витка проводника в виде трубы со входом и выходом теплоносителя, отличающийся тем, что обеспечивают конвенцию теплоносителя через нагревательный элемент соединением его входа с выходом теплоносителя из радиатора, а выхода теплоносителя из нагревательного элемента - со входом радиатора, соединения выполняют шлангами, радиатор устанавливают вертикально таким образом, чтобы выход теплоносителя из радиатора находился в его нижней части, в верхней части радиатора устанавливают расширительный бачок и всю систему заполняют теплоносителем и подключают трансформатор в сеть. 2. Способ по п.1, отличающийся тем, что замкнутый виток в виде трубы выполняют из электроизоляционного материала, а внутрь его устанавливают один или более замкнутых витков проводника.

РИСУНКИ

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Как известно, все тела состоят из молекул, и эти молекулы не находятся в покое, а непрерывно движутся. Чем выше температура тела, тем быстрее движение молекул вещества этого тела. При прохождении электрического тока по проводнику электроны сталкиваются с двигающимися молекулами проводника и усиливают их движение, что приводит к нагреву проводника.

Повышение температуры проводника происходит в результате преобразования электрической энергии в тепловую. Ранее (см. § 13) было получено выражение для работы электрического тока (электрической энергии)

А = I 2 rt джоулей.

Эта зависимость была первоначально (в 1841 г.) установлена результате опытов английским физиком Джоулем и несколько позднее (в 1844 г.) независимо от него русским академиком Ленцем.

Для того чтобы количество полученной тепловой энергии было выражено в калориях, необходимо дополнительно ввести множитель 0,24, так как 1 дж = 0,24 кал. Тогда Q = 0,24I 2 rt. Это уравнение выражает закон Джоуля-Ленца.

Эмилий Христианович Ленц (1804-1865) установил законы теплового действия тока, обобщил опыты по электромагнитной индукции, изложив это обобщение в виде "правила Ленца". В своих трудах по теории электрических машин Ленц описал явление "реакции якоря" в машинах постоянного тока, доказал принцип обратимости электрических машин. Ленц, работая с Якоби, исследовал силу притяжения электромагнитов, установил зависимость магнитного момента от намагничивающей силы.

Таким образом, количество тепла, выделенного током при прохождении по проводнику, зависит от сопротивления r самого проводника, квадрата тока I 2 и длительности его прохождения t.

Пример 1 . Определить, сколько тепла выделит ток в 6 а, проходя по проводнику сопротивлением 2 ом в течение 3 мин.

Q = I 2 rt = 36 ⋅ 2 ⋅ 180 = 12960 дж.

Формулу закона Джоуля-Ленца можно написать так.

Добавить сайт в закладки

Как происходит преобразование тепловой энергии в электрическую

Непосредственное преобразование тепловой энергии в электриче­скую можно осуществить, используя явления в контакте двух метал­лов или полупроводников, где действуют сторонние силы, которыми обусловлена диффузия заряженных частиц.

Величина контактной разности потенциалов зависит не только от свойств контактирующих материалов, но и от температуры контакта, так как с температурой связаны энергия свободных электронов и их концентрация.

Рассматривая замкнутую цепь из двух разных металлов (рис. 1а), можно убедиться в том, что при одинаковой темпера­туре контактов 1 и 2 электрический ток в цепи не получится, так как контактные разности потенциалов, определяемые формулой

U k = (A 1 – A 2) : e 0

в обоих контактах одинаковы, но направлены в противоположные сто­роны по цепи:

U k 1 - U k 2 = (A 1 – A 2) + (A 2 - A 1) : e 0 = 0

Если один из контактов, например 1, нагреть (t 1 > t 2), то равнове­сие нарушится - в контакте 1 появится дополнительный скачок потенциала, связанный с нагревом. В этом случае U k1 > U K2 . В цепи образуется термоэлектродвижущая сила (термо-э. д. с.), абсолютное значение которой пропорционально разности температур контактов:

E т = U Kl - U K2 = E 0 (t 1 - t 2),

где Е 0 - величина, зависящая от свойств металлов, образующих контакт.

Рисунок 1 . а) замкнутая цепь из двух разных металлов, б) цепь с измерителем термо-э. д. с.

Таким образом, термо-э. д. с. возникает в цепи, состоящей из раз­ных металлов, при разной температуре мест соединения.

Термо-э. д. с. в рассматриваемой цепи поддерживается благодаря нагреванию спая 1, т. е. при постоянном расходе тепловой энергии. В свою очередь, термо-э. д. с. является причиной электрического тока.

Однако концентрация свободных электронов в металлах велика и при переходе из одного металла в другой меняется очень мало. В связи с этим контактная разность потенциалов оказывается незначитель­ной и мало зависит от температуры. По этой причине металлические термоэлементы имеют очень малые э. д. с. (в спае платины и железа - 1,9 мВ при разности температур горячего и холодного спаев 100° С), а к. п. д. их не превышает 0,5%. Такие термоэлементы применяют для измерения температур (термопары).

Для этого в цепь термопары включается измеритель термо-э. д. с. - милливольтметр (рис. 1, 6). Термопара в этом случае является источником электрической энергии, а измерительный прибор - приемником.

Кроме контакта 1 основных металлов термопары между собой образуются контакты их с соединительными проводами (Рис. 1 - 2, 3). В этих контактах тоже имеются контактные разности потенциалов, но они не изменяют термо-э. д. с., если их температура поддерживается одинаковой.

При наличии произвольного числа контактов разных металлов сумма контактных разностей потенциалов в замкнутой цепи остается равной нулю, если все контакты имеют одинаковую температуру. В этом можно убедиться, составив уравнение, аналогичное вышеприведенному. Независимо от числа контактов, термо-э. д. с. пропорциональна разности температур более нагретого контакта и всех других контактов, находящихся при одинаковой температуре.

Рисунок 2. n,p- полупроводники.

В отличие от металлов, в полупроводниках при увеличении температуры сильно увеличиваются концентрации свободных электронов и дырок. Это свойство полупроводников позволяет получить более высокие термо-э. д. с. (до 1 мВ на 1° С разности температур) и к. п. д. термоэлементов до 7%.

Полупроводниковый термоэлемент состоит из двух полупроводников (п и р на рис. 2). Один из них имеет электронную, а другой дырочную электропроводность. При нагревании полупроводников в месте соединения их металлической пластинкой сильно увеличивается концентрация свободных носителей заряда. Поэтому в полупроводниках возникает диффузия их от горячего конца к холодному. В полупроводнике с электронной электропроводностью к холодному концу перемещаются электроны, в результате чего этот конец заряжается отрицательно. В другом полупроводнике к холодному концу перемещаются дырки, образуя положительный заряд. Возникшая разность потенциалов противодействует диффузии, и при некотором значении ее устанавливается равновесие сил электрического поля и сторонних сил, под действием которых идет процесс диффузии носителей заряда. Эта разность потенциалов и является термо-э. д. с. полупроводникового термоэлемента.

Если к холодным концам полупроводников подключить токопроводящий элемент, например, резистор, то образуется замкнутая цепь и электрический ток в ней.

Предлагаю в этой теме найти наиболее оптимальный вариант самодельного устройства, для преобразования тепла в электрическую энергию.

Из своего опыта скажу следующее:

Есть 3 основных варианта:

1. Паровой поршневой двигатель
2. Паровая турбина
3. Стирлинг
4. модули Пельтье

Перелопатив множество материала, посмотрев множество роликов самоделок из ютуба, пришел к выводу, что наиболее оптимальные, и с большим ресурсом - это преобразователи на основы серийных модулей пельтье.
(хотя раньше я имел другое мнение, и говорил, что все это происки мировых нефтяных заговорщиков)

Буду говорить покороче :

1. Можно сделать из серийного двигателя путем доработки распредвала клапанов впуска выпуска. Не сложно получить высокую мощность. Есть проблем с смазкой.

2. Паровая турбина, лучше и проще в изготовлении, чем поршневой двигатель, имеет больший ресурс, и ремонт заключается в основном в замене подшипников. Изготовить можно из серийной автомобильной турбины, или выточить турбину тесла. На ютубе видел самодельные установки с мощностью около 1киловата уже на выходе с генератора. Ясное дело под такую мощность пара для турбины нужно гораздо больше, чем того, что идет с чайника.

****
В целом по паровым установкам:
Очень взрывоопасен паровой котел. Но можно сделать парогенератор и на трубках, тогда не так сильно опасно. Есть трудности с рециркуляцией, нужен радиатор или теплообменник на систему отопления дома и насос закачивающий остывший пар или уже воду, в испаритель для парогенерации. Не совсем понятно где этот насос брать, т.к. он должен закачивать в парогенератор обратку, под большим давлением, в турбинах ставят на валу маленький центробежный.

Сам источник тепла для парогенератора, должен быть регулируемым, его мощность должна быть в заданных рамках, и бросовое тепло менее 100С использовать ясное дело не получится. Нужно постоянно контролировать техническое состояние парогенератора, чтоб его не "сожрала" коррозия, чтоб трубку с перегретым паром нигде не сорвало, придумывать защиту и прочее.. .
****

3. Стирлинг, до сих пор дорабатываю, не смотря на его простоту, и кучу пересмотренных баночных движков, собранных за пару часов, в ютубе.
Скажу из собственного опыта - делать Стирлинг неблагодарное дело. Практичным этот движок оказалось ТАК трудно сделать, уходит множество материала, серийные детали из разных механизмов, не так уж и подходят... Есть проблемы с его герметичностью, т.к. я делаю вещь не для того, чтоб она пару часов красиво повращалась, а потом разбила все втулки. Короче трудно и тяжело.
Из готовых стирлинг генераторов, которые нашел в инете, видел довольно габаритные и сложные в изготовлении устройства, с большим количеством трущихся элементов (следственно недолговечными). Их мощностя были около
0.045 - 2 вата!, а размер получался с половину системника (у кого как). Т.е. это сложно и малоэффективно. Из +сов можно утилизировать низкокалорийное тепло, можно сделать из консервных банок, воздушного шарика, и показать детям, есть очень много вариантов исполнения. Ну и не такой опасный, как паровые установки, хотя под большим давлением и температурой может взорваться (сдетанировать) смазка, это тоже нужно учитывать.

4. Пельтье. Легко на их основе сделать ТермоЭлектрическийГенератор, т.е. лепим на радиаторы, или кто как, и снимаем электричество. При плавных ростах температуры и соблюдением температурных режимов, ресурс у этого вида преобразователей считаю самым большим среди перечисленных установок. Можно утилизировать низкокалорийное тепло. По роликам из ютуба, пельтье явно превосходят самодельные стерлинги, по мощности. Но до паровых турбин им далековато, на 1 квт штука получится довольно внушительных размеров и цены.

Самое главное - не нужно смотреть сайты криотерма, они дерут цены прям, как не родные, иногда думаю, что они вообще в тихаря переклеивают на китайские модули свои фирменные наклейки. Короче, например, у нас на Украине китайский модуль TEC1-12710 стоит 70гр (это около 9долл), на Ебей вообще видел эти же модули по 1му баксу, но так и не понял как их оплатить елы палы, подскажите, кто знает и реально покупал в инете, пожалуйста. Короче по 70 гр, у нас, я уже заказал парочку, привезут после НГ, буду экспериментировать.

Устройство предназначено для прямого преобразования тепловой энергии в электрическую энергию. Устройство содержит генератор электрической энергии и нагреваемые элементы, выполненные из магнитно-мягкого материала с пониженной точкой Кюри и являющиеся составной частью Ф-образной магнитной цепи, состоящей из двух боковых и среднего стержня с воздушными промежутками, снабженными теплопроводом, подводящим тепло от нагревателя. Нагреваемые элементы сочленены планкой-коромыслом на шарнире, расположенном на среднем стержне, причем при перемене положения планки один из нагреваемых элементов перемыкает один из воздушных промежутков, а в положении, когда нагреваемые элементы не перемыкают воздушные промежутки, они соприкасаются с охладителем. Средний стержень снабжен обмоткой возбуждения, питаемой от источника постоянного тока, а генератор имеет обмотки, расположенные на боковых стержнях. Изобретение обеспечивает упрощение конструкции, повышение КПД и надежности. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электрическим машинам, в которых производится прямое преобразование тепловых эффектов в другой вид энергии.

Известно устройство для преобразования тепловой энергии в механическую с использованием эффекта Пельтье (см., например, патент РФ №2298278, МПК Н02В 10/00 «Электрический двигатель», опубл. 27.04.97. в БИ №12).

Недостаток известного устройства заключается в том, что для его осуществления используется сложная система преобразования с большим числом механических элементов, что приводит к низкой его надежности.

Известно также устройство для преобразования тепловой энергии в механическую с использованием эффекта Пельтье, в котором электрическая энергия сначала преобразуется в тепловую с последующим переводом тепловой энергии в механическую (см., например, патент РФ №2302072, МПК Н02В 10/00 «Электрический привод (варианты)», опубл. 27.06.93. в БИ №18).

Известное устройство преобразования характеризуется несколько более простой кинематической схемой и имеет более высокую надежность.

Однако известному устройству свойственны недостатки, которые заключаются в двойном преобразовании энергии, что понижает КПД системы в целом. Кроме того, в известном устройстве не предусмотрена возможность преобразования тепловой энергии в электрическую.

Задачей изобретения является создание устройства прямого преобразования тепловой энергии в электрическую энергию при минимальном количестве промежуточных и механических звеньев.

Дополнительно решается задача по повышению КПД преобразования.

Указанная задача решается за счет того, что в устройстве для преобразования тепловой энергии в электрическую энергию, содержащем нагреваемые элементы и генератор электрической энергии, согласно изобретению нагреваемые элементы выполнены из магнитно-мягкого материала с пониженной точкой Кюри, обладающего теплотой фазового перехода второго рода и теряющего свои магнитные свойства при нагревании, указанные нагревательные элементы являются составной частью Ф-образной магнитной цепи, состоящей из двух боковых и среднего стержня, боковые стержни выполнены в виде двух элементов, разделенных между собой воздушными промежутками, расположенными симметрично с двух сторон по отношению к среднему стержню и примыкающими к нему, нагреваемые элементы сочленены между собой жесткой планкой, установленной в виде коромысла на выступающем шарнире, расположенном на оси симметрии на краю среднего стержня так, что при переходе планки из одного положения в другое один из нагреваемых элементов перемыкает один из воздушных промежутков того или иного бокового стрежня, воздушные промежутки снабжены теплопроводом, подводящим тепло от нагревателя, а в положении, когда нагреваемые элементы не перемыкают воздушные промежутки, они соприкасаются с охладителем, причем средний стержень снабжен обмоткой возбуждения, питаемой от источника постоянного тока, а генератор электрической энергии выполнен в виде генерирующих обмоток, расположенных на боковых стержнях.

В варианте технического решения края воздушных промежутков содержат по два параллельных выступа, а нагреваемые элементы перемыкают ту или иную пару выступов.

В варианте технического решения жесткая планка выполнена из материала, обладающего пружинящими свойствами.

Наличие нагреваемых элементов, состоящих из магнитно-мягкого материала с пониженной точкой Кюри, обладающего теплотой фазового перехода второго рода, в которых материал теряет свои магнитные свойства, и являющихся составной частью Ф-образной магнитной цепи, состоящей из двух боковых и среднего стержней, в которых боковые стержни имеют воздушные промежутки, расположенные симметрично с двух сторон по отношению к среднему стержню, а нагреваемые элементы сочленены между собой жесткой планкой, установленной в виде коромысла на выступающем шарнире так, что при переходе планки из одного положения в другое, поочередно, один из нагреваемых элементов перемыкает один из воздушных промежутков того или иного бокового стержня, позволяет формировать генератор, преобразующий тепловую энергию в электрическую.

Применение теплопровода, подводящего тепло от нагревателя, к нагреваемым элементам, когда они примыкают к воздушным промежуткам боковых стержней и наличие охладителя, воздействующего на нагревательные элементы, когда они находятся вне зоны воздушных промежутков, позволяет повысить производительность устройства за счет интенсификации процессов нагрева и охлаждения.

Наличие обмотки возбуждения, расположенной на среднем стержне и выполнение генератора электрической энергии в виде генерирующих обмоток, расположенных на боковых стержнях, позволяет вырабатывать электрическую энергию без использования вращающихся частей и при минимальном количестве подвижных элементов.

Параллельные выступы, находящиеся на боковых стрежнях в зоне воздушных промежутков, позволяют выделить зону нагрева, что снижает общий нагрев всей магнитной системы и ускоряет процесс подвода тепла к нагреваемым элементам.

Выполнение жесткой планки, соединяющей нагревательные элементы, из материала, обладающего пружинящими свойствами, дает возможность снизить пульсации тока в намагничивающей обмотке, расположенной на среднем стержне.

Изобретение иллюстрируется 4 чертежами.

На фиг.1 представлена принципиальная конструкция устройства.

На фиг.2 показан фрагмент конструкции с теплопроводом, подводящим тепло к подвижному элементу, примыкающему к зазорам снизу.

На фиг.3 изображен фрагмент конструкции с боковыми выступами, расположенными в области зазоров с нагреваемыми элементами.

На фиг.4 нарисована часть конструкции, вид со стороны подвижных нагреваемых элементов.

Устройство для преобразования тепловой энергии в электрическую энергию выполнено следующим образом. Нагреваемые элементы 1, 2 (фиг.1) состоят из магнитно-мягкого материала, обладающего теплотой фазового перехода второго рода, в которых материал теряет свои магнитные свойства, с пониженной точкой Кюри. При этом они и являются составной частью Ф-образной магнитной цепи, состоящей из двух боковых стрежней 3, 4 и среднего стержня 5. Средний стержень 5 снабжен обмоткой возбуждения 6, питаемой от источника постоянного тока (не показан). В свою очередь боковые стержни снабжены генерирующими обмотками соответственно 7 и 8, на выходе которых установлены выпрямители (не обозначены). В боковом стержне 3, в области, примыкающей к среднему стержню 5, выполнен воздушный промежуток 9. В то же время в боковом стрежне 4, в области, примыкающей к среднему стержню, выполнен воздушный промежуток 10. В свою очередь нагреваемые элементы 1 и 2 сочленены между собой жесткой планкой 11, выполненной в виде коромысла. Средняя точка планки установлена на выступающем шарнире 12, основание которого расположено по оси симметрии магнитной цепи и приходится на нижнюю часть среднего стержня 5 между воздушными промежутками 9 и 10. Края воздушных промежутков содержат по два параллельных выступа соответственно 13 и 14, а нагреваемые элементы 1 и 2 перемыкают ту или иную пару выступов. В нижней части устройства расположен охладитель 15, установленный таким образом, что когда один из нагревательных элементов находится вне пределов воздушного промежутка, этот элемент входит в соприкосновение с охладителем. Области промежутков снабжены теплопроводом 16 (фиг.2), подводящим тепло от нагревателя 16".

Выступы 13 (14) могут располагаться с боковой стороны по отношению к боковым стержням 3 (4) (фиг.3).

Дополнительное представление о расположении нагревательных элементов по отношению к боковым стрежням дает фиг.4, на которой имеется вид со стороны подвижных нагреваемых элементов 1 и 2.

Устройство для преобразования тепловой энергии в электрическую энергию действует следующим образом. При подаче питания на обмотку возбуждения 6 в магнитопроводе возникает магнитный поток, который распространяется по боковым стержням 3 и 4. Один из подвижных элементов, находящийся ближе к своему зазору, притянется к боковому стержню, замкнув при этом соответствующий зазор. Допустим это, как показано на фиг.1, подвижный элемент 1 замыкает зазор 9. При этом подвижный элемент 2 остается в зоне действия намагничивающей силы, создаваемой боковым стержнем 4. Одновременно элемент 2 будет соприкасаться с охладителем 15. Магнитный поток в боковом стержне 3 возрастает, а элемент 1 попадает в зону действия теплопровода 16, подводящего тепло от нагревателя 16". Нагреваемый элемент 1 подвергается нагреву от нагревателя до температуры, при которой он теряет свои магнитные свойства, и к зазору 10 притянется подвижный элемент 2, замыкая при этом магнитную цепь бокового стержня 4. Магнитное поле в боковом стержне 4 возрастает, а в боковом стержне 3 наоборот падает. Теперь в зоне нагрева находится элемент 2, а в зоне охлаждения элемент 1. В результате происходит потеря магнитных свойств в элементе 2 и восстановление этих свойств в элементе 1. Далее процесс повторяется. В результате в боковых стержнях поочередно будет периодически увеличиваться или уменьшаться магнитный поток и по закону электромагнитной индукции, определяемой формулой

где w - число витков обмотки 7 или 8, dФ/dt - изменение магнитного потока. Полученная таким образом эдс выпрямляется в выпрямителях и используется как источник электрической энергии. Ток от выпрямителей может подводиться к обмотке возбуждения 6, формируя, таким образом, систему самовозбуждения.

Параллельные выступы 13, 14, находящиеся на боковых стрежнях в зоне воздушных промежутков, позволяют выделить зону нагрева, что снижает общий нагрев магнитной системы и ускоряет процесс подвода тепла к нагреваемым элементам.

Выполнение жесткой планки 11, соединяющей нагревательные элементы, из материала с пружинящими свойствами дает возможность снизить пульсации тока в обмотке 6, расположенной на среднем стержне 5.

Как видно из описания, предлагаемое устройство прямого преобразования тепловой энергии в электрическую энергию функционирует при минимальном количестве промежуточных и механических звеньев в автоматическом режиме и генерируемая мощность будет зависеть только от скорости подачи тепла и охлаждения, что способствует высокому КПД системы и высокой ее надежности.

Предлагаемое изобретение может найти широкое применение для преобразования тепловой энергии в электрическую энергию в устройствах, в которых происходят циклические процессы с нагревом и охлаждением.

1. Устройство для преобразования тепловой энергии в электрическую энергию, содержащее нагреваемые элементы и генератор электрической энергии, отличающееся тем, что нагреваемые элементы выполнены из магнитно-мягкого материала с пониженной точкой Кюри, обладающего теплотой фазового перехода второго рода и теряющего свои магнитные свойства при нагревании, указанные нагревательные элементы являются составной частью Ф-образной магнитной цепи, состоящей из двух боковых и среднего стержня, боковые стержни выполнены в виде двух элементов, разделенных между собой воздушными промежутками, расположенными симметрично с двух сторон по отношению к среднему стержню и примыкающими к нему, нагреваемые элементы сочленены между собой жесткой планкой, установленной в виде коромысла на выступающем шарнире, расположенном на оси симметрии на краю среднего стержня так, что при переходе планки из одного положения в другое один из нагреваемых элементов перемыкает один из воздушных промежутков того или иного бокового стрежня, воздушные промежутки снабжены теплопроводом, подводящим тепло от нагревателя, а в положении, когда нагреваемые элементы не перемыкают воздушные промежутки, они соприкасаются с охладителем, причем средний стержень снабжен обмоткой возбуждения, питаемой от источника постоянного тока, а генератор электрической энергии выполнен в виде генерирующих обмоток, расположенных на боковых стержнях.

2. Устройство для преобразования тепловой энергии по п.1, отличающееся тем, что края воздушных промежутков содержат по два параллельных выступа, а нагреваемые элементы перемыкают ту или иную пару выступов.

3. Устройство для преобразования тепловой энергии по любому из пп.1 или 2, отличающееся тем, что жесткая планка выполнена из пружинящего материала.

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в качестве привода для перемещения рабочих органов исполнительных механизмов, применяемых в точном машиностроении, приборостроении, робототехнике, в частности может быть использовано для создания сервомеханизмов различного назначения.

Изобретение относится к теплоэнергетике и позволяет генерировать электрическую энергию за счет модуляции теплового потока, проходящего через электрический конденсатор с температурно-зависимой емкостью, используя разницу температур в окружающей среде

Изобретение относится к области электротехники и физики магнетизма и может быть использовано при построении модулей стационарных или мобильных энергетических устройств, использующих прямое преобразование тепловой энергии окружающей среды

Изобретение относится к электротехнике и предназначено для преобразования тепловой энергии окружающей среды в механическую энергию вращения кольца. В прозрачную цилиндрическую вакуумную колбу помещено вращающееся кольцо с осью вращения, край которого размещен в зазорах постоянных магнитов подковообразной формы, эквидистантно расположенных вокруг него. На колбе закреплены элементы магнитного подвеса вращающегося кольца, ротор первичного раскручивания оси вращения и съемный узел, создающий вращающееся магнитное поле. Кольцо выполнено из смеси парамагнитного и диамагнитного вещества с такими концентрациями x1 и x2 этих ингредиентов, что выполнены условия x1X1-x2|X2|→0, x1+x2=1, где X1 и Х2 - магнитные восприимчивости соответственно парамагнитного и диамагнитного веществ смеси, в течение времени пребывания любого дифференциального объема смеси dv=Sdx, где S - поперечное сечение кольца, охваченного магнитным зазором, dx - дифференциальный слой кольца вдоль направления движения смеси в магнитном зазоре по оси х, равного Δt=L/ωR, где L - длина магнитного зазора вдоль оси х, ω - угловая скорость вращения кольца (диска), R - радиус кольца (диска), а также условие, что постоянная магнитной вязкости парамагнитного вещества т1 в пять и более раз меньше постоянной магнитной вязкости диамагнитного вещества т2. 3 з.п. ф-лы, 4 ил.

Изобретение относится к физике, к прямому преобразованию энергии излучения радиоактивных изотопов и отходов ядерных реакторов в механическую энергию вращения и может быть использовано в качестве силового привода различных механизмов. Технический результат состоит в повышении эффективности охлаждения и упрощении эксплуатации путем и исключения необходимости в динамической балансировке и осуществления теплопередачи и нагрузки за пределами действия радиации. Радиационно-магнитный двигатель содержит радиационно-защитный статор с постоянным магнитом, средства отвода тепла охлаждающей жидкостью. Система изменения магнитных свойств ротора выполнена в виде двух полуцилиндров на общей оси, один из которых прозрачен для радиоактивного излучения от источника, расположенного в центре полуцилиндров, а другой является его экраном. Ферромагнитный ротор из радиационно-чувствительного материала выполнен в виде неподвижного трубчатого змеевика, плотно сопряженного с внутренней поверхностью статора и заполненного охлаждающей магнитной жидкостью в виде суспензии радиационно-чувствительных частиц редкоземельных ферромагнетиков и радиационно-стойкого жидкого теплоносителя, который непосредственно сообщается с закрытым гидроприводом, включающим гидроаккумулятор, радиатор охлаждения и лопастную турбину либо объемный гидродвигатель, кинематически связанные с полезной механической нагрузкой. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики, в частности к электростанциям, работающим на базе глубинного тепла Земли. Петротермальная электростанция содержит скважину, пробуренную до глубины с температурой забоя не менее 600°С, теплоотборную систему, расположенную в скважине, содержащую паровой котел, два присоединенных к нему трубопровода, каждый из которых состоит из отдельных частей, причем части трубопровода для нагнетания воды соединены с частями паропровода для отвода пара жесткими перемычками с образованием секций, при этом часть скважины в зоне расположения парового котла с захватом зоны его разогрева, заполнена водонепроницаемым материалом, остальная часть скважины заполнена породой, поднятой на поверхность при бурении скважины с соблюдением порядка ее расположения в земной коре в месте бурения. Устройство монтажа теплоотборной системы петротермальной электростанции включает монтажную вышку с гидроподъемником, монтажный стол, выполненный в виде сварочного стола, раздвижным, с выемками, образующими в центре стола при соединении этих частей проем с возможностью продвижения через него в скважину секций теплоотборного устройства. Обеспечивает надежную работу петротермальной электростанции, повышение мощности. 2 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике, к системам автоматической стабилизации напряжения постоянного тока, вырабатываемого непосредственным преобразованием тепловой энергии внешней среды, например водных бассейнов, и может быть использовано в экологически чистой электроэнергетике. Технический результат состоит в стабилизации напряжения постоянного тока при вариации внешней нагрузки и увеличении срока действия и надежности. Устройство автоматического управления электрогенератором содержит ферромагнитное кольцо, механически связанное с осью вращения через траверсы, одна часть которого совмещена с насыщающим магнитным полем сильного постоянного магнита, а другая связана с тепловыделяющей средой. Фильтр нижних частот, или интегратор, последовательно соединен с блоком управления подмагничиванием, выход которого соединен с катушкой подмагничивания. Магнитный зазор сильного постоянного магнита выполнен из двух частей, первая из которых образует однородное магнитное поле с напряженностью, обеспечивающей на длине L этой части зазора доведение магнитной восприимчивости ферромагнетика до максимального значения, а вторая длиной L снабжена катушкой подмагничивания и образует насыщающее магнитное поле в начале этой части зазора и далее в направлении движения ферромагнитного кольца линейно возрастающее по напряженности магнитное поле к концу зазора. Ось вращения механически связана с измерителем частоты вращения оси и бесколлекторным генератором постоянного тока, подключенным к нагрузке и включающем раздельные рабочую обмотку и обмотку подмагничивания. Рабочая обмотка подключена к аккумуляторной батарее, к внешней нагрузке, к источнику опорного напряжения, к блоку управления подмагничиванием и к первому входу устройства сравнения. Обмотка подмагничивания подключена к аккумуляторной батарее через переключатель перемены полярности постоянного тока. Выход источника опорного напряжения подключен ко второму входу устройства сравнения, выход которого соединен с управляющим входом блока управления подмагничиванием через фильтр нижних частот. 10 ил.

Изобретение относится к электрическим термомагнитным приборам на твердом теле, предназначенным для генерации электрической энергии путем ее непосредственного преобразования из тепловой энергии, и может быть использовано в качестве источника питания электрооборудования. Технический результат: повышение эффективности процесса преобразования тепловой энергии в электрическую. Сущность: способ заключается в том, что преобразование тепловой энергии в электрическую осуществляют путем периодического изменения состояния намагниченности распложенного в зазоре магнитопровода термочувствительного ферромагнитного элемента, нагретого до соответствующей ферромагнитному материалу температуры Кюри, находящегося в фазе парапроцесса. Изменение намагниченности термочувствительного ферромагнитного элемента осуществляют путем циклического изменения тока подмагничивания. Устройство содержит магнитопровод 1 с источником магнитного поля 2, в зазоре которого расположен термочувствительный ферромагнитный элемент 3, нагреватель 4, выходную обмотку 5, входную обмотку 6, размещенные на магнитопроводе, термоизолятор 7, генератор-возбудитель 8, подключенный к входной обмотке 6, и накопитель электрической энергии 9, подключенный к выходной обмотке 5. 2 н.п. ф-лы, 4 ил.

Изобретение относится к физике магнетизма и электронике, к системам, вырабатывающим переменный ток непосредственным преобразованием тепловой энергии внешней среды, например водных бассейнов. Технический результат состоит в стабилизации частоты вырабатываемого переменного тока, повышении надежности. Генератор переменного тока содержит механически связанное с осью вращения через траверсы ферромагнитное кольцо, часть совмещена с насыщающим магнитным полем сильного постоянного магнита, а другая - связана с тепловыделяющей средой, например очищенной водой, забираемой из соответствующего водного бассейна. Управляемый источник тока подмагничивания выходом соединен с катушкой подмагничивания. Магнитный зазор сильного постоянного магнита выполнен из двух частей, первая из которых образует однородное магнитное поле с напряженностью H*, обеспечивающей на длине L этой части доведение магнитной восприимчивости ферромагнетика до максимального значения, а вторая длиной L - образует насыщающее магнитное поле в начале этой части магнитного зазора и далее в направлении движения ферромагнитного кольца, линейно возрастающее по напряженности магнитное поле к концу магнитного зазора. На ферромагнитное кольцо намотана катушка из проводника, связанная с аккумуляторной батареей через установленные на его оси кольцевые скользящие контакты и силовой диод в цепи заряда аккумуляторной батареи, питающей управляемый источник тока подмагничивания. 6 ил.

Изобретение относится к электрическим машинам, в которых производится прямое преобразование тепловых эффектов в другой вид энергии