ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Новые технологии в выращивании. Современные технологии выращивания гвоздики. Есть ли отрицательные моменты при переходе к энергосберегающим технологиям

Какому садоводу не хотелось бы получать болшой урожай? А, если собирать его ещё и как минимум дважды в сезон? От такого, пожалуй, не откажется ни один огородник. Тем более - промышленные овощеводы , которые давно и успешно использую для этого современные технологии быстрого выращивания различных культур (картофеля, огурцов, помидоров, ягод и зелени), получая при этом действительно завидный сбор.

Способы скоростного выращивания

Несмотря на то, что агрофизиками, сельскохозяйственными предприятиями, да и простыми садоводами их придумано несколько десятков, все они по большому счету сводятся к одному: максимально облегчить растению процесс получения им питательных веществ. Дело в том, что растения в течение всего периода своего роста тратят большое количество энергии на разрыхление почвы корнями и добычу в ней столь необходимых для них влаги и прочих жизненно важных элементов. То есть вся сила уходит не в рост, а в постоянную борьбу. Именно поэтому залог быстрого созревания - в устранении данных проблем.

Конечно, хороший урожай можно получать и с помощью грамотного ухаживания за культурами: своевременный и правильный полив, качественная подкормка, обеспечение необходимого температурного режима и пр. И так, собственно, поступают сегодня не только частники, но и многие овощеводческие предприятия всех уровней. Однако добиться действительно серьезных показателей таким образом не удастся. Чтобы организовать высокорентабельное хозяйство технологии должны быть «технологичнее», а методы - продуктивнее. В данном случае требуется использование как отдельных установок, так и комплексных систем. О наиболее популярных, а главное, зарекомендовавших себя системах у овощепромышленников, мы расскажем далее.

Гидропонная технология

Новейшая технология выращивания овощей без почвы. Применяется данный метод ко всем культурам, кроме корнеплодов. Объясняется это лишь особенностями произрастания картофеля и подобных ему плодов. Огурцы же, помидоры, ягоды и зелень можно отлично выращивать с помощью гидропонной установки, которая представляет собой уникальную систему, подающую питающие вещества непосредственно к корням растений. В итоге они не тратят время и силы на поиск и переработку этих элементов, что в разы повышает их урожайность.

На сегодняшний день существует несколько видов типичных систем «водной культуры». Первая представляет собой резервуар, наполненный питательным раствором. С помощью компрессора, шланга и распылителя эта жидкость насыщается кислородом. Ну а в самом растворе плавают платформы, наполненные керамзитом, в которых произрастают различные культуры.

Второй вид - вообще без платформ. Нижняя часть корней предварительно выращенной рассады опускается в питательный раствор. Верхняя опрыскивается этой же жидкостью через форсунку. Само растение удерживается за счет полистирольной крышки резервуара, имеющей небольшие отверстия с хлопковой прокладкой.

Третий вид - это усовершенствованный первый метод, когда к плавающим в питательном растворе платформам с культурами дополнительно подведен ещё и капельный полив из этого же резервуара. Разработано множество и других способов. Однако по большому счету все они идентичны и различаются друг с другом лишь нюансами.

Малообъемная технология

Малообъемное выращивание овощей - это современный, удобный и экономически очень выгодный метод быстрого получения большого урожая . Востребован он, прежде всего, при недостатке естественного грунта. Даная технология - своего рода смесь традиционного способа с гидропоникой. Только вместо почвы используются малые объемы субстрата в обязательном сочетании с капельным орошением.

Субстрат представляет собой органическую или минеральную среду, в которой располагается корневая система растений. Это может быть торф, древесная кора, опилки или перлит, вермикулит, минеральная вата. Иначе говоря, такое сырье, которое благодаря своим химическим и физическим свойствам не только не токсично, но и весьма питательно. А орошаются растения сбалансированными питательными растворами на основе обычных минеральных удобрений.

Работает технология следующим образом. Каждая грядка представляет собой автономную мини-систему , изолированную от внешней среды прочным синтетическим влагонепроницаемым материалом. Проще говоря, большой полиэтиленовый мешок, наполненный субстратом, укладывается горизонтально. В нем проделываются несколько круглых отверстий для растений. И к каждому такому пакету с помощью шлангов подводится орошение питающим раствором, которое поступает от системы автополива. Последняя, в свою очередь, имеет вид накопительной емкости.

В светлое время суток бак с помощью дозирующего клапана наполняется жидкой подкормкой. А вечером срабатывает фотоэлемент, запускающий на короткое время насос. Далее полив осуществляется самотеком до полного опустения емкости. И так цикл за циклом. Такая технология позволяет выращивать овощи и зелень круглогодично и собирать до 4-х урожаев в течение 12 месяцев.

Биоинтенсивная технология

Уникальный метод, усовершенствование которого агрофизиками, да и простыми энтузиастами продолжается до сих пор. В отличие от двух выше описанных способов скоростного выращивания овощей эта технология распространяется на абсолютно все культуры, включая корнеплоды. Более того, она применима на обычном грунте, но при этом с традиционным земледелием несравнима. Ведь для возделывания даже 20-30 грядок овощеводу необходимо приложить множество усилий: рыхление почвы, полив, прополка, борьба с вредителями и болезнями растений и прочее и прочее. Он и не представляет, что можно, оказывается, выращивать овощи и на 60-ти и даже на 100 грядках не делая при этом в течение всего сезона практически ничего! Как такое возможно?

Всё начинается с рыхления и традиционного известкования грунта. Правильное известкование почвы на глубину 90-120 см не только уничтожает сорняки и вредные микроорганизмы, но и обеспечивает проникновение воздуха и воды в грунт без ограничений. Таким образом, земля не слипается и не комкуется, оставаясь рыхлой на протяжении 5-6 лет. То есть в ближайшие годы вспахивать её уже не нужно. Это раз.

Благодаря известкованию в почву глубоко проникает влага (возможен разовый интенсивный полив), которая выходит на поверхность постепенно. Корневая система в данном случае всегда увлажнена и полив можно вообще отменить или свести его к минимуму. Это два.

Наконец, третий очень важный элемент биоинтенсивной технологии - аэробные микробы . Подкормка грунта осуществляется микробным раствором из коровяка, отходов молочной промышленности и прелого сена. Достаточно от 1 ч. л. до 1 ст. л. этой субстанции на 10 л воды, чтобы получить фантастический урожай! Как показывает практика, в течение 8-9 лет растения, выращиваемые на такой земле, вообще не болеют и плодоносят все как один. А урожай при определенной температуре можно собирать до 3 раз в год!

Для каждого агронома - земледельца получение максимального урожая сельскохозяйственных культур с единицы площади является первостепенной задачей

Как известно, урожайность любой сельскохозяйственной культуры определяется рядом факторов. Во-первых, определяющую роль играет сорт - его потенциальная, заложенная генетически продуктивность. По данным ученых, вклад сорта в реализацию урожайности составляет до 70% (Бороевич, 1981; Райли Р., 1981; Жученко А.А., 1990). И, во-вторых, условия возделывания сельскохозяйственной культуры, позволяющие максимально реализовать потенциальные возможности сорта.

Современные системы земледелия - важнейший инструмент дальнейшего развития сельскохозяйственного производства. Прежде всего, посредством их нужно обеспечить наиболее благоприятные условия для роста и развития растений. Это возможно при условии своевременного и качественного выполнения всех приемов технологии (обработки почвы, внесения удобрений, соблюдении сроков, норм, способов посева и др.). Важнейшим фактором интенсификации земледелия является уровень применения органических, минеральных удобрений. Огромное значение удобрений в повышении плодородия почвы и урожаев сельскохозяйственных культур доказано многочисленными опытами, многовековой практикой мирового земледелия. По оценкам специалистов, применение органических удобрений в сочетании с минеральными при грамотном их внесении обеспечивает прирост урожая на 40-45% в черноземных районах и до 60-75% в Нечерноземной зоне России (Соловьева, 2010). Правильное использование удобрений способствует не только получению высокого урожая, но и улучшению его качества и поддержанию активного биологического и хозяйственного баланса питательных веществ.

Однако, применение удобрений в высоких дозах, без учета биологических особенностей растений, свойств почв зачастую не дает ожидаемого результата, и даже приводит к снижению урожая и его качества, загрязняет окружающую среду. При этом во многих регионах страны остро стоит проблема сохранения плодородия почвы. В современных условиях при использовании новых сортов и прогрессивных технологий их возделывания с учетом почвенно-климатических условий каждого региона и зоны необходимо не только обеспечивать дальнейшее увеличение производства разнообразной растениеводческой продукции, но и ориентироваться на более экологизированные системы земледелия.

Одним из важнейших элементов этих технологий является применение наиболее эффективных форм удобрений. В последние годы в мировой практике возрастает доля использования удобрений в жидком виде, что обусловлено значительным экономическим эффектом при их применении, а также существенным снижением экологической нагрузки на окружающую среду. Использование жидких форм удобрений позволяет улучшить снабжение сельскохозяйственных растений питательными веществами благодаря их доступности. Жидкие комплексные удобрения содержат как основные компоненты (азот, фосфор, калий), так и микроэлементы, их можно вносить более равномерно, используя на разных этапах вегетации культуры: при посеве и внекорневой подкормке. В свою очередь, интенсивность поглощения растениями элементов питания из почвы зависит в первую очередь от температуры, влажности, уровня рН, развития корневой системы культуры, деятельности микроорганизмов и применения основных удобрений. Дефицит микроэлементов (таких как Сu, Zn, Mn, Fe, В) возникает в основном на карбонатных почвах, то есть при высоком уровне рН. Песчаные кислые почвы имеют низкий уровень обеспеченности подвижными формами бора, меди и молибдена. При низких температурах растения медленно усваивают марганец и цинк, а при высоких - недоступными становятся бор, железо и медь. В таких условиях в критические фазы развития растений необходимо применять листовые подкормки.

Не менее важную роль в повышении урожайности сельскохозяйственных культур, улучшении их качества, чем применение удобрений или средств защиты растений, играют регуляторы роста, которые позволяют управлять процессом роста и развития растений, что позволяет в полной мере реализовать их жизненный потенциал. Применение регуляторов роста растений в комплексе с микроудобрениями максимально повышает эффективность их действия.

Группа компаний «ДОЛИНА», работающая в аграрном секторе более девятнадцати лет по изучению, разработке и внедрению в сельскохозяйственное производство стимуляторов роста растений и микроудобрений, предлагает свои разработки, отвечающие требованиям современных аграриев: стимулятор роста ВЫМПЕЛ® и жидкое микроудобрение ОРАКУЛ® для внекорневой подкормки полевых, овощных, плодовых, ягодных, декоративных культур, цветов, луговых и газонных трав (http://www.dolagro.ru/ru/catalogue).

ВЫМПЕЛ® - комплексный природно-синтетический препарат контактно-системного действия для обработки семян и вегетирующих растений. Это экологически безопасный препарат, обладающий свойствами адаптогена, криопротектора, термопротектора, антистрессанта, ингибитора болезней, активатора почвы, прилипателя. В его состав входят полиэтиленоксиды - 770 г/л, отмытые соли гуминовых кислот - до 30 г/л (http://www.dolagro.ru/ru/catalogue-plant-growth-stimulants).

Научное обоснование применения препарата ВЫМПЕЛ®

Полиэтиленоксиды с низкой молекулярной массой легко проникают в ткани, выполняя при этом роль транспортного агента для всех препаратов, применяемых совместно со стимулятором ВЫМПЕЛ® . Происходит структурирование свободной внутриклеточной воды, повышается ее биологическая активность, соответственно ускоряется процесс роста, фотосинтеза, регулирования транспирации и интенсивности минерального питания (стимулятор роста).

Полиэтиленоксиды с большей молекулярной массой обладают пленкообразующей способностью, благодаря этому ВЫМПЕЛ® выступает в качестве прилипателя, обеспечивающего полное смачивание и закрепление препарата на семенах или листьях растений, повышая тем самым эффективность средств защиты растений, микроудобрений и биопрепаратов.

Совместное действие всех полимеров повышает осмотическое давление, направленное внутрь клетки, улучшает белковый обмен, выражающийся в синтезе стрессовых белков, а также в повышении количества сахаров в растении. Эти изменения делают организм растения более стойким к неблагоприятным факторам окружающей среды (адаптоген, криопротектор и термопротектор). Растения лучше переносят повышенные и пониженные температуры. Снимает стресс после обработки пестицидами (антистрессант).

Продукты распада полиэтиленоксидов - этаноламины являются элементами питания растительной клетки.
Полиэтиленоксиды, применяемые с фунгицидами, проявляют свое обезвоживающее действие на грибках и бактериях. Высушивание микробной клетки, с одной стороны, снижает ее биологическую активность, а с другой повышает ее восприимчивость к действию препарата. В этом и выражается антимикробное действие препарата ВЫМПЕЛ® (ингибитор болезней).

Отмытые соли гуминовых кислот, входящие в состав препарата, содержат необходимые растению микроэлементы. Присутствие данных солей усиливает корнеобразование, улучшает питание, что способствует активизации роста надземной части растений.
ВЫМПЕЛ® активизирует корневые выделения растений и деятельность почвенных микроорганизмов, что проявляется в усилении выделения СО2 и фиксации азота (активатор почвы). Действующие вещества, входящие в состав препарата ВЫМПЕЛ, усиливают действия друг друга и придают ему многофункциональность и высокую эффективность.

Эффективность использования препарата ВЫМПЕЛ® на сельскохозяйственных культурах

Многочисленными опытами доказана эффективность применения препарата на полевых культурах, среди которых важнейшее значение занимают зерновые хлеба.

Применение стимулятора роста растений ВЫМПЕЛ® для обработки посевного материала озимой пшеницы (300-500 г/т) создает защитную оболочку вокруг семян, защищает от негативного влияния окружающей среды и сдерживает развитие поверхностных инфекций (альтернариоз, гельминтоспориоз, фузариоз и другие). Также усиливает действие биопрепаратов, протравителей и снимает угнетающее действие пестицидов на зародыши растений. Кроме того, действие препарата повышает интенсивность прорастания и полевую всхожесть семян до 10%, стимулирует активный рост корневой системы и всходов и увеличивает общий коэффициент кущения на 33%. Обработка стимулятором роста растений озимой пшеницы в фазу кущения осенью повышает содержание сахара в тканях озимых культур, что улучшает перезимовку растений. При этом обработка в период кущения осенью в норме расхода 300-500 г/га ускоряет обменные процессы в тканях, растения интенсивнее усваивают элементы питания из почвы и микроудобрений при внекорневых подкормках, эффективность подкормок увеличивается на 30%, нивелирует фитотоксическое действие пестицидов и быстрее выводит растения из стресса, что проявляется в интенсивном наращивании вегетативной массы. Действие препарата проявляет свойства прилипателя и усиливает эффективность применения пестицидов на 20-25%, увеличивает корневую систему и вегетативную массу, а также усиливает засухоустойчивость и зимостойкость растений.

Применение препарата ВЫМПЕЛ® 300-500 г/га при возобновлении вегетации весной дает возможность растениям быстро восстановиться после перезимовки, усиливает рост вторичной корневой системы, увеличивает морозостойкость растений на 3-5°С при весенних заморозках, укрепляет иммунную систему растений, повышая устойчивость к поражению болезнями, ускоряет обменные процессы в тканях. Вследствие чего растения интенсивнее усваивают элементы питания из почвы и микроудобрений при внекорневых подкормках, эффективность подкормок увеличивается на 30%.

Обработка от конца кущения и до молочно-восковой спелости включительно стимулятором роста растений ВЫМПЕЛ® 300-500 г/га нивелирует фитотоксическое действие гербицидов и быстрее выводит растения из стресса, что проявляется в интенсивном наращивании вегетативной массы, повышает эффективность применения пестицидов и удобрений на 20-30%, стимулирует процессы формирования колоса (ІІІ-VI этапы органогенеза), усиливает засухоустойчивость и жаростойкость растений, увеличивает урожайность и качество зерна.

Проведенные испытания в Краснодарском НИИСХ имени П.П. Лукьяненко (г. Краснодар) показали, что применение препарата ВЫМПЕЛ® на озимой пшенице при обработке семян в дозе 500 г/т обеспечивает прибавку урожайности 5,7 ц/га; при обработке по листьям в фазу кущения в дозе 0,5 кг/га совместно с гербицидом обеспечивает прибавку 2,8 ц/га.

Данные научных учреждений и практический опыт доказывают, что применение рекомендованной технологии выращивания озимых культур в весенний период, улучшает качество зерна (содержание белка повышается на 0,9-3,0%, клейковины на 1,5-2,0%), а урожайность увеличивается на 5,6-16,9 ц/га.

Стимулятор роста растений ВЫМПЕЛ® возможно применять и на других сельскохозяйственных культурах.

Отработанная на сое технология с применением регулятора роста растений ВЫМПЕЛ® отлично зарекомендовала себя на горохе, нуте, фасоли, чечевице. Прибавка к урожаю составляет от 2,5 до 9,3 ц/га.

Применение стимулятора роста растений ВЫМПЕЛ® в технологии выращивания кукурузы дает прибавку к урожаю от 6,2 до 18,2 ц/га. Такая прибавка достигается благодаря активному стимулированию важных жизненных процессов растений, что выражается в повышении количества зерен в початке и массы 1000 семян.

Комплексное применение стимуляторов роста и микроудобрений является экономически оправданным мероприятием. Те сельхозпредприятия, которые внедрили в технологию выращивания подсолнечника данный препарат, получают прибавку к урожаю - от 2,9 до 7,3 ц/га, а при выращивании рапса - от 2,3 до 10,3 ц/га (масла +0,8%).

По данным Всероссийского НИИ биологической защиты растений (ВНИИБЗР), г. Краснодар, применение препарата ВЫМПЕЛ® на подсолнечнике при обработке в фазу 2-4 пар листьев в дозе 500 г/га обеспечивает прибавку урожайности 4,2-4,7 ц/га.
Данные научных учреждений и практический опыт доказывают, что включение препаратов группы компаний ДОЛИНА в технологию выращивания сахарной свёклы дает возможность повысить ее урожайность от 53 до 102 ц/га.

Внедряя программу использования стимуляторов роста, можно на 26-98 ц/га повысить урожайность картофеля. При этом качество продукции не только не снижается, а наоборот, содержание крахмала в клубнях увеличивается.
Применение стимуляторов роста ВЫМПЕЛ® в технологии выращивания огурца (обработка семян, затем обработки растений в фазе активного роста и в период формирования завязи) увеличивает урожай до 79 ц/га с улучшенными товарными качествами плодов.

Использование стимулятора роста ВЫМПЕЛ® в технологии выращивания томата (обработка семян или замачивание рассады, затем обработки растений перед цветением и в период завязи) способствует увеличению урожая от 73 до 154 ц/га с улучшенными качественными кондициями.

Влияние стимулятора роста в технологии выращивания капусты (обработка семян и замачивание рассады, затем обработки растений через 7-10 дней после высадки рассады и в фазе формирования кочана) дает увеличение урожая от 150 до 175 ц/га с улучшенными товарными качествами кочанов. А при выращивании лука (обработка семян (посадочного материала), затем обработки растений в фазе 5-6 листьев и активного роста) урожайность возрастает от 50 до 88 ц/га с улучшенными товарными качествами луковиц.

Применение стимулятора роста ВЫМПЕЛ® в технологии выращивания корнеплодных культур (обработка семян, затем обработки растений в фазе смыкания в рядках и через 10-14 дней после предыдущей) увеличивает урожай от 125 до 145 ц/га с улучшенными товарными качествами корнеплодов.

При выращивании плодовых культур (обработки в фазах до цветения, после цветения и во время достижения плодами яблони размера греческого ореха) использование стимулятора увеличивает урожай до 323 ц/га с улучшенными товарными качествами плодов. А при выращивании винограда (обработки в фазах до цветения, после цветения и во время размягчения ягод) дает увеличение урожая до 55 ц/га с улучшенными качественными кондициями (+2,3…+2,9 г/см3 содержание сахара).
Влияние стимулятора роста ВЫМПЕЛ® в технологии выращивания ягодных культур (обработки в фазах до цветения, после цветения и во время роста ягод) дает урожай от 25 до 38 ц/га с улучшенными товарными качествами ягод.

Применение стимулятора роста ВЫМПЕЛ® в технологии выращивания цветочных культур (обработки в фазах активного роста, до цветения и после цветения) и декоративных культур (2-3 обработки в период активного роста побегов) приносит наибольший эффект.

Проведенные производственные испытания в ряде сельскохозяйственных предприятий показали эффективность использования препарата ВЫМПЕЛ® на различных сельскохозяйственных культурах.

В ООО «Скиф» Краснодарского края Староминского района использовали препарат ВЫМПЕЛ® на крупноплодном подсолнечнике: провели обработку в фазу 2-4 пар листьев в дозе 500 г/га и получили достоверную прибавку урожайности на 2 ц/га. На кукурузе обработка в фазу 3-5 листьев в дозе 500 г/га совместно с гербицидом обеспечила прибавку зерна на 9 ц/га. В хозяйстве «ИП глава КФХ Завадский В.И.» Тбилисского района на кукурузе обработка препаратом ВЫМПЕЛ® в фазу 3-5 листьев в дозе 500 г/га совместно с гербицидом обеспечила прибавку 5 ц/га, а на сахарной свекле обработка в фазу 2-3 пары листьев в дозе 500 г/га совместно с гербицидом - прибавку 50 ц/га.

Немаловажно отметить, что препарат ВЫМПЕЛ® можно сочетать в любых баковых смесях. При использовании таких баковых смесей совместно с препаратом ВЫМПЕЛ® усиливается эффективность применения биопрепаратов, микро- и макроудобрений, пестицидов. Эффект при использовании стимулятора и микроудобрений одновременно с гербицидами в виде баковой смеси при весенней обработке озимых культур проявляется в том, что культурные растения быстрее выходят из стрессового состояния, а сорняки погибают, то есть для культурных растений ВЫМПЕЛ® работает как антистрессовый. Помимо увеличения урожайности отмечается при этом и последующее повышение качества продукции. Если обработать семена озимой пшеницы, а потом дважды вегетирующие растения препаратами группы компаний «ДОЛИНА», в результате получаем не только значительную прибавку урожая, а и зерно более высокого класса, т.е. с большим содержанием белка и клейковины. Содержание клейковины в нем увеличивается на 1,5-2%.

Суммируя вышесказанное, можно назвать основные экономические выгоды применения препарата:
1. Повышение качественных показателей продукции за счет увеличения содержания белка, клейковины, сахара и др.
2. Отсутствие дополнительных затрат на обработку (использование в баковых смесях).
3. Повышение засухоустойчивости и иммунитета растений.
4. Повышение зимостойкости и морозоустойчивости на 3-5°С.
5. Повышение урожайности.
6. Увеличение эффективности использования пестицидов и удобрений на 20-30%.
Экономическая выгода от применения регулятора роста растений ВЫМПЕЛ® многократно превышает затраты на его приобретение!

ХЕЛАТНЫЕ МИКРОУДОБРЕНИЯ СЕРИИ ОРАКУЛ® компенсируют недостаток питательных веществ в период неблагоприятных условий роста, когда потребности растений превышают поглощающую способность корневой системы; усиливают усвоение растениями питательных веществ из почвы; повышают устойчивость растений к болезням и стрессовым ситуациям на 30%; способствуют повышению урожайности культур на 15-27% и улучшают качество продукции. Микроудобрения ОРАКУЛ® выпускаются в виде целой серии, которая отвечает всем требованиям при возделывании любых сельскохозяйственных культур (http://www.dolagro.ru/ru/catalogue-microfertilizers).

КОМПЛЕКСНЫЕ МИКРОУДОБРЕНИЯ:

ОРАКУЛ® МУЛЬТИКОМПЛЕКС - комплексное универсальное жидкое удобрение для внекорневой подкормки полевых, овощных, плодовых, ягодных, декоративных культур, цветов, луговых и газонных трав.

ОРАКУЛ® СЕМЕНА - уникальное комплексное жидкое микроудобрение, разработанное компанией ДОЛИНА специально для обработки семян полевых, овощных, декоративных культур, цветов, луговых и газонных трав, замачивания саженцев винограда с целью их укоренения

КОМПЕНСАТОРЫ МИКРОЭЛЕМЕНТОВ:
ОРАКУЛ® КОЛАМИН БОР - концентрированное борное микроудобрение в органической (легкоусвояемой) форме для внекорневой подкормки полевых, овощных и многолетних культур. Усиливает развитие репродуктивных органов и вызывает интенсивное усвоение влаги из почвы, благодаря чему повышается засухоустойчивость растений

ОРАКУЛ® БИОЦИНК - концентрированное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур в форме биологического хелата. Повышает засухо-, жаростойкость и холодостойкость растений, снижает поражаемость растений грибковыми заболеваниями.

ОРАКУЛ® СЕРА АКТИВ - высокоэффективное серное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур. Улучшает фиксацию азота из воздуха и защищает растения от патогенных заболеваний.

ОРАКУЛ® ХЕЛАТ МЕДИ - концентрированное микроудобрение в хелатной (органической) форме для внекорневой подкормки полевых, овощных и многолетних культур. Повышает засухоустойчивость и стойкость растений к полеганию.

ОРАКУЛ® БИОЖЕЛЕЗО - концентрированное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур в форме биологического хелата. Предотвращает проявления хлороза и помогает развитию корней.

ОРАКУЛ® БИОМАРГАНЕЦ - концентрированное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур в форме биологического хелата. Улучшает дыхание корней и увеличивает содержание сахара в корнеплодах и плодах, крахмала в клубнях картофеля, белка в зерне.

ОРАКУЛ® БИОМОЛИБДЕН - концентрированное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур в форме биологического хелата. Предотвращает накопление избыточного количества нитратов в растении.

ОРАКУЛ® БИОКОБАЛЬТ - концентрированное микроудобрение для внекорневой подкормки зернобобовых культур, винограда, сахарной и кормовой свеклы в форме биологического хелата. Улучшает водоудерживающую способность тканей растений.

ОРАКУЛ® ХЕЛАТ МАГНИЯ - концентрированное микроудобрение в хелатной (органической) форме для внекорневой подкормки полевых, овощных и многолетних культур. Вызывает интенсивное усвоение растениями влаги из почвы, что повышает их засухоустойчивость.

ОРАКУЛ® КОЛОФЕРМИН БОРА - концентрированное борное микроудобрение в органической (легкоусвояемой) форме для внекорневой подкормки полевых, овощных и многолетних культур.

ОРАКУЛ® КОЛОФЕРМИН ЦИНКА - концентрированное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур.

ОРАКУЛ® КОЛОФЕРМИН МЕДИ - концентрированное микроудобрение в хелатной (органической) форме для внекорневой подкормки полевых, овощных и многолетних культур.

ОРАКУЛ® КОЛОФЕРМИН ЖЕЛЕЗА - концентрированное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур.

ОРАКУЛ® КОЛОФЕРМИН МАРГАНЦА - концентрированное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур.

ОРАКУЛ® КОЛОФЕРМИН МОЛИБДЕНА - концентрированное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур.

ОРАКУЛ® КОЛОФЕРМИН КОБАЛЬТА - концентрированное микроудобрение для внекорневой подкормки зернобобовых культур, винограда, сахарной и кормовой свеклы.

ОРАКУЛ® КОЛОФЕРМИН МАГНИЯ - концентрированное микроудобрение для внекорневой подкормки полевых, овощных и многолетних культур.

ОСНОВНЫЕ УДОБРЕНИЯ
ОРАКУЛ® КОЛОФЕРМИН ФОСФОРА предназначен для подкормки полевых культур и многолетних насаждений. Особенно в начале вегетации, когда возникает наибольшая потребность в фосфоре у растений.

ОРАКУЛ® КОЛОФЕРМИН КАЛИЯ предназначен для обработки в критические моменты развития полевых культур и многолетних насаждений. Не содержит азота, что делает удобрение идеальным источником калия на поздних фазах развития растений.

ОРАКУЛ® КОЛОФЕРМИН КАЛЬЦИЯ предназначен для подкормки овощных, бахчевых культур и многолетних насаждений. Применяется для ликвидации нарушений физиологии растений вследствие дефицита кальция.

Стимулятор ВЫМПЕЛ® и микроудобрения серии ОРАКУЛ® составляют основу оригинальной технологии, которая обеспечивает гарантированное получение высококачественного урожая сельскохозяйственных культур!

По вопросам консультаций, сотрудничества, приобретения стимулятора роста растений ВЫМПЕЛ® и микроудобрений серии ОРАКУЛ® обращайтесь в компанию ООО «ДОЛ-АГРО».

http://www.dolagro.ru/ru

http://www.dolagro.ru/ru/contacts

Как известно, урожайность любой сельскохозяйственной культуры определяется рядом факторов. Во-первых, определяющую роль играет сорт – его потенциальная, заложенная генетически продуктивность.И, во-вторых, условия возделывания сельскохозяйственной культуры, позволяющие максимально реализовать потенциальные возможности сорта.

Современные системы земледелия – важнейший инструмент дальнейшего развития сельскохозяйственного производства. Прежде всего, посредством их нужно обеспечить наиболее благоприятные условия для роста и развития растений. Это возможно при условии своевременного и качественного выполнения всех приемов технологии (обработки почвы, внесения удобрений, соблюдении сроков, норм, способов посева и др.). Важнейшим фактором интенсификации земледелия является уровень применения органических, минеральных удобрений. Огромное значение удобрений в повышении плодородия почвы и урожаев сельскохозяйственных культур доказано многочисленными опытами, многовековой практикой мирового земледелия. По оценкам специалистов, применение органических удобрений в сочетании с минеральными при грамотном их внесении обеспечивает прирост урожая на 40-45% в черноземных районах и до 60-75% в Нечерноземной зоне России (Соловьева, 2010). Правильное использование удобрений способствует не только получению высокого урожая, но и улучшению его качества и поддержанию активного биологического и хозяйственного баланса питательных веществ.


Однако, применение удобрений в высоких дозах, без учета биологических особенностей растений, свойств почв зачастую не дает ожидаемого результата, и даже приводит к снижению урожая и его качества, загрязняет окружающую среду. При этом во многих регионах страны остро стоит проблема сохранения плодородия почвы. В современных условиях при использовании новых сортов и прогрессивных технологий их возделывания с учетом почвенно-климатических условий каждого региона и зоны необходимо не только обеспечивать дальнейшее увеличение производства разнообразной растениеводческой продукции, но и ориентироваться на более экологизированные системы земледелия.


Одним из важнейших элементов этих технологий является применение наиболее эффективных форм удобрений. В последние годы в мировой практике возрастает доля использования удобрений в жидком виде, что обусловлено значительным экономическим эффектом при их применении, а также существенным снижением экологической нагрузки на окружающую среду. Использование жидких форм удобрений позволяет улучшить снабжение сельскохозяйственных растений питательными веществами благодаря их доступности. Жидкие комплексные удобрения содержат как основные компоненты (азот, фосфор, калий), так и микроэлементы, их можно вносить более равномерно, используя на разных этапах вегетации культуры: при посеве и внекорневой подкормке. В свою очередь, интенсивность поглощения растениями элементов питания из почвы зависит в первую очередь от температуры, влажности, уровня рН, развития корневой системы культуры, деятельности микроорганизмов и применения основных удобрений. Дефицит микроэлементов (таких как Сu, Zn, Mn, Fe, В) возникает в основном на карбонатных почвах, то есть при высоком уровне рН. Песчаные кислые почвы имеют низкий уровень обеспеченности подвижными формами бора, меди и молибдена. При низких температурах растения медленно усваивают марганец и цинк, а при высоких – недоступными становятся бор, железо и медь. В таких условиях в критические фазы развития растений необходимо применять листовые подкормки.

Не менее важную роль в повышении урожайности сельскохозяйственных культур, улучшении их качества, чем применение удобрений или средств защиты растений, играют регуляторы роста, которые позволяют управлять процессом роста и развития растений, что позволяет в полной мере реализовать их жизненный потенциал. Применение регуляторов роста растений в комплексе с микроудобрениями максимально повышает эффективность их действия.

Технология возделывания культур как искусство представляет собой комплекс приемов, направленных на создание наиболее благоприятных условий для роста и развития растений. Технологический комплекс включает приемы, выполняемые с момента освобождения поля предшественником до уборки урожая включительно. К ним относятся основная и предпосевная обра­ботки почвы , внесение удобрений, подготовка семян к посеву, по­сев, уход за посевами, связанный с поддержанием оптимального агрофизического состояния почвы (пропашные культуры) и защитой растений от сорных растений, вредителей и болезней, уборкой урожая.

Исходной позицией при разработке технологии возделывания культур являются агроэкологические требования культуры и сорта к условиям произрастания. Последовательное преодоление факто­ров, снижающих урожайность культуры и качество продукции, позволяет сформировать наиболее оптимальную технологию возде­лывания для конкретных условий хозяйства.

Создание наиболее благоприятных условий для произрастания растений основывается на материально-технических ресурсах хо­зяйства, его экономической эффективности и опыте производства.

Все технологические приемы по возделыванию культур должны тесно увязываться с другими звеньями системы земледелия: обра­ботка почвы, внесение удобрений , защита растений и т. д., которые разрабатывают с учетом требований культуры и воспроизводства плодородия почвы.

Для разной обеспеченности хозяйства производственными ре­сурсами (сельскохозяйственная техника , удобрения, пестициды, семена и др.) должны разрабатываться различные варианты техно­логий.

Интенсивные технологии принципиально отличаются от тради­ционных по набору технических, агрохимических, биологических средств. Эти технологии предполагают не только обеспечение оп­тимального уровня минерального питания растений и соответству­ющую защиту от сорняков, болезней и вредителей, но и качествен­но отличные способы предпосевной обработки почвы с помощью специальных машин, посева на одинаковую глубину сеялками точ­ного высева, ухода за посевами с использованием опрыскивателей, уборки урожая высокопроизводительными техническими сред­ствами.

При многоукладной экономике необходим дифференцирован­ный подход к технологиям возделывания сельскохозяйственных культур в зависимости от различных форм организации труда. Осо­бенности этих технологий - подбор сортов со сроками посева и уборки урожая, уменьшающими напряженность полевых работ, со­вмещение технологических приемов по обработке почвы, внесе­нию удобрений, пестицидов, посеву и т. д.

Традиционная технология

Традиционная (отвальная) технология возделывания сельскохозяйственных культур предполагает ежегодную или периодическую вспашку почвы с оборотом пласта, многократные проходы сельскохозяйственной техники по полю.

Это вызывает уплотнение почвы, разрушение ее механической структуры, уменьшение плодородного слоя в результате водной и воздушной эрозией, нарастание отрицательного баланса гумуса, фосфора и калия в почве, неэффективное использования минеральных удобрений, пестицидов и биологических препаратов, но самое главное - нарушает природные экосистемы и загрязняет среду обитания человека, флоры и фауны.

Наряду с ростом валовой продукции важна и стабилизация качества продукции, отвечающего требованиям рынка по параметрам технических условий перерабатывающих предприятий и соответствия сертификатам по потребительским качествам.

Несмотря на появление новых технологий обработки почвы (минимальная, нулевая и др.), отвальная пахота по-прежнему остается актуальной и важной операцией, так как она обеспечивает качественную подготовку почвы под посев и посадку сельскохозяйственных культур на самых разнообразных фонах и типах почв. В последние годы в целях защиты окружающей среды от загрязнения химикатами наметилась тенденция к сокращению применения химических средств для борьбы с вредителями и сорными растениями. Отвальные плуги являются незаменимыми орудиями, способными глубоко заделывать пожнивные остатки, что способствует уничтожению сорняков, личинок вредителей и болезней сельхозкультур без применения гербицидов, поэтому переход на без гербицидную технологию возделывания сельскохозяйственных культур невозможен без применения отвально-лемешных орудий.

Методы отвальной вспашки непрерывно совершенствуются (гладкая, мелкая, с почвоуглублением), неизменным остается только принцип работы плужного корпуса - отваливание и оборот пласта в открытую соседнюю борозду. С агрономической точки зрения перемещение верхнего более плодородного, но «обесструктуренного» слоя на место нижнего создает благоприятные условия для роста и развития сельскохозяйственных растений.

В то же время отвально-лемешные плуги не лишены ряда серьезных технологических и конструктивных недостатков: высокая энергоемкость (до 50-80 кВт/м) и малая производительность, уплотненное дно борозды, недостаточное крошение почвы, неудовлетворительная слитность и выровненность поверхности пашни. «Чистая» поверхность пашни, лишенная стерни и растительных остатков, подвержена смыву и выдуванию. Из-за углового расположения корпусов плуги имеют большие габариты и повышенную металлоемкость (до 1500 кг/м).

Совершенствование современных отвально-лемешных плугов в значительной мере направлено на устранение перечисленных выше недостатков.

Технологическая карта традиционной технологии:

1. Обработка почвы:

  • пахота
  • боронование
  • сплошная культивация
  • «дискование»
  • прикатывание
  • посев и посадка
  • посев зерновых культур в районах с почвами, подверженными ветровой эрозии
  • посев зерновых и зернобобовых комбинированными агрегатами
  • посев пшеницы, ржи, овса, риса, гороха, чечевицы, льна, чины, люпина, вики, нута
  • посев кукурузы, подсолнечника
  • посадка картофеля
  • посев сахарной свеклы

2. Уход за посевами:

  • боронование посевов до всходов
  • боронование посевов по всходам
  • прикатывание посевов
  • междурядная обработка широкорядных посевов зерновых и зернобобовых культур
  • междурядная обработка кукурузы и подсолнечника
  • боронование посевов сахарной свеклы
  • прореживание всходов сахарной свеклы вдоль рядов
  • междурядная обработка сахарной свеклы
  • опрыскивание
  • уборка зерновых колосовых культур
  • кошение зерновых колосовых культур в валки
  • подбор валков зерновых колосовых культур
  • прямое «комбайнирование» зерновых колосовых культур
  • уборка гороха
  • кошение гороха в валки
  • подбор валков гороха
  • уборка подсолнечника
  • уборка кукурузы на зерно
  • уборка семенников трав
  • подбор и обмолот семенников клевера
  • подбор и обмолот семенников бобовых трав
  • подбор и обмолот семенников злаковых трав
  • уборка сахарной свеклы
  • уборка ботвы
  • уборка корнеплодов

Минимальная технология

В последние годы во всех развитых странах мира ведутся интенсивные поиски новых технологических приемов обработки почвы, направленные на защиту ее от эрозионных процессов, сохранение и повышение плодородия почвы, а также на сокращение трудовых, денежных и энергетических затрат. Апробированы и широко внедряются различные приемы минимальной обработки почвы и частичной замены отвальной вспашки безотвальным рыхлением и бесплужной обработки.

В современной отечественной и мировой практике к наиболее перспективным почвозащитным, ресурсосберегающим технологиям относятся минимальная (безотвальная) и нулевая технология обработки почвы.

Минимальная обработка позволяет обеспечить уменьшение механического воздействия почвообрабатывающих машин на почву и уплотняющего действия их ходовых систем, сокращение количества проходов агрегатов по полю. В последние годы минимальная обработка почвы получила распространение во многих регионах страны. Технологические и экономические преимущества минимальной обработки почвы подтверждены опытом работы сельхозпредприятий в разных областях страны. В условиях дефицита удобрений и средств защиты растении, мелиорантов, других cредств повышения плодородия почвы особое внимание должно быть уделено совершенствованию структуры посевных площадей, освоению научно-обоснованных севооборотов, посеву и запашке сидератов. Для снижения переуплотнения почв энергонасыщенной техникой при возделывании сельскохозяйственных культур промышленностью разработано новое семейство комбинированных агрегатов. На основе накопленного исследовательского и производственного опыта в различных агроклиматических зонах Украины показано, что минимальная обработка почвы в соответствующих условиях обеспечивает практически равный урожай зерновых в сопоставлении с традиционной вспашкой на 20-22 см, в 2 раза менее энергоемка и на 10-15 кг снижает расход горючего на 1 га обрабатываемой площади. По оценкам ВНИИ земледелия и защиты почв от эрозии, энергетические затраты на проведение отвальной обработки под озимые составляют 1813 МДж/га, а поверхностной обработки дисковой бороной в два следа с последующим боронованием - только 673 МДж/га.

Характерной особенностью применения минимальной технологии под озимые культуры является устойчивое повышение урожайности в засушливые годы в пределах 1,3 - 5,4 ц/ra, а в среднем по стране - на 1,5 ц/га по сравнению со вспашкой на 20-22 см, и, наоборот, снижение в годы достаточного увлажнения. Ограниченное по срокам использования применение минимальных обработок под яровые зерновые и однолетние травы также не снижает их продуктивности, хотя, как правило, и не повышает. Основной их недостаток - существенное повышение засоренности посевов, причем увеличивающееся по мере роста срока использования. По усредненным оценкам ВНИИ земледелия и защиты почв от эрозии, при систематическом применении минимальных обработок засоренность сорняками первой культуры возрастает на 30-150%, второй и третьей культуры - в два и более раз и в целом за ротацию севооборота - в 4-8 и более раз. Причем, весьма нежелательным аспектом является то, что в видовом составе сорняков резко возрастает количество зимующих злаковых и однодольных многолетников.

Отмеченные негативные стороны минимальных обработок разрешаются при строгом соблюдении необходимых условий их применения на основе рекомендаций зональных научных учреждений.

Нулевая технология

Нулевая (No Till) технология - предусматривает прямой посев семян в почву, предварительно обработанную гербицидами.

В отношении нулевой обработки необходимо отметить, что решающим фактором, определяющим успех ее применения, является необходимость учитывать основные особенности и свойства почв (устойчивость к уплотнению, дренированность, содержание гумуса и подвижных форм питательных веществ). Без научно обоснованной оценки пригодности почв для нулевой обработки ее применение может представлять определенный риск и дать отрицательные агрономические, экономические и экологические результаты.

Преимущества технологии без обработки почвы (No Till):

  • исключение водной и ветровой эрозий
  • накопление питательной среды для биоты почвы
  • уменьшение применения минеральных удобрений и ядохимикатов
  • уменьшение уплотнения почвы
  • более полное впитывание в почву и экономное расходование влаги
  • естественное снегозадержание
  • совмещение полосного посева, внесения удобрений и прикатывания за один проход
  • повышение урожайности
  • сокращение расходов топлива до 60%
  • минимальные трудозатраты
  • сокращение до 50% затрат на приобретение техники
  • уменьшение затрат на лесо- и гидромелиорацию

На основе имеющегося отечественного и мирового опыта по применению нулевой обработки почвы необходимо учитывать следующие ее основные особенности:

  • более высокие затраты на химические средства защиты растений от сорной растительности, вредителей и болезней
  • дополнительные затраты на специальную технику при сохранении традиционной, поскольку обычно не все участки пашни пригодны для нулевой обработки, а повторять ее следует каждые 3-4 года
  • факт, что не все сельскохозяйственные культуры дают высокий урожай при нулевой обработке
  • необходимость соблюдения более строгих требований, особенно в отношении применения химических средств защиты растений, минеральных удобрений, мелиорантов почв
  • трудности с использованием органических удобрений, эффективность которых без заделки в почву низкая

Другим важным фактором, определяющим развитие почвообрабатывающей и посевной техники, является рост энерговооруженности сельского хозяйства, в том числе путем увеличения единичной мощности тракторов.

Рациональная реализация повышенной мощности энергонасыщенных тракторов на современном этапе осуществляется путем создания широкозахватных почвообрабатывающих машин и посевных агрегатов.

Есть ли отрицательные моменты при переходе к энергосберегающим технологиям?

Чрезмерное уплотнение. Чрезмерное уплотнение, ухудшение водопроницаемости тяжелых бесструктурных и малогумусированных почв, когда равновесная плотность почвы значительно больше оптимальной для роста растений плотности. Поэтому переход на сберегающие технологии с безплужной обработкой почвы надо начинать в севооборотах без пропашных культур на структурных, не заплывающих почвах, с содержанием гумуса более 3-3,5%. Необходимость глубоких периодических безотвальных рыхлений (чизелевание), их частота, глубина требуют дальнейшего изучения.

Растительные остатки. При большом количестве растительных остатков, недостаточном измельчении соломы и неравномерном ее распределении по поверхности почвы могут возникнуть проблемы с заделкой семян на оптимальную глубину. Здесь больше подойдут сеялки с дисковыми сошниками. Дисковые сошники легче прорезают поверхность и меньше забиваются соломой.

Система защиты растений. Среди наиболее острых проблем, связанных с внедрением ресурсосберегающих технологий возделывания сельскохозяйственных культур, особое место занимают вопросы организации системы защиты растений. Многолетние исследования отечественных и зарубежных ученых позволили выявить характерные этапы в динамике фитосанитарной ситуации при внедрении технологий безотвальной основной обработки почвы:

  • I этап - ухудшение фитосанитарной обстановки, за счет роста засоренности (особенно многолетними сорными растениями), повышения вредоносности вредителей и болезней (продолжительность 4-5 лет)
  • II этап - стабилизация фитосанитарной ситуации (продолжительность 3-4 года)
  • III этап - за счет активизации естественных механизмов регуляции почвы, численность вредных организмов существенно снижается в сравнении с уровнем на момент начала внедрения таких технологий.

Затраты на пестициды. Среди аргументов противников широкого использования ресурсосберегающих технологий обработки почвы, наиболее часто используется тезис о высоких затратах, связанных с применением пестицидов в таких системах, которые полностью перекрывают стоимость сэкономленного топлива и других ресурсов. Действительно, одним из непременных условий применения минимальной и нулевой обработки почвы большинство отечественных и зарубежных специалистов считают применение гербицидов сплошного действия на основе глифосата (Раундап, Торнадо, Глисол, Глифос и др.) против многолетних сорняков. Затраты, связанные с их применением доходят до 200-300 грн/га. Кроме того, на первом этапе ухудшения фитосанитарной обстановки, может возрасти засоренность яровых зерновых культур овсюгом, что предполагает применение специальных противоовсюжных гербицидов, стоимость которых достигает 200 грн/га. Вместе с тем, данные расчеты не учитывают того, что рост затрат на защиту растений в ре­сурсосберегающем земледелии наблюдается только на первом этапе внедрения таких систем, в дальнейшем потребность в пестицидах значительно уменьшается. Только знание реальной ситуации на каждом поле позволяет эффек­тивно бороться с вредителями, болезнями и сорными растениями, тем самым сни­зить и уровень затрат на защиту растений.

Какие же преимущества имеют энергосберегающие технологии перед традиционными, основанными на вспашке плугом?

  • Улучшение экономических показателей:
  • уменьшение затрат ГСМ на 35-40% - с 60 до 35-40 литров на 1 га, а всех затрат по всему технологическому циклу возделывания зерновых культур на 9-15%; при экономии дизельного топлива по 20 л на 1 га, затраты снизятся на 100 - 200 гривен
  • высокая производительность труда, сокращение потребности в механизаторах в 2 раза и своевременное выполнение полевых работ
  • снижение затрат на приобретение и эксплуатацию сельскохозяйственной техники; традиционный набор машин для возделывания зерновых культур на площади 2500 гектаров включает 64 машины 21 наименования с общей металлоемкостью 240 тонн. При переходе на сберегающие технологии количество машин сокращается до 11-13 штук с металлоемкостью 125-135 тонн.
  • экономия расходов по предотвращению водной и ветровой эрозий почвы
  • улучшение финансово-экономического положения сельхозтоваропроизводителей

Увеличение почвенного плодородия. Применение традиционной отвальной технологии приводит к снижению почвенного плодородия за счет интенсивного разложения органического вещества, чрезмерного распыления почвы, разрушения структуры, образования почвенной корки и усиления водной и ветровой эрозий.

Экономия минеральных удобрений. При использовании в качестве удобрения измельченной соломы и зеленой массы - сидератов, (растения, которые выращивают для повышения плодородия почвы; сидераты обогащают почву органическим веществом и азотом) эти положительные изменения будут значительно больше. По мере накопления растительных остатков и гумуса в верхнем слое почвы потребность в минеральных удобрениях на формирование единицы урожая значительно уменьшается.

Влагосбережение. При ресурсосберегающих технологиях с безотвальной и поверхностной обработкой почвы, благодаря уменьшению или предотвращению поверхностного стока воды, лучшему накоплению снега, весенние запасы продуктивной влаги бывают не меньше по сравнению с традиционной осенней отвальной вспашкой. Чем больше растительных остатков на поверхности почвы, тем сильнее инфильтрация. А, как известно, каждые 10 мм продуктивной влаги перед посевом - это 1 ц дополнительного урожая зерна с каждого гектара. Мульча из растительных остатков почвы сберегает почвенную влагу от интенсивного испарения и сохраняет ее на весь вегетационный период яровых зерновых и ко времени посева озимых культур. Острота вопроса обеспечения растений влагой уменьшается.

Возвращение почвенной биоты. При вспашке с оборотом пласта, когда аэробная биота почвы (совокупность видов растений, животных и микроорганизмов, объединенных общей областью распространения), объединенных общей областью распространения), обитающая в слое 0-15 см, запахивается в анаэробные условия на глубину 16-30 см, где она погибает без кислорода. Наступает «шоковое» состояние почвы, которое исчезает только через 4-5 лет безотвальных обработок с возвратом микроорганизмов и дождевых червей. А биота почвы необходима для перевода растительных остатков в доступные для растений питательные вещества и для прохождения других жизненно важных для растений и почвы процессов.

Уменьшение загрязнения окружающей среды. Уменьшение интенсивности водной эрозии ведет к снижению потерь питательных веществ через смыв в реки и водоемы. При интенсификации биологической жизни в почве при минимальных обработках быстрее происходит распад остатков химических препаратов защиты растений. Из-за увеличения темпов образования гумуса при энергосберегающих технологиях уменьшается выброс СО2 в атмосферу: 1 тонна вновь образуемого гумуса связывает 2 тонны СО2.

Выводы

Энергосберегающее земледелие - это объективная необходимость, связанная с экономическими и экологическими предпосылками.

Энергосберегающие технологии - это более совершенная система возделывания культур, требующая специальных орудий и машин, специальных мероприятий по защите растений.

Энергосберегающие технологии - одна из самых важных стратегий жизнеобеспечения с точки зрения гарантирования ресурсов и продовольствия во всем мире.

Система энергосберегающего земледелия названа агроэкологической революцией 21 века и будет удерживать ключевые позиции в ближайшие 50-100 лет.