ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Закрытая и открытая система теплоснабжения: особенности, недостатки и преимущества. Теплоснабжение закрытые и открытые системы теплоснабжения — снабжение теплом с помощью теплоносителя горячей воды или пара систем отопления, вентиляции, горячего водоснабж

Теплоснабжение – система подачи тепла в здания, для поддержания комфортных температур в помещениях в холодное время года. Системы снабжения теплом бывают централизованные и децентрализованные, зависимые и независимые открытые и закрытые. В этой статье представлено подробное объяснение принципов работы, а так же сравнение достоинств и недостатков закрытых и открытых систем теплоснабжения.

Система теплоснабжения состоит из следующих составляющих:

  • предприятие, вырабатывающее тепло (котельная, электростанция);
  • трубопроводы для транспортировки тепловой энергии (теплосети);
  • потребители тепла (радиаторы, установленные в помещениях).

Классификация систем теплоснабжения

Различают следующие виды схем теплоснабжения.

По количеству вырабатываемого тепла классифицируют централизованные и децентрализованные виды теплоснабжения. В централизованных системах один источник тепловой энергии снабжает несколько зданий. В децентрализованной системе, каждое здание или группа домов, отдельные помещения вырабатывают тепло самостоятельно.

Классификация децентрализованных типов теплоснабжения, подразделяет их на индивидуальные, когда каждая квартира отапливается самостоятельно и местные — где источник тепла обогревает весь многоквартирный дом.

По способу подключения к сетям классифицируют зависимые и независимые типы систем теплоснабжения. Зависимые – когда теплоноситель (жидкость или пар) нагревается в котельной и, проходя по трубопроводной сети, поступает в радиаторы отапливаемого помещения. Независимые – жидкость из теплосети, проходит через теплообменник и нагревает теплоноситель отопления дома (теплоноситель, который нагревается в котельной, не попадает в систему теплоснабжения дома).

По способу устройства горячего водоснабжения и нагрева воды различают открытые и закрытые виды подачи тепла.

Открытая система теплоснабжения

В открытой схеме теплоснабжения вода, нагреваемая на котельной, используется одновременно в горячем водоснабжении и в качестве теплоносителя отопительных приборов. Постоянный расход воды для нужд горячего водоснабжения приводит к необходимости регулярной подпитки теплосети. Из-за использования воды в горячем теплоснабжении её температура должна быть 65-70 градусов. Такая схема весьма устарела, она повсеместно использовалась в СССР.

Преимущества и недостатки открытого теплоснабжения

Преимущества открытого типа подачи теплоносителя:

  • минимум оборудования так, как не требуется применение теплообменников;
  • из-за того что температура воды ниже, потери при транспортировке по теплотрассам на большие расстояния меньше чем в закрытой системе.

Недостатки открытой схемы:

Грязная вода. Из-за большой протяжённости теплотрассы, поступающая в трубопроводы горячего водоснабжения жидкость, содержит большое количество грязи, ржавчины, которые она собирает по пути от котельной до потребителя. Из-за большой протяжённости трубопроводов теплоснабжения вода в кране может иметь неприятный запах и цвет и не соответствовать санитарным нормам. Установка же водоподготовительных устройств в каждом доме потребует существенных денежных затрат.

Высокая потребность в горячей воде в часы пик приводит к ощутимому падению давления в трубопроводах. Из-за чего вынуждает ресурсоснабжающие предприятия устанавливать дополнительные подкачивающие насосы и автоматику для контроля величины давления в системе. Иначе падение давления приведёт к меньшему количеству теплоносителя, проходящему через теплообогреватели в квартирах, и как следствие, снижению температуры воздуха в помещениях.

Высокие потери жидкости из тепловой системы вынуждают ставить на котельных, ТЭЦ и других производящих энергию предприятиях массивные установки для водоподготовки, которые очищают от солей и других примесей речную воду.

Отличия открытой и закрытой схемы водоснабжения

В закрытой системе, в отличие от открытой, используемая в качестве теплоносителя жидкость циркулирует по трубопроводам, не покидая их. Для горячего водоснабжения используется питьевая водопроводная вода, которая нагревается теплоносителем в специальных устройствах (теплообменниках), устанавливаемых в домах или центральных тепловых пунктах. В закрытых схемах температура воды в теплотрассе колеблется от 120 до 140 градусов, а потери жидкости отсутствуют или минимальны.

Плюсы закрытой схемы:

  • для горячего водоснабжения подключается чистая водопроводная вода, в отличие от открытой схемы, соответствующая всем санитарно-гигиеническим нормам без примесей и неприятных запахов;
  • нет необходимости устанавливать на теплоснабжающих предприятиях дополнительные насосы и приборы автоматического контроля параметров, так как давление в тепловой сети постоянное и не зависит от расхода горячей воды;
  • на котельных и других источниках теплоснабжения не нужно устанавливать дополнительные установки водоподготовки, потому что циркулирующая жидкость, уже обессоленна и содержит минимальное количество примесей;
  • энергосберегающий эффект, достигаемый за счёт регулировки нужной температуры подачи тепла на тепловых пунктах, выполняемый в автоматическом режиме.

К недостаткам этой системы отопления можно отнести дорогое оборудование и автоматику, необходимое для устройства пунктов обмена энергией, где регулируется температура нагрева водопроводной воды.

Второй недостаток это высокие температуры теплоносителей в магистральных теплотрассах и, как следствие, высокие потери тепла. Этот недостаток в сейчас потерял свою актуальность из-за применения технологии теплоизоляции труб пенополиуретаном, которая обеспечивает прочность изоляционного покрытия и эффективную защиту от тепловых потерь.

Использование тепловых пунктов

Для удешевления закрытой системы теплоснабжения на несколько домов или микрорайон устанавливают центральный тепловой пункт (ЦТП). ЦТП представляет собой помещение с теплообменниками, насосами и автоматическими устройствами для регулировки подачи воды. К этому зданию подводятся трубопроводы водоснабжения и тепловые сети.

Важно! Водопроводная вода проходит через теплообменники, и, нагреваясь, подаётся в круговую систему горячего водоснабжения, где циркулирует по контуру и по мере необходимости расходуется потребителями.

Использование ЦТП позволяет экономить расходы на строительство тепловых пунктов. Так как укрупнение теплообменной установки на несколько кварталов или микрорайон, уменьшает затраты на покупку и монтаж оборудования и автоматики, в сравнении с установкой теплового пункта в каждом доме.

Различают два вида теплоснабжения - централизованное и децентрализованное. При децентрализованном теплоснабжении источник и потребитель тепла находятся близко друг от друга. Тепловая сеть отсутствует. Децентрализованное теплоснабжение разделяют на местное (теплоснабжение от местной котельной) и индивидуальное (печное, теплоснабжение от котлов в квартирах).

В зависимости от степени централизации системы централизованного теплоснабжения (ЦТС) можно разделить на четыре группы:

1. групповое теплоснабжение (ТС) группы зданий;

2. районное - ТС городского района;

3. городское - ТС города;

4. межгородское - ТС нескольких городов.

Процесс ЦТС состоит из трех операций - подготовка теплоносителя (ТН), транспорт ТН и использование ТН.

Подготовка ТН осуществляется на теплоприготовительных установках ТЭЦ и котельных. Транспорт ТН осуществляется по тепловым сетям. Использование ТН осуществляется на теплоиспользующих установках потребителей.

Комплекс установок, предназначенных для подготовки, транспорта и использования теплоносителя называется системой централизованного теплоснабжения.

Различают две основные категории потребления тепла:

Для создания комфортных условий труда и быта (коммунально-бытовая нагрузка). Сюда относят потребление воды на отопление, вентиляцию, горячее водоснабжение (ГВС), кондиционирование;

Для выпуска продукции заданного качества (технологическая нагрузка).

По уровню температуры тепло подразделяется на :

Низкопотенциальное, с температурой до 150 0 С;

Среднепотенциальное, с температурой от 150 0 С до 400 0 С;

Высокопотенциальное, с температурой выше 400 0 С.

относится к низкопотенциальным процессам. Максимальная температура в тепловых сетях не превышает 150 0 С (в прямом трубопроводе), минимальная - 70 0 С (в обратном). Для покрытия технологической нагрузки как правило применяется водяной пар с давлением до 1,4 МПа.

В качестве источников тепла применяются теплоподготовительные установки ТЭЦ и котельных. На ТЭЦ осуществляется комбинированная выработка тепла и электроэнергии на основе теплофикационного цикла. Раздельная выработка тепла и электроэнергии осуществляется в котельных и на конденсационных электростанциях. При комбинированной выработке суммарный расход топлива ниже, чем при раздельной.

Весь комплекс оборудования ис-точника теплоснабжения, тепловых сетей и абонентских установок на-зывается системой централи-зованного теплоснабже-ния.

Системы теплоснабжения клас-сифицируются по типу источника теплоты (или способу приготовле-ния теплоты), роду теплоносителя, способу подачи воды на горячее водоснабжение, числу трубопрово-дов тепловой сети, способу обеспе-чения потребителей, степени цент-рализации.


По типу источника теплоты раз-личают три вида теплоснабжения:

Централизованное теплоснабже-ние от ТЭЦ, называемое тепло-фикацией;

Централизованное теплоснабже-ние от районных или промышлен-ных котельных;

Децентрализованное теплоснаб-жение от местных котельных или индивидуальных отопительных аг-регатов.

По сравнению с централизован-ным теплоснабжением от котель-ных теплофикация имеет ряд пре-имуществ, которые выражаются в экономии топлива за счет комбини-рованной выработки тепловой и электрической энергии на ТЭЦ; в возможности широкого использова-ния местного низкосортного топли-ва, сжигание которого в котельных затруднительно; в улучшении сани-тарных условий и чистоты воздуш-ного бассейна городов и промыш-ленных районов благодаря концент-рации сжигания топлива в неболь-шом количестве пунктов, размещен-ных, как правило, на значительном расстоянии от жилых кварталов, и более рациональному использова-нию современных методов очистки дымовых газов от вредных при-месей.

По роду теплоносителя системы теплоснабжения разделяются на водяные и паровые. Паровые системы распространены в основ-ном на промышленных предприя-тиях, а водяные системы применя-ются для теплоснабжения жилищ-но-коммунального хозяйства и не-которых производственных потреби-телей. Объясняется это рядом пре-имуществ воды как теплоносителя по сравнению с паром: возмож-ностью центрального качественного регулирования тепловой нагрузки, меньшими энергетическими потеря-ми при транспортировке и большей дальностью теплоснабжения, отсут-ствием потерь конденсата греюще-го пара, большей комбинированной выработкой энергии на ТЭЦ, повы-шенной аккумулирующей способ-ностью.

По способу подачи воды на го-рячее водоснабжение водяные си-стемы делятся на закрытые и открытые.

В закрытых системах се-тевая вода используется только как теплоноситель и из системы не отбирается. В местные установки горячего водоснабжения поступает вода из питьевого водопровода, на-гретая в специальных водоводяных подогревателях за счет теплоты се-тевой воды.

В открытых системах се-тевая вода непосредственно посту-пает в местные установки горя-чего водоснабжения. При этом не требуются дополнительные тепло-обменники, что значительно упро-щает и удешевляет устройство або-нентского ввода. Однако потери воды в открытой системе резко возрастают (от 0,5—1 % до 20— 40 % общего расхода воды в систе-ме) и состав воды, подаваемой по-требителям, ухудшается из-за при-сутствия в ней продуктов коррозии и отсутствия биологической обра-ботки.

Достоинства закрытых систем теплоснабжения заключаются в том, что их применение обеспечи-вает стабильное качество горячей воды, поступающей в установки го-рячего водоснабжения, одинаковое с качеством водопроводной воды; гидравлическую изолированность воды, поступающей в установки го-рячего водоснабжения, от воды, циркулирующей в тепловой сети; простоту контроля герметичности системы по величине подпитки.

Основными недостатками закры-тых систем являются усложнение и удорожание оборудования и экс-плуатации абонентских вводов из-за установки водо-водяных подо-гревателей и коррозии местных установок горячего водоснабжения вследствие использования недеаэрированной воды.

Основные достоинства открытых систем теплоснабжения заключают-ся в возможности максимального использования низкопотенциальных источников теплоты для подогрева большого количества подпиточной воды. Поскольку в закрытых систе-мах подпитка не превышает 1 % расхода сетевой воды, возможность утилизации теплоты сбросной и продувочной воды на ТЭЦ с закры-той системой значительно ниже, чем в открытых системах. Кроме того, в местные установки горячего водоснабжения в открытых систе-мах поступает деаэрированная во-да, поэтому они меньше подвер-жены коррозии и более долго-вечны.

Недостатками открытых систем являются : необходимость устройст-ва на ТЭЦ мощной водоподготовки для подпитки тепловой сети, что удорожает станционную водоподготовку, особенно при повышенной жесткости исходной сырой воды; усложнение и увеличение объема санитарного контроля за системой; усложнение контроля герметичности системы (поскольку величина под-питки не характеризует плотность системы); нестабильность гидравли-ческого режима сети.

По числу трубопроводов разли-чают одно-, двух- и многотрубные системы. Причем для открытой си-стемы минимальное число трубо-проводов — один, а для закры-той— два. Самой простой и перс-пективной для транспортировки теплоты на большие расстояния яв-ляется однотрубная открытая си-стема теплоснабжения. Однако об-ласть применения таких систем ог-раничена в связи с тем, что ее реа-лизация возможна лишь при усло-вии равенства расхода воды, необ-ходимого для удовлетворения отопительно-вентиляционной нагруз-ки, расходу веды для горячего водоснабжения потребителей дан-ного района. Для большинства районов нашей страны расход воды на горячее водоснабжение значи-тельно меньше (в 3—4 раза) рас-хода сетевой воды на отопление и вентиляцию, поэтому в теплоснаб-жении городов преимущественное распространение получили двух-трубные системы. В двухтрубной системе тепловая сеть состоит из двух линий: подающей и обратной.

По способу обеспечения потре-бителей теплотой различают одно-
ступенчатые и многоступенчатые системы теплоснабжения. В одно-
ступенчатых системах потребители теплоты присоединяются к тепловым сетям непосредственно. Узлы присоединения потребителей к сети
называются абонентскими вводами или местными теп-ловыми пунктами (МТП). На абонентском вводе каждого здания устанавливаются подогреватели горячего водоснабжения, элеваторы, насосы, контрольно-измерительные приборы и регулирующая армату-ра для изменения параметров теп-лоносителя в местных системах по-требителей.

В многоступенчатых системах между источником теплоты и по-требителями размещаются цент-ральные тепловые пункты или под-станции (ЦТП), в которых пара-метры теплоносителя изменяются в зависимости от расходования теп-лоты местными потребителями. На ЦТП размещаются центральная по-догревательная установка горячего водоснабжения, центральная смеси-тельная установка сетевой воды, подкачивающие насосы холодной водопроводной воды, авторегулирующие и контрольно-измеритель-ные приборы. Применение много-ступенчатых систем с ЦТП позво-ляет снизить начальные затраты на сооружение подогревательной ус-тановки горячего водоснабжения, насосных установок и авторегулирующйх устройств благодаря уве-личению их единичной мощности и сокращению числа элементов обо-рудования.

Оптимальная расчетная произ-водительность ЦТП зависит от планировки района, режима работы потребителей и определяется на ос-нове технико-экономических расче-тов.

По степени централизации теп-лоснабжение можно разделить на групповое — теплоснабжение группы зданий, районные - теплоснабжение нескольких групп зданий, городское - теплоснабжение нескольких районов, межгородское - теплоснабжение нескольких городов.

Устройство и конструкции тепловых сетей.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки; изоляционная конструкция, воспринимающая вес трубопровода и усилия, возникающая при его эксплуатации.

Трубы являются ответственными элементами трубопроводов и должны отвечать следующим требованием:

Достаточная прочность и герметичность при максимальных значениях давления и температуры теплоносителя,

Низкий коэффициент температурных деформации,

Обеспечивающий небольшие термические напряжение при переменном тепловом режиме тепловой сети,

Малая шероховатость внутренней поверхности,

Антикорозинная стойкость,

Высокая термическая сопротивление стенок трубы,

Способствующее сохранению теплоты и температуры теплоносителя,

Неизменность свойств материала при длительном воздействий высоких температур и давлений, простота монтажа,

Надежность соединения труб и др.

Имеющейся стальные трубы не удовлетворяют в полной мере всем предъявлемым требованиям, однако их механические свойства, простота, надежность и герметичность соединений (сваркой) обеспечили им преимущественное применение в тепловых сетях.

Трубы для тепловых сетей изготавливаются в основном из сталей марок Ст2сп, Ст3сп, 10, 20, 10Г2С1, 15ГС, 16ГС.

В тепловых сетях применяются бесшовные горячекатаные и электросварные. Бесшовные горячекатаные трубы выпускаются с наружными диаметрами 32 - 426мм. Бесшовные горячекатаные электросварные трубы используется при всех способах прокладки сетей. Электросварные трубы используются при всех способах прокладки сетей. Электросварные со спиральным швом рекомендуются к использованию при канальных и надземных прокладках сетей.

Опоры . При сооружений тепловых сетей применяются опоры двух типов: свободные и неподвижные. Свободные опоры воспринимают вес теплопровода и обеспечивают его свободное перемещение при температурных деформациях. Неподвижные опоры предназначены для закрепления трубопровода в характерных точках сети и воспринимают усилия, возникающие в месте фиксации как в радиальном, так и в осевом направлениях под действием веса, температурных деформаций и внутреннего давления.

Компенсаторы . Компенсация температурных деформации в трубопроводах производится специальными устройствами, называемыми компенсаторами. По принципу действия они разделяются на две группы:

Компенсаторы радиальные или гибкие, воспринимающие удлинения теплопровода изгибом или кручением криволинейных участков труб или изгибом специальных эластичных вставок различной формы;

Компенсаторы осевые, в которых удлинение воспринимаются телескопическим перемещением труб или сжатием пружинных вставок.

Наиболее широкое применение в практике имеют гибкие компенсаторы различной конфигурации, выполненные из самого трубопровода (П - и -S-образные, лирообразные со складками и без них и т.д.). Простота устройства, надежность, отсутствия необходимости в обслуживании, разгруженность неподвижных опор - достоинство этих компенсаторов.

К недостаткам гибких компенсаторов относятся: повышенное гидравлическое сопротивление, увеличенный расход труб, поперечное перемещение деформируемых участках, требующее увеличение ширины непроходных каналов и затрудняющее применение засыпных изоляций, бесканальных трубопроводов, а так же большие габариты, затрудняющие их применение в городах при насыщенности трассы городскими подземными коммуникациями.

Осевые компенсаторы выполняются скользящего типа (сальниковые) и упругими (линзовые компенсаторы).

Сальниковый компенсатор изготавливается из стандартных труб и состоит из корпуса, стакана и уплотнение. При удлинений трубопровода стакан вдвигается в полость корпуса. Герметичность скользящего соединения корпуса и стакана создается сальниковой набивкой, которая выполняется из прографиченного асбестового шнура, пропитанного маслом. Со временем набивка истирается и теряет упругость, поэтому требуется периодическая подтяжка сальника и замена набивки. От этого недостатка свободны линзовые компенсаторы, изготавливаемые из листовой стали. Линзовые компенсаторы сварного типа находят основное применение на трубопроводах низкого давления (до 0,4-0,5 МПа).

Конструктивное выполнение элементов трубопровода зависит так же от способа его прокладки, который выбирается на основании технико-экономического сравнения возможных вариантов.

Снабжение теплом с помощью теплоносителя (горячей воды или пара) систем отопления, вентиляции, горячего водоснабжения жилых, обществ. и пром. зданий и технологич. потребителей. Наиболее перспективно централизованное теплоснабжение, обеспечивающее подачу тепла многим потребителям, расположенным вне места выработки. Таким центром может быть: котельная в подвальном этаже дома, обслуживающая несколько зданий; отдельно стоящая котельная, обеспечивающая теплом квартал, несколько кварталов или район города, пром. предприятие или пром. узел; городская или пром. теплоэлектроцентраль (ТЭЦ). Создание централизованного теплоснабжения - основное направление развития Т. в СССР.

Система централизованного теплоснабжения состоит из источника тепла (котельной или ТЭЦ), системы трубопроводов (тепловых сетей), подающих тепло от источника к потребителям. Котельные установки как источники тепла в системах теплоснабжения служат для подогрева воды (до 200° С) или производства пара (до 20 am). Получение тепла для централизованного теплоснабжения на базе выработки электрической энергии осуществляется на ТЭЦ, где для этой цели устанавливаются специальные теплофикационные турбины. По характеру удовлетворения тепловых нагрузок различают коммунальные, промышленные и районные ТЭЦ. По начальному давлению пара ТЭЦ бывают: среднего, высокого, повышенного и сверхвысокого давления (35, 90, 110 и 240 am).

Получаемый в котлах ТЭЦ пар поступает по внутристанционным паропроводам в теплофикационную турбину, где приводит во вращение ротор турбины и через нее и ротор электрич. генератора. В этом процессе часть тепловой энергии пара превращается в электрич., а пар с оставшейся в нем частью тепловой энергии выходит из турбины и используется на цели теплоснабжения.

Если потребителям в качестве теплоносителя требуется пар (для технологич. нужд), последний из турбины поступает в тепловую сеть непосредственно через паровой компрессор или паропреобразователь. Через паропреобразователь пар подается таким потребителям, к-рые не могут возвратить конденсат, удовлетворяющий требованиям питания котлов высокого давления на ТЭЦ. Пар, отдавший свое тепло потребителям (или в паропреобразователе при получении вторичного пара), превращается в конденсат, к-рый направляется в котел, где снова превращается в свежий пар и поступает в турбину.

Если потребителям в качестве теплоносителя необходима горячая вода (для отопления, вентиляции и горячего водоснабжения), пар из турбины направляется в водонагреватели, где нагревает циркулирующую в системе теплоснабжения воду до требуемой темп-ры. В теплоснабжающей системе осуществляется замкнутая циркуляция воды при помощи центробежных (сетевых) насосов.

На абонентских вводах систем централизованного теплоснабжения осуществляется связь между источниками тепла и потребителями. Потребители отбирают из системы Т. тепло за счет установленных теплообмен- ных аппаратов: нагревательных приборов (в системах отопления), калориферов (в системе вентиляции), водоводяных или пароводяных нагревателей водопроводной воды в системах горячего водоснабжения и теп- лообменных аппаратов различных технологич. потребителей.

Вода, как теплоноситель, по сравнению с паром обладает рядом преимуществ: возможность осуществления центрального качественного регулирования отпуска тепла; поддержание необходимой по гигиенич. условиям темп-ры нагревательных приборов (в том числе ниже 100°С); снижение среднесуточного давления пара для нагрева воды, циркулирующей в тепловых сетях, а след. уменьшение расхода топлива при теплоснабжении от ТЭЦ; несложность присоединений к тепловым сетям; простота обслуживания и бесшумность в работе.

В зависимости от способа присоединения систем горячего водоснабжения зданий к водяным, тепловым сетям различают закрытые и открытые системы теплоснабжения . Если системы горячего водоснабжения здании присоединяются к тепловым сетям через водонагреватели, когда вся сетевая вода из системы Т. возвращается к источнику Т., то система наз. закрытой; в том случае, когда на горячее водоснабжение производится непосредственный отбор воды из тепловой сети,- открытой. Системы водяного отопления зданий могут присоединяться по непосредственной схеме через элеватор или по независимой - через водонагреватель. Закрытые системы теплоснабжения требуют устройства у потребителей теплообменников для нагрева водопроводной воды, подаваемой на горячее водоснабжение, а иногда и водоподготовки. Теплообменники и оборудование водоподготовки в зависимости от величины водопотребления абонента могут устанавливаться в индивидуальных тепловых пунктах (И. Т. П.) или центральных (Ц. Т. П.). И. Т. П. устраиваются только на крупных объектах. При отсутствии подвалов устраиваются Ц. Т. П. на группу домов или квартал города, что приводит к сооружению (от этих Ц. Т. П. к потребителям) дорогостоящих четырехтрубных систем Т.

При открытой системе Т. водоподготовка для горячего водоснабжения производится централизованно в котельной или ТЭЦ и выполняется обязательно, что исключает возможность коррозии и накипеобразова- ния в тепловых сетях. Для открытой системы Т. экономичен и перспективен переход на однотрубную прямоточную систему при использовании теплоносителя - воды на нужды отопления и горячего водоснабжения без возврата к источнику Т. (котельной или ТЭЦ) при наличии баков-аккумуляторов.

Паровые системы теплоснабжения устраиваются для нужд технологич. потребителей. Для пром. предприятий применение единого теплоносителя - пара, для покрытия всех нагрузок, включая отопление, допускается при соответствующем технико-экономич. обосновании.

При необходимости удовлетворения технологич. потребителей паром и наличии значит, нагрузок на отопление иногда устраивают смешанные системы Т. с подачей воды на нужды отопления, вентиляции и горячего водоснабжения и пара - на технологич. нужды. В зависимости от технико-экономич. обоснований на нужды горячего водоснабжения и вентиляции также может подаваться пар.

Технологич. потребители, системы парового отопления и системы вентиляции присоединяются к паровым сетям теплоснабжающей системы непосредственно, если давление пара в сети и у потребителя одинаковы, или через редуктор, в случае необходимости понижения давления пара. Конденсат возвращается к источникам теплоснабжения от потребителей путем его перекачки или самотеком. Системы горячего водоснабжения присоединяются к паровым системам Т. через пароводяные нагреватели водопроводной воды. В случае, если требуется при паровых системах теплоснабжения устраивать у потребителей водяные системы отопления, подогрев воды осуществляется также через пароводяные нагреватели.

Лит.: К о п ь е в С. Ф.. К а ч а н о в Н. Ф., Основы теплоснабжения и вентиляции, М., 1964.

Теплоснабжение зданий различного назначения осуществляется по тепловым сетям от единого теплоэнергетического центра: квартальной или районной котельной или теплоэлектроцентрали (ТЭЦ).

Централизованные системы теплоснабжения бывают водяные и паровые. … Водяные Ц.ст. - осн. системы, обеспечивающие теплоснабжение городов.

Системы теплоснабжения разделяют на централизованные и децентрализованные. Цент-рализов. - большие системы, источниками теплоты у к-рьгх являются ТЭЦ или крупные котельные, имеющие...

Система теплоснабжения , к-рая использует теплоту земных недр с помощью теплоносителей - горячей воды или пара.

В нашей стране примерно половина действующих систем теплоснабжения открытые. Однако при прохождении через отопительные приборы, калориферы, соединит, трубопроводы сан.-гигиенич. качества...

Системы водоподогрева и горячего водоснабжения. ТЭЦ. Теплоснабжение ... … Теплоснабжение . Горячее водоснабжение. Задвижки и затворы Краны пробковые и шаровые, клапаны Запорные вентили...

Циркулирующая в системе теплоснабжения вода используется только как теплоноситель. Пройдя через подогреватели горячего водоснабжения, нагреват. приборы систем отопления и калориферы...

Обеспечение теплотой потребителей, осуществляемое системой теплоснабжения . Теплота передается с помощью теплоносителей, в качестве к-рых используют горячую воду или...

Теплоснабжение . Горячее водоснабжение. Раздел: Быт. Хозяйство. … 1.10-1. Закрытые системы теплоснабжения . В закрытых системах вода на нужды ГВ получается нагревом холодной водопроводной...

Их способность производить, транспортировать и распределять среди … Понятие надежности систем теплоснабжения базируется на вероятностной оценке работы...

теплоснабжения Теплоснабжение ...

Контактные водонагреватели для теплоснабжения и горячего... Системы водоподогрева и горячего водоснабжения. ТЭЦ. Теплоснабжение ...

Теплоснабжение . Горячее водоснабжение. Отопление Санитарная техника Задвижки и затворы Краны пробковые и шаровые, клапаны Запорные вентили.

Если тепло для отопления, горячего водоснабжения и технологических нужд поступает от теплоэлектроцентрали (ТЭЦ … Централизованное теплоснабжение зданий от теплоэлектроцентралей имеет...

Контактные водонагреватели для теплоснабжения и горячего... … Теплоснабжение . Горячее водоснабжение. Задвижки и затворы Краны пробковые и шаровые, клапаны Запорные вентили Отопление...

Теплоснабжение . Горячее водоснабжение. Раздел: Быт. Хозяйство. … Теплоснабжение . Горячее водоснабжение. Отопление Санитарная техника Задвижки и затворы Краны пробковые и шаровые, клапаны...

Контактные водонагреватели для теплоснабжения и горячего... Системы водоподогрева и горячего водоснабжения. ТЭЦ. Теплоснабжение ...

Теплоснабжение в городах и населенных пунктах с застройкой зданиями выше двух этажей осуществляется централизованно.

Теплоснабжение зданий различного назначения осуществляется по... В двухтрубных системах все время происходит циркуляция теплоносителя между источником.... блок теплового узла для систем...

Система теплоснабжения , в к-рой в качестве теплоносителя используется пар водяной. Состоит из источника, вырабатывающего пар, паропроводов, по которым он транспортируется к потребителям...

В открытых системах теплоснабжения подготовленная в котельном агрегате вода не только служит теплоносителем, но и поступает на нужды горячего водоснабжения, т. е. разбор воды производится непосредственно из трубопроводов тепловой сети без промежуточных подогревателей. Количество подпиточной воды в этом случае определяется потерями воды в сетях, в котельной (2 – 2,5 % от расхода сетевой воды) и расходом воды для нужд горячего водоснабжения. Для выравнивания суточного графика нагрузок на горячее водоснабжение предусматривают установку баков-аккумуляторов, объем которых в 9 раз больше среднечасового суточного расхода воды на горячее водоснабжение.

Принципиальная тепловая схема отопительной котельной с открытой двухтрубной системой теплоснабжения представлена на рис. 7.9. Тепловые и гидродинамические режимы водогрейных котельных агрегатов, водоподготовки ХВО,узлов рециркуляции (линия СД) и подмешивающей перемычки АВ , создание разрежения в вакуумном деаэраторе ВД аналогичны рассмотренным ранее. Теплота, выносимая с выпаром D вып используется для нагрева умягченной воды в охладителе выпара Т3.

Из вакуумного деаэратора ВДвода поступает самотеком в бак деаэрированной воды БД, откуда перекачивающим насосом ПН подается в бак-акумулятор БА. Устанавливают обычно не менее двух металлических баков, внутренняя поверхность которых защищается антикоррозийным покрытием, а наружная – тепловой изоляцией. Из бака-аккумулятора БА вода забирается подпиточным насосом ППН и подается в тепловые сети.

Работа тепловой сети в зимнем отопительном режиме. Вода из обратного трубопровода с напором 0,2 – 0,4 МПа подводится во всасывающий коллектор сетевых насосов СН. Туда же подается вода от подпиточных насосов по линии KN (линии KL и EF перекрыта задвижками), а также охлажденная вода от теплообменников умягченной воды Т2 и исходной воды Т1 (рис. 7.9)


Рис. 7.9. Принципиальная схема отопительная котельной с открытой двухтрубной
системой теплоснабжения

Обратная сетевая вода сетевыми насосами СН нагнетается в водогрейный котельный агрегат КА, где нагревается до температуры 150 °С, и на выходе из котла разделяется на три потока: в тепловую сеть, на рециркуляцию и на собственные нужды котельной, которые включают в себя расход воды:

· на мазутное хозяйство,

· на подогрев воды до 70 °С в вакуумном деаэраторе,

· на теплообменник Т2 для нагрева до 65 °С умягченной воды,

· на теплообменник Т1 для подогрева до 30 °С исходной воды.

Охлажденная вода от теплообменников Т1 и Т2поступает во всасывающий коллектор сетевых насосов СН.Расход воды через водогрейные котловые агрегаты определяется для максимально-зимнего режима и, по условиям из работы, принимается постоянным при различных режимах.


Температура воды, поступающей в систему отопления и вентиляции потребителя, ~ 95 °С, регулируется с помощью элеваторного узла Э путем смешивания прямой сетевой воды с обратной из системы отопления.

Среднечасовой за сутки расход горячей воды, поступающей к потребителю, является расчетной величиной, постоянной и не зависящей от сезона. В максимально-зимнем режиме к потребителю ГВС, непосредственно к водозаборным кранам, поступает обратная сетевая вода из системы отопления и вентиляции. При других режимах работы в течение отопительного периода температура обратной сетевой воды снижается ниже нормируемых для горячего водоснабжения температур, поэтому в узле приготовления горячей воды S к обратной сетевой воде через регулятор температуры РТГ, подмешивается необходимое количество прямой сетевой воды.

Часть воды (5 – 10 % от расхода у потребителя) проходит через полотенцесушители, охлаждается до температуры 40 – 45 °С и по циркуляционной линии циркуляционным насосом ЦНвозвращается в обратный трубопровод теплосети.

При работе в отопительный период необходимо учитывать, что вследствие больших расходов воды через узел водоподготовки подаваемая в обратный трубопровод подпиточная вода и использованная греющая вода (узлы М и N ) смешиваются с обратной сетевой водой и существенно изменяют температуру потока. После расчета конечной температуры потока определяются расходы теплоносителя по линии рециркуляции и через подмешивающую перемычку.

На завершающем этапе правильность расчета режимов работы тепловой схемы контролируется проверкой соответствия принятых и полученных в результате расчета значений расхода теплоты на собственные нужды и общей тепловой мощности котельной. При расхождении невязки более 2 % расчет повторяется.

Работа тепловой схемы в летнем режиме. Наличие в баках-аккумуляторах подпиточной воды в количестве и с температурой, соответствующих целям горячего водоснабжения, позволяет в летнее время при отсутствии отопительно-вентиляционной нагрузки подавать эту воду непосредственно в тепловую сеть. По обратному трубопроводу в котельную будет возвращаться только циркуляционная вода от местных систем горячего водоснабжения, которая направляется через узел Е в баки аккумулятора БА по линии EF.

Таким образом, в летний период водогрейный котельный агрегат отключается от тепловой сети на участке NE обратного трубопровода и на участке BL подающего трубопровода. Вода на горячее водоснабжение будет подаваться в подающий трубопровод теплосети непосредственно из баков аккумуляторов БА по линии KL подпиточным насосом, который в этом случае называют «летним» (линия KN при этом перекрыта задвижкой).

Котельный агрегат в летнее время оказывается включенным только на нагрузку q сн, а расход воды через котельный агрегат складывается из потоков греющей воды, поступающей в теплообменники Т1, Т2 и вакуумный деаэратор ВД. Поэтому при невысокой доле нагрузки горячего водоснабжения котельной (0,25 – 0,3) в летнее время количество котельных агрегатов снижается до одного.

Давайте разберемся, в чем отличие открытой системы отопления, от закрытой.

Открытые системы отопления – это обычно трубопроводы с естественной циркуляцией теплоносителя и открытым расширительным баком, который располагается в верхней точке системы. Подогретый источником нагрева (отопительным котлом) теплоноситель поднимается наверх, к расширительному баку, откуда он естественным способом разливается по потребителям тепла (радиаторам отопления) и возвращается в котел для последующего нагрева. На первый взгляд все просто, да и система получается энергонезависимая, но есть некоторые нюансы.

Трубопроводы в открытой системе отопления, значительно больших диаметров, нежели чем в закрытых системах отопления, так как теплоносителю необходимо пространство для маневра. Диаметр труб рассчитывается в зависимости от мощности системы.

В открытых системах отопления невозможно использовать водяные теплые полы, так как они, попросту не будут работать.

В расширительном баке открытого типа возникают испарения, в связи с этим система требует постоянной подпитки. И эта подпитка необходима по уровню теплоносителя, так как в открытых системах отопления нет давления.

Ко всему прочему в открытых системах отопления необходимы отопительные приборы (радиаторы) с большим проходным диаметром. Обычные современные радиаторы для таких систем не подходят.

Многие владельцы загородных домов, столкнувшись с открытой системой отопления, начинают ее переделывать и допускают ошибки, устанавливая современные радиаторы. Открытая система перестает работать и приходится устанавливать циркуляционный насос, закрытый расширительный бак. Система сразу превращается в закрытую систему отопления, только с большими диаметрами трубопроводов и неправильной циркуляцией теплоносителя, но как-то работает.

Использование открытых систем происходило в то время, когда для отопления домов пользовались русской печью, а отопительные котлы были не так распространены, как сейчас. А бытовых циркуляционных насосов не было.

Закрытая система отопления – это система с принудительной циркуляцией теплоносителя, посредство циркуляционного насоса, расширение в которой происходит за счет расширительного бака мембранного типа.

Циркуляция в таких системах происходит по трубопроводам значительно меньшего диаметра, чем в открытых системах отопления. Данная система работает более эффективно, и при правильном расчете происходит быстрый и равномерный нагрев всех потребителей тепла. В системах отопления закрытого типа возможно использование любых потребителей тепла (радиаторы отопления, водяные теплые полы, приточная вентиляция, бойлер косвенного нагрева, и.т.д.). При использовании современных энергосберегающих циркуляционных насосов, закрытая система отопления потребляет ничтожно малое количество электроэнергии, а обезопасить себя от ее отключения можно бесперебойным источником питания очень малой мощности.

Оборудовать сегодня дом открытой системой отопления, было бы как минимум глупо, так как она уже изжила себя. Это так же, как использование старого лампового телевизора сегодня. Показывает плохо, электроэнергии потребляет много, шумит, но как-то работает.

Переделывая, добавляя, ломая схему открытой системы отопления, вы сразу же снижаете эффективность ее работы. Проще отказаться от каких-либо доработок или переработок в открытой системе отопления и сразу же смонтировать закрытую систему отопления.

Сравнивая открытую и закрытую системы отопления, можно сделать вывод, что отдавая предпочтение второй, получаются только плюсы, а при правильном теплотехническом расчете и квалифицированном монтаже, работать она будет долгие годы.