ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Состояние воды в растении. Поглощение и утилизация минеральных элементов Вода составляет в среднем массы растения

    Химический состав и питание растений
  • Химический состав растений и качество урожая
  • Роль отдельных элементов в жизни растений. Вынос питательных веществ с урожаем сельскохозяйственных культур
  • В состав растений входит вода и так называемое сухое вещество, представленное органическими и минеральными соединениями. Соотношение между количеством воды и сухого вещества в растениях, их органах и тканях изменяется в широких пределах. Так, содержание сухого вещества в плодах огурцов, бахчевых культур может составлять до 5% общей их массы, в кочанах капусты, корнях редиса и турнепса - 7-10, корнеплодах столовой свеклы, моркови и луковицах лука - 10-15, в вегетативных органах большинства полевых культур - 15-25, корнеплодах сахарной свеклы и клубнях картофеля - 20-25, в зерне хлебных злаков и бобовых культур - 85-90, семенах масличных культур - 90-95%.

    Вода

    В тканях растущих вегетативных органов растений содержание воды колеблется от 70 до 95%, а в запасающих тканях семян и в клетках механических тканей - от 5 до 15%. По мере старения растений общий запас и относительное содержание воды в тканях, особенно репродуктивных органов, снижается.

    Функции воды в растениях обусловлены присущими ей физическими и химическими свойствами. Она обладает высокой удельной теплоемкостью и благодаря способности испаряться при любой температуре предохраняет растения от перегрева. Вода - прекрасный растворитель для многих соединений, в водной среде происходит электролитическая диссоциация этих соединений и усвоение растениями ионов, содержащих необходимые элементы минерального питания. Высокое поверхностное натяжение воды определяет ее роль в процессах поглощения и передвижения минеральных и органических соединений. Полярные свойства и структурная упорядоченность молекул воды обусловливают гидратацию ионов и молекул низко- и высокомолекулярных соединений в клетках растений.

    Вода является не просто наполнителем растительных клеток, но и неотделимой частью их структуры. Оводненность клеток тканей растений обусловливает их тургор (давление жидкости внутри клетки на ее оболочку), является важным фактором интенсивности и направленности разнообразных физиологических и биохимических процессов. При непосредственном участии воды происходит огромное число биохимических реакций синтеза и распада органических соединений в растительных организмах. Особое значение вода имеет в энергетических преобразованиях в растениях, прежде всего в аккумуляции солнечной энергии в виде химических соединений при фотосинтезе. Вода обладает способностью пропускать лучи видимой и близкой к ней ультрафиолетовой части света, необходимой для фотосинтеза, но задерживает определенную часть инфракрасной тепловой радиации.

    Сухое вещество

    Сухое вещество растений на 90-95% представлено органическими соединениями - белками и другими азотистыми веществами, углеводами (сахарами, крахмалом, клетчаткой, пектиновыми веществами), жирами, содержание которых определяет качество урожая (табл. 1).

    Сбор сухого вещества с товарной частью урожая основных сельскохозяйственных культур может колебаться в очень широких пределах - от 15 до 100 ц и более с 1 га.

    Белки и другие азотистые соединения.

    Белки - основа жизни организмов - играют решающую роль во всех процессах обмена веществ. Белки выполняют структурные и каталитические функции, являются также одним из основных запасных веществ растений. Содержание белков в вегетативных органах растений обычно составляет 5-20% их массы, в семенах хлебных злаков - 6-20%, а в семенах бобовых и масличных культур - 20-35%.

    Белки имеют следующий довольно стабильный элементарный состав (в %): углерод - 51-55, кислород - 21-24, азот - 15-18, водород - 6,5-7, сера - 0,3-1,5.

    Растительные белки построены из 20 аминокислот и двух амидов. Особое значение имеет содержание в белках растений так называемых незаменимых аминокислот (валина, лейцина и изолейцина, треонина, метионина, гистидина, лизина, триптофана и фенилаланина), которые не могут синтезироваться в организме человека и животных. Эти аминокислоты люди и животные получают только с растительными пищевыми продуктами и кормами.

    Таблица №1.
    Средний химический состав урожая сельскохозяйственных растений, в % (по Б. П. Плешкову)
    Культура Вода Белки Сырой протеин Жиры Др. углеводы Клетчатка Зола
    Пшеница (зерно) 12 14 16 2,0 65 2,5 1,8
    Рожь (зерно) 14 12 13 2,0 68 2,3 1,6
    Овес (зерно) 13 11 12 4,2 55 10,0 3,5
    Ячмень(зерно) 13 9 10 2,2 65 5,5 3,0
    Рис (зерно) 11 7 8 0,8 78 0,6 0,5
    Кукуруза (зерно) 15 9 10 4,7 66 2,0 1,5
    Гречиха (зерно) 13 9 11 2,8 62 8,8 2,0
    Горох (зерно) 13 20 23 1,5 53 5,4 2,5
    Фасоль (зерно) 13 18 20 1,2 58 4,0 3,0
    Соя (зерно) 11 29 34 16,0 27 7,0 3,5
    Подсолнечник (ядра) 8 22 25 50 7 5,0 3,5
    Лен (семена) 8 23 26 35 16 8,0 4,0
    Картофель (клубни) 78 1,3 2,0 0,1 17 0,8 1,0
    Сахарная свекла (корни) 75 1,0 1,6 0,2 19 1,4 0,8
    Кормовая свекла (корни) 87 0,8 1,5 0,1 9 0,9 0,9
    Морковь (корни) 86 0,7 1,3 0,2 9 1,1 0,9
    Лук репчатый 85 2,5 3,0 0,1 8 0,8 0,7
    Клевер (зеленая масса) 75 3,0 3,6 0,8 10 6,0 3,0
    Ежа сборная (зеленая масса) 70 2,1 3,0 1,2 10 10,5 2,9
    *Сырой протеин включает белки и небелковые азотистые вещества

    Белки различных сельскохозяйственных культур неравноценны по аминокислотному составу, растворимости и переваримости. Поэтому качество растениеводческой продукции оценивается не только по содержанию, но и по усвояемости, полноценности белков на основе изучения их фракционного и аминокислотного состава.

    В составе белков находится подавляющая доля азота семян (не менее 90% общего количества в них азота) и вегетативных органов большинства растений (75-90%). В тоже время в клубнях картофеля, корнеплодах и листовых овощах до половины общего количества азота приходится на долю азотистых небелковых соединений. Они представлены в растениях минеральными соединениями (нитраты, аммоний) и органическими (среди которых преобладают свободные аминокислоты и амиды, хорошо усваиваемые в организмах животных и человека). Небольшая часть небелковых органических соединений в растениях представлена пептидами (построенными из ограниченного количества остатков аминокислот и поэтому в отличие от белков имеющими низкую молекулярную массу), а также пуриновыми и пиримидиновыми основаниями (входящими в состав нуклеиновых кислот).

    Для оценки качества растениеводческой продукции часто пользуются показателем «сырой протеин», которым выражают сумму всех азотистых соединений (белка и небелковых соединений). Рассчитывают «сырой протеин» путем умножения процентного содержания общего азота в растениях на коэффициент 6,25 (получаемый исходя из среднего (16%) содержания азота в составе белка и небелковых соединений).

    Качество зерна пшеницы оценивается по содержанию сырой клейковины, количество и свойства которой определяют хлебопекарные свойства муки. Сырая клейковина - это белковый сгусток, остающийся при отмывании водой теста, замешанного из муки. Сырая клейковина содержит примерно 2/3 воды и 1/3 сухих веществ, представленных прежде всего труднорастворимыми (спирто- и щелочерастворимыми) белками. Клейковина обладает эластичностью, упругостью и связанностью, от которых зависит качество выпекаемых из муки изделий. Между содержанием «сырого протеина» в зерне пшеницы и «сырой клейковины» существует определенная коррелятивная зависимость. Количество сырой клейковины можно рассчитать путем умножения процентного содержания сырого протеина в зерне на коэффициент 2,12.

    Углеводы

    Углеводы в растениях представлены сахарами (моносахарами и олигосахаридами, содержащими 2-3 остатка моносахаров) и полисахаридами (крахмалом, клетчаткой, пектиновыми веществами).

    Сладкий вкус многих плодов и ягод связан с содержанием в них глюкозы и фруктозы. Глюкоза в значительных количествах (8-15%) содержится в ягодах винограда, откуда и получила название «виноградный сахар», и составляет до половины общего количества сахаров в плодах и ягодах. Фруктоза, или «плодовый сахар», накапливается в больших количествах в косточковых плодах (6-10%) и содержится в меде. Она слаще глюкозы и сахарозы. В корнеплодах доля моносахаридов среди Сахаров невелика (до 1% общего их содержания).

    Сахароза - дисахарид, построенный из глюкозы и фруктозы. Сахароза является основным запасным углеводом в корнях сахарной свеклы (14-22%) и в соке стеблей сахарного тростника (11-25%). Целью выращивания этих растений и является получение сырья для производства сахара, используемого в питании людей. В небольших количествах находится во всех растениях, более высоким ее содержанием (4-8%) отличаются плоды и ягоды, а также морковь, столовая свекла и лук.

    Крахмал в небольших количествах содержится во всех зеленых органах растений, но в качестве основного запасного углевода накапливается в клубнях, луковицах и семенах. В клубнях картофеля ранних сортов содержание крахмала 10-14%, средне- и позднеспелых - 16-22%. В расчете на сухую массу клубней это составляет 70-80%. Примерно такое же относительное содержание крахмала в семенах риса и пивоваренного ячменя. В зерне других хлебных злаков крахмала обычно 55-70%. Между содержанием белка и крахмала в растениях существует обратная зависимость. В богатых белками семенах зернобобовых культур крахмала меньше, чем в семенах злаков; еще меньше крахмала в семенах масличных культур.

    Крахмал - легко усвояемый организмом людей и животных углевод. При ферментативном (под действием ферментов амилаз) и кислотном гидролизе распадается до глюкозы.

    Клетчатка, или целлюлоза - основной компонент клеточных стенок (в растениях она связана с лигнином, пектиновыми веществами и другими соединениями). Волокно хлопчатника на 95-98%, лубяные волокна льна, конопли, джута на 80-90% представлены клетчаткой. В семенах пленчатых злаков (овса, риса, проса) клетчатки содержится 10-15%, а в не имеющих пленок семенах хлебных злаков - 2-3%, в семенах зернобобовых культур - 3-5%, в корнеплодах и клубнях картофеля - около 1 %. В вегетативных органах растений содержание клетчатки составляет от 25 до 40% на сухую массу.

    Клетчатка - высокомолекулярный полисахарид из неразветвленной цепи глюкозных остатков. Ее усвояемость значительно хуже, чем крахмала, хотя при полном гидролизе клетчатки образуется также глюкоза.

    Пектиновые вещества - высокомолекулярные полисахариды, содержащиеся в плодах, корнеплодах и растительных волокнах. В волокнистых растениях они скрепляют между собой отдельные пучки волокон. Свойство пектиновых веществ в присутствии кислот и сахаров образовывать желе или студни используется в кондитерской промышленности. В основе строения этих полисахаридов лежит цепь из остатков полигалактуроновой кислоты с метильными группировками.

    Жиры и жироподобные вещества (липиды) являются структурными компонентами цитоплазмы растительных клеток, а у масличных культур выполняют роль запасных соединений. Количество структурных липидов обычно небольшое - 0,5-1% сырой массы растений, но они выполняют в растительных клетках важные функции, в том числе по регуляции проницаемости мембран. Семена масличных культур и сои используют для получения растительных жиров, называемых маслами.

    По химическому строению жиры - смесь сложных эфиров трехатомного спирта глицерина и высокомолекулярных жирных кислот. В растительных жирах ненасыщенные кислоты представлены олеиновой, линолевой и линоленовой кислотами, а насыщенные - пальмитиновой и стеариновой кислотами. Состав жирных кислот в растительных маслах определяет их свойства - консистенцию, температуру плавления и способность к высыханию, прогорканию, омылению, а также их пищевую ценность. Линолевая и линоленовая жирные кислоты содержатся только в растительных маслах и являются «незаменимыми» для человека, так как не могут синтезироваться в его организме. Жиры являются наиболее энергетически выгодными запасными веществами - при их окислении выделяется на единицу массы в два раза больше энергии, чем углеводов и белков.

    К липидам относятся также фосфатиды, воски, каротиноиды, стеарины и жирорастворимые витамины A, D, E и K.

    В зависимости от вида и характера использования продукции ценность отдельных органических соединений может быть различной. В зерне злаков основными веществами, определяющими качество продукции, являются белки и крахмал. Большим содержанием белка среди зерновых культур отличается пшеница, а крахмала - рис и пивоваренный ячмень. При использовании ячменя для пивоваренного производства накопление белка ухудшает качество сырья. Нежелательно также накопление белка и небелковых азотистых соединений в корнях сахарной свеклы, используемых для производства сахара. Зернобобовые культуры и бобовые травы отличаются повышенным содержанием белков и меньшим - углеводов, качество их урожая зависит прежде всего от размеров накопления белка. Качество клубней картофеля оценивается по содержанию крахмала. Цель возделывания льна, конопли и хлопчатника - получение волокна, состоящего из клетчатки. Повышенное количество клетчатки в зеленой массе и сене однолетних и многолетних трав ухудшает их кормовые достоинства. Масличные культуры выращиваются для получения жиров - растительных масел, используемых как для пищевых, так и промышленных целей. Качество продукции сельскохозяйственных культур может зависеть и от наличия других органических соединений - витаминов, алкалоидов, органических кислот и пектиновых веществ, эфирных и горчичных масел.

    Условия питания растений имеют важное значение для повышения валового сбора наиболее ценной части урожая и улучшения его качества. Например, усиление азотного питания увеличивает относительное содержание в растениях белка, а повышение уровня фосфорно-калийного питания обеспечивает большее накопление углеводов - сахарозы в корнях сахарной свеклы, крахмала в клубнях картофеля. Созданием соответствующих условий питания с помощью удобрений можно повысить накопление наиболее ценных в хозяйственном отношении органических соединений в составе сухого вещества растений.

    Элементарный состав растений

    Сухое вещество растений имеет в среднем следующий элементарный состав (в весовых процентах); углерод - 45, кислород - 42, водород -6,5, азот и зольные элементы - 6,5. Всего в растениях обнаружено более 70 элементов. На современном уровне развития научных данных около 20 элементов (в том числе углерод, кислород, водород, азот, фосфор, калий, кальций, магний, сера, железо, бор, медь, марганец, цинк, молибден, ванадий, кобальт и йод) считаются, безусловно, необходимыми для растений. Без них невозможны нормальный ход жизненных процессов и завершение полного цикла развития растений. В отношении еще более 10 элементов (в том числе кремния, алюминия, фтора, лития, серебра и др.) имеются сведения об их положительном действии на рост и развитие растений; эти элементы считаются условно необходимыми. Очевидно, что по мере совершенствования методов анализа и биологических исследований общее число элементов в составе растений и список необходимых элементов будут расширены.

    Углеводы, жиры и прочие безазотистые органические соединения построены из трех элементов - углерода, кислорода и водорода, а в состав белков и других азотистых органических соединений входит еще и азот. Эти четыре элемента - С, О, Н и N получили название органогенных, на их долю в среднем приходится около 95% сухого вещества растений.

    При сжигании растительного материала органогенные элементы улетучиваются в виде газообразных соединений и паров воды, а в золе остаются преимущественно в виде окислов многочисленные «зольные» элементы, на долю которых приходится в среднем всего около 5% массы сухого вещества.

    Азот и такие зольные элементы, как фосфор, сера, калий, кальций, магний, натрий, хлор и железо, содержатся в растениях в относительно больших количествах (от нескольких процентов до сотых долей процента сухого вещества) и называются макроэлементами.

    Количественные различия в содержании макро- и микроэлементов в составе сухого вещества растений показаны в таблице 2.

    Относительное содержание азота и зольных элементов в растениях и их органах может колебаться в широких пределах и определяется биологическими особенностями культуры, возрастом и условиями питания. Количество азота в растениях тесно коррелирует с содержанием белка, а его всегда больше в семенах и молодых листьях, чем в соломе созревших культур. В ботве содержание азота больше, чем в клубнях и корнеплодах. В товарной части урожая основных сельскохозяйственных культур на долю золы приходится от 2 до 5% массы сухого вещества, в молодых листьях и соломе зерновых, ботве корне- и клубнеплодов 6-14%. Наиболее высоким содержанием золы (до 20% и более) отличаются листовые овощи (салат, шпинат).

    Состав зольных элементов у растений также имеет существенные различия (табл. 3). В золе семян зерновых и бобовых культур сумма оксидов фосфора, калия и магния составляет до 90%, а среди них преобладает фосфор (30-50% массы золы). Доля фосфора в золе листьев и соломы значительно меньше, и в ее составе преобладают калий и кальций. Зола клубней картофеля, корней сахарной свеклы и других корнеплодов представлена преимущественно оксиданом калия (40-60% массы золы). В золе корнеплодов содержится значительное количество натрия, а в соломе злаков - кремния. Более высоким содержанием серы отличаются бобовые культуры и растения семейства капустные.

    Таблица №3.
    Примерное содержание отдельных элементов в золе растений, в % ее массы
    Культура P 2 O 5 K 2 O СаО MgO SO 4 Na 2 O SiO 2
    Пшеница
    зерно 48 30 3 12 5 2 2
    солома 10 30 20 6 3 3 20
    Горох
    зерно 30 40 5 6 10 1 1
    солома 8 25 35 8 6 2 10
    Картофель
    клубни 16 60 3 5 6 2 2
    ботва 8 30 30 12 8 3 2
    Сахарная свекла
    корни 15 40 10 10 6 10 2
    ботва 8 30 15 12 5 25 2
    Подсолнечник
    семена 40 25 7 12 3 3 3
    стебли 3 50 15 7 3 2 6

    В состав растений в относительно больших количествах входят кремний, натрий и хлор, а также значительное число так называемых ультрамикроэлементов, содержание которых исключительно мало - от 10 -6 до 10 -8 %. Физиологические функции и абсолютная необходимость этих элементов для растительных организмов еще не окончательно установлены.

    В среднем растение на 80 процентов состоит из воды. У типичных ксерофитов (растений засушливых областей, пустынь или безводных почв) содержание влаги низко, у растений, запасающих воду впрок, оно нередко достигает 95% общего веса. Как это вообще свойственно живой природе, вода играет большую роль в жизни растений. Она регулирует прочностные свойства их тканей: является растворителем для питательных солей, которые затем разносятся по всему растению; оказывает прямое воздействие на электрические процессы, протекающие в растении. При обязательном участии воды в живом организме осуществляются все химические реакции, и, наконец, без нее невозможен синтез твердых неводных растительных веществ. Поэтому для растения регулярное снабжение его водой составляет одну из жизненно важных проблем вообще.

    Водным растениям в этом отношении намного легче: они могут вбирать всю столь необходимую для их существования влагу всей своей поверхностью. Наземные растения, как правило, усваивают воду из влажной почвы с помощью сосущих корней. Корневая система растений устроена в высшей степени рационально и даже у одного и того же растения обладает очень высокой приспособляемостью - сайт. Например, если растение пересадить в водный питательный раствор, в котором полностью отсутствует почва, то структура его корневой системы изменится исключительно быстро. Образуется широко разветвленная сеть дополнительных корневых волосков, которая дает возможность корням выполнять их основную функцию - активно всасывать воду и направлять ее под давлением в проводящую систему растения.

    Возможности подобной системы лучше всего проявляются в экстремальных ситуациях, на переходе от еще возможного к уже невозможному. Необходимость - мать изобретений. Поэтому нас не должно удивлять, что там, где растения испытывают острую потребность в воде, мы обнаруживаем наиболее интересную и самую совершенную технологию ее получения .

    Крайнюю нехватку воды растения ощущают прежде всею в тех местообитаниях, где они непосредственно не соприкасаются ни с водой, ни с почвой. В подобных условиях произрастают эпифиты, в частности большинство видов тропических орхидей. Они живут в кронах высоких деревьев девственных лесов, но не пользуются ни их влагой, ни их питательными веществами, а лишь прикрепляются к ним. У этих растений нет и корней, которые бы спускались до самой почвы, а стволы и листья деревьев-опор бывают нередко настолько гладкими, что дождевая вода беспрепятственно тотчас же стекает по ним на землю. Проточной водой орхидеи не имеют возможности постоянно пользоваться, или же ее нет в достаточном количестве.

    Но существенно то, что воздух в дождевых тропических лесах очень влажен. Частью ливни и интенсивная в условиях высоких температур транспирация листьев способствует созданию тепличной атмосферы, когда необходимая для жизни вода буквально висит в воздухе. Орхидеи добывают ее сравнительно традиционным способом. Для этой цели они обзавелись корнями, правда воздушными, которые свободно висят в пространстве, сильно ветвясь и плотно сплетаясь между собой. Но для того чтобы корни не высыхали и могли бы безотказно поглощать воду, им недостает совсем немногого: влажной почвы. Растения поступают здесь просто и эффективно: они сами для себя создают искусственную «почву». Воздушные корни орхидей покоятся в веламене, представляющем собой относительно толстый; слой рыхлой ткани. Эта ткань состоит из отмерших клеток и очень похожа на пористую губку. В сухую погоду «губка» сжимается и становится совершенно белой из-за большого числа пустот, наполненных воздухом. Но уже при самой незначительной влажности воздуха она, словно промокательная бумага, начинает жадно впитывать атмосферную влагу. Если чересчур влажно и все поры заполнены водой, ткань приобретает сероватый оттенок. Корни могут свободно забирать воду из веламена и направлять ее в систему водоснабжения растения.

    Некоторые представители ластовневых, также обитающих высоко в кронах деревьев-хозяев, выработали технологию сбора воды, которая с функциональной точки зрения похожа на технику, применяемую орхидеями. Однако конструктивно их механизм отличен. Как и орхидеи, эти растения «защищают» свои корни от высыхания и в то же время «заботятся» о том, чтобы в непосредственной близости от корней постоянно находился воздух, насыщенный парами воды. Особой губчатой ткани у ластовневых нет. Вместо того они своими листьями, создающими густую тень, заслоняют от солнечных лучей плотно прилегающие к стволу дерева-опоры корни. Чем теснее прижимаются листья к коре, тем более влажным становится находящийся между ними и стволом дерева воздух - сайт. Исключительно ярко выражено это защитное приспособление у весьма распространенного на Яве Conchophyllum imbricatum. Его утолщенные хрящевидные листья имеют форму створки раковины, а своими краями вплотную проникают к коре дерева, по ней же стелется корень растения. Под каждым листом образуется наполняемая влажным воздухом полость, в которую, ветвясь, врастает корень, выпущенный стеблем. Остается лишь восхищаться тем, как рационально взаимоувязаны между собой местоположения листа и корня.

    Истинную изобретательность в использовании принципа корневой полости проявил еще один вид лиан, относящийся к тому же семейству. Речь идет об обитающей там же на Яве дисхидии (Dischidia rafflesiana). Ее стебель выпускает листья двух видов: обычные листья зеленого цвета и пустотелые, мешковидный формы и линялой желтовато-зеленой окраски образования, напоминающие по внешнему виду сплющенные по продольной оси клубни. Там, где эти урнообразные листья отходят от стебля растения, имеется отверстие, края которого заметно подогнуты внутрь. Изнутри «урны» выстланы толстым слоем растительного воска черно-фиолетового цвета. Через располагающиеся в восковом налете микроскопические устьица растение транспирирует. В тех местах, где формируются урнообразные листья, стебель пускает корни, проникающие сквозь узкое отверстие в полость урны. В полной темноте корни плотно прилегают к ее стенкам и усиленно ветвятся.

    Обобщим наши наблюдения.

    Во-первых, конструкция в целом со многих точек зрения представляет собой великолепное техническое решение проблемы накопления, хранения и использовании воды. В результате перепада температур, обусловленного сменой дня и ночи, чередования яркого освещения и затенения на внутренних стенках листа-урны легко конденсируются нары воды, которую без труда поглощают проникающие сюда снаружи корни растения. Заметим, кстати, что водой-конденсатом, полученной за счет разницы температур, пользуются жители некоторых островов вулканического происхождения (например, Канарских). Крестьяне покрывают свои поля 20-сантиметровым слоем грубозернистого пемзового песка или вулканического пепла. При понижении температуры в ночное время в порах этих материалов скапливается конденсационная влага, усваиваемая затем сельскохозяйственными растениями. Без такого пористого покрытия было бы немыслимо ведение сельского хозяйства в районах, где осадки выпадают не чаще одного раза в три года.

    Во-вторых, даже в засушливые периоды относительная влажность воздуха внутри урнообразного листа остается все еще настолько высокой, что корни растения не высыхают.

    В-третьих, объем испаряемой этими листьями воды сводится до минимума, поскольку внутри них постоянно имеется влажный воздух и царит полный «штиль» - два обстоятельства, которые резко ограничивают интенсивность транспирации.

    И наконец, в-четвертых, взамен израсходованной влаги может быть незамедлительно сконденсирована новая, которая опять же будет поглощена корневой системой. В целом это весьма напоминает механизм снабжения водой крупного промышленного центра, когда происходит многократное использование потребленной и регенерированной воды.

    Но там, где человек осуществляет водоподготовку с помощью химии, дисхидия применяет дистилляцию, метод, не вызывающий практически никаких возражений с точки зрения физиологии. Более эффективного способа получения воды для ее повторной утилизации трудно придумать. Если воспользоваться терминологией из области охраны окружающей среды, то можно сказать, что в урнообразных листьях тропической лианы происходит настоящая рециркуляция водного ресурса (иными словами, повторное включение воды в существующий круговорот ее потребления).

    Мы, люди, должны научиться тому, что в состоянии делать дисхидия, и как можно скорее, поскольку уровень загрязнения водной среды на нашей планете все возрастает. В комплексе неотложных мер по предотвращению возможной катастрофы одна из наиболее важных - это организация производства по принципу рециркуляции природных ресурсов. Запасы питьевой воды у человечества столь же ограничены, как и у дисхидии с ее урнообразными листьями. Поэтому мы должны обходиться с водой столь же бережно и рационально. Приступать к регенерации воды нам следует не тогда, когда мы вновь ощутим потребность в ней, а уже в тот момент, когда мы производим промышленные и бытовые стоки. Заметим попутно, что растение никогда не выделяет загрязненной воды, в процессе испарения оно расстается с уже очищенной влагой. Итак, только практика возврата воды в круговорот ее потребления (рециркуляция) позволит обеспечить нас достаточным ее количеством.

    В тех случаях, когда урнообразные листья дисхидии висят среди ветвей строго вертикально, отверстием вверх, они дополнительно играют роль цистерн и резервуаров для сбора воды и питательных веществ - сайт. В них скапливается дождевая вода, а также продукты разложения попавших внутрь и погибших там насекомых. Если же учесть, что эти растения предпочитают более сухие и более открытые солнечному свету места обитания в отличие от эпифитных орхидей с их тканью, способной впитывать влагу воздуха, словно губка, то не трудно понять, почему дисхидии стремятся крайне экономно расходовать воду.

    В климатически сходных условиях растут многие американские виды семейства бромелиевых. Они также предпочитают селиться в кронах высоких деревьев, где они полностью открыты горячим лучам тропического солнца и одновременно воздействию жарких ветров. Ввиду скудости дождевых осадков в этой местности бромелиевые вынуждены покрывать все свои потребности в воде за счет атмосферной влаги, содержащейся в воздухе, в первую очередь влаги, приносимой столь частыми здесь ночными туманами. Именно по этой причине она выработали совершенно иную, чем у орхидей и ластовневых, технологию получения воды. Одни из них вовсе отказались от корней, другие используют их лишь в качестве прикрепительных органов, которые нередко выдерживают на себе значительный по весу груз.

    Большинство же избрало самый прямой путь получения воды: непосредственно из воздуха в листья . Для этого, разумеется, необходимы специальные приспособления. И они есть. Это - микроскопические чешуйки, постоянно поглощающие воду из воздуха.

    Пример - эхмея (Aechmea chantinii), одно из комнатных растений семейства бромелиевых. Ее узкие, длинные и сочные листья украшены белыми поперечными полосками. Если рассматривать эти полоски в лупу, можно заметить, что они образованы множеством мельчайших круглых пластиночек, диаметр каждой из которых едва достигает одной четверти миллиметра. И лишь под микроскопом становится видно, что пластинки на самом деле имеют форму крошечных воронок, серединой своей уходящих в глубь листа. Их края свободно лежат на поверхности листа, не прирастая к нему, но при этом они многократно перекрывают друг друга. В свою очередь каждая из воронок состоит из отдельных клеток.

    Диаметр этих микросозданий природы составляет одну сотую миллиметра, и их с полным правом можно считать самыми маленькими в мире вакуумными насосами. Это пустотелые, сжимающиеся в сухую погоду клетки. При увлажнении их стенки быстро набухают и распрямляются; вся клетка вытягивается, и внутри нее образуется разрежение, проявляющее по отношению к внешней среде всасывающий эффект. Клетка жадно впитывает влагу из воздуха. Разница в концентрации клеточного сока в клетках воронки заставляет поглощенную воду передвигаться внутрь листа. Очень часто воронки располагаются на поверхности листа чрезвычайно плотно, и тогда растение способно вобрать в себя огромное количество влаги, приносимой туманом или росой. Сухая воронка может всосать целиком каплю воды.

    Некоторые виды бромелиевых (например, тилландсия Tillandsia usneoides), свисающие, словно бороды великанов, с ветвей дерева-опоры, в сухом состоянии настолько легки, что можно предположить, что они не тонут в воде. На самом же деле стоит им оказаться на поверхности водоема, как их воронки начинают весьма быстро вбирать воду. Вес растения возрастает, и оно идет ко дну. В засушливых районах тропиков тилландсии, используя только воздух и воду, производят огромное количество растительного вещества, которое местные жители применяют в качестве упаковочного материала.

    Совершенно иную систему утилизации атмосферной влаги выработали некоторые растения пустынь и полупустынь. Чтобы сделать описание этой системы более наглядным и понятным для читателя, я вначале вкратце расскажу о технологии лакокрасочного покрытия, которая активно используется в последние годы в промышленности.. Этот метод позволяет, применяя специально сконструированный для подобных целей пистолет-распылитель, покрывать краской или лаком изделия либо его детали буквально из-за угла. При этом полет мельчайших частичек краски происходит не по произвольной траектории, а таким образом, что все они подлетают к предмету, который необходимо покрасить, с нужной стороны: спереди, с боков и даже сзади.

    В рекламных текстах столь соблазнительные для пользования достоинства электростатического метода покрытия расхваливаются весьма назойливым образом, но тем не менее без излишнего преувеличения. В них, в частности, говорится о том, что частички краски летят вдоль «силовых линий электрического поля». А это, в свою очередь, означает, что они, подобно маленьким магнитам, притягиваемым крупной металлической деталью, испытывают притяжение со стороны окрашиваемой поверхности. Поэтому они не пролетают мимо нее по прямой линии, как это происходит при наиболее распространенном способе нанесения краски распылением ее сжатым воздухом, а приобретают в пистолете-распылителе сильный электромагнитный заряд, который и направляет их к окрашиваемой детали. Попав на нее, частички краски теряют свой заряд.

    В сравнении с традиционной технологией метод покрытия в электростатическом поле позволяет сберечь до 60 процентов распыляемого красителя. Его применение приносит народному хозяйству значительную экономическую выгоду. Что касается растений, то им этот метод известен с древнейших времен. Желательную для них ситуацию, несколько изменив суть дела, можно описать таким образом: если бы удалось взвешенные в воздухе мельчайшие частички влаги с помощью электростатических сил доставить растению, иными словами, притянуть их к растению как бы магнитом, то тогда появилась бы возможность во много раз повысить эффективность использования атмосферной влаги. Полезный эффект был бы здесь намного больше тех 60 процентов, о которых шла речь выше. Но эта цифра рассчитана, исходя из допущения, что предварительно вся система была тщательно отрегулирована, то есть оптимально определены диаметр струи распыла и ее направление на окрашиваемую поверхность.

    Разумеется, на предварительную «наладку» растения рассчитывать не могут. Самое большее, что в их силах, - это случайное соприкосновение с водяными парами. Тем не менее и они научились электростатическим способом «распылять» на себя влагу, содержащуюся в атмосфере, например влагу туманов. В отличие от пистолетов-распылителей растения не в состоянии придать частицам воды электрический заряд, поскольку последние для них вначале попросту недосягаемы. Но и здесь выход был найден: растения заряжают самих себя! Происходит это следующим образом. На одревесневевших колючках и волосках кактусов и других растений пустынь в ветреную погоду накапливаются электрические заряды - сайт. Этот процесс аналогичен тому, с которым мы сталкиваемся, когда расчесываем свои волосы пластмассовым гребешком. Наэлектризованный гребень начинает притягивать волосы, при этом слышится легкое потрескивание, а в полной темноте можно видеть даже небольшие искорки. Точно так же заряженные шипы кактусов притягивают к себе из воздуха капельки воды. Более того, они способствуют конденсации водяного пара в атмосфере.

    Насколько нам известно, никто еще не пытался определить то количество влаги, которое растения могут добыть из воздуха, используя подобную «технологию». Но оно, несомненно, должно быть значительным. В тех климатических зонах, в которых но ночам отмечается активное образование туманов (например, прибрежные пустыни Чили), кактусы, на 95 процентов состоящие из воды, в состоянии успешно развиваться, даже если годами с неба не надает ни капли дождя.

    Лекция 2. Вода в растениях.

    Вода является составной частью как самих растений, так и их плодов и семян. В живом растении вода составляет до 95% от массы его. Но это совсем мало, по сравнению с тем, сколько расходует растение, пока вырастет и даст урожай.
    Потребность в воде, у различных растений, для того, чтобы осуществить свой цикл развития, например, для условий Узбекистана, только на испарение (транспирацию) самими растениями и испарение с поверхности почвы в сравнении с наземной массой, в сотни раз больше, чем вес воды, содержащейся во взрослом растении и его плодах.

    Зачем же растениям нужна эта вода?

    Какую функцию она выполняет?

    Зачем так много воды надо растениям?

    Ну начнём с того, что растения "хотят" не только пить, но и есть. Значит нужно как-то доставлять по стволам и веткам к листьям питательные элементы. Эти питательные элементы, засосанные корнями вместе с почвенной влагой, предварительно подготовленные в корнях в виде полуфабрикатов, доставляются по сосудам к листьям - фабрикам органических веществ.
    Испаряя воду листьями, растение охлаждает их, не давая перегреться, получают из воздуха углекислый газ (в обмен на испаряемую воду), служащий материалом для создания всех органических веществ, идущих на построение всего растения.

    Рисунок 2.1. Схема "функционирования" растения.
    (заимствовано из книги "Жизнь зелёного растения".
    А Гэлстон, П.Девис, Р.Сэттер).

    Учёные, изучавшие досконально потребности растений в воде, были в значительной мере обескуражены непостоянством, так называемых транспирационных коэффициентов, показывающих отношение затрат воды на производство единицы веса сухой растительной массы даже у одних и тех же растений, (не говоря об их различии у влаголюбивой и засухоустойчивой растительности).
    В зависимости от условий произрастания затраты воды на единицу урожая колеблются очень сильно. Замечено, что когда почвы бедны питательными элементами, то растение испаряет воды больше, чем на богатых оными.

    Растения, имеющие в своём распоряжении много доступной для них влаги хорошего качества, "с удовольствием" её расходуют, буйно развивая вегетативную массу, но не "торопятся" плодоносить. В таких случаях говорят, что растения "жируют".

    Растения, находящиеся в условиях ограниченных запасов влаги, "ведут себя сдержаннее". Они тратят меньше влаги, развивают умеренную вегетативную массу и быстрее вступают в фазы цветения и плодообразования.

    А вот растения, сильно ущемлённые в воде, не только не развивают вегетативной массы и не дают плодов, но и могут просто погибнуть.

    Растениям, которые обычно выращиваются на наших полях при существующих системах обработки почвы , не способны ходить глубоко за водой, как дикорастущие (и даже как культурные) растения пустыни на почвах нетронутых человеком.

    Для нас важно обеспечить условия, чтобы получать устойчивые урожаи не только в годы с нормальными осадками, но и в засушливые. Поэтому все действия земледельца, способствующие накоплению и сохранению влаги в корнеобитаемом слое почвы, сторицей вознаграждаются растениями.

    Почти у всех растений критической фазой развития (когда засуха оказывает наиболее вредное влияние на них) является период цветения и завязывания плодов. Что касается развития многолетних трав, используемых на корм животных в свежем виде или в виде сена, то у них наиболее уязвимыми, в отношении влаги, являются послеукосные периоды.

    В эти критические периоды, желательно, чтобы влажность корнеобитаемого слоя почвы не опускалась ниже определённых пределов, которые не так просто определить даже с использованием научных понятий, но мы всё же, попробуем.

    Несмотря на то, что многие процессы снабжения растений водой очень похожи в разных климатических зонах, все же, в зависимости от свойств почвы, свойств почвообразующих пород, наличия почвенного увлажнения грунтовыми водами, степени их солёности, уклонов местности, имеются большие различия и в способах сохранения почвенной влаги и в способах её пополнения.

    Общая сезонная потребность растений в воде и особенности разных фаз их развития.

    То, что потребные размеры орошения напрямую связаны с климатом, наверное ни у кого сомнения не вызывает…
    Давайте по порядку, начнём с вопроса - сколько надо подать воды на поле, и в какие сроки, чтобы получить ожидаемый урожай. Прежде всего, посмотрим на рис. 2.1, где изображены среднемесячные климатические характеристики пустынной зоны Узбекистана. (В агроклиматических справочниках Вы всегда сможете найти эти характеристики для своей местности, а испаряемость (Eo) с водной поверхности - рассчитать по несложной формуле, если не найдёте её в готовом виде в том же справочнике).


    Рис. 2.1. Климатические характеристики и дефицит водного баланса.
    t - температура воздуха, в градусах Цельсия;
    а - относительная влажность воздуха в %;
    Ос - атмосферные осадки, мм.
    Ео - испаряемость с водной поверхности, Ео = 0,00144 * (25 - t)2 * (100 - a) ;
    Д = Ео - Ос - дефицит водного баланса (на рисунке закрашено жёлтым цветом в период вегетации).

    На этом рисунке показан ход среднемесячных температур воздуха, количество атмосферных осадков, относительной влажности воздуха, вычисленные показатели испаряемости и дефицитов влажности. Площадь фигуры, залитая желтым - это дефициты вегетационного периодаданном случае IV…IX месяцев). Но у каждой культуры свои сроки посева, свой вегетационный период, а поэтому и потребность в воде для поливов будет зависеть от этих величин и обусловит свой поливной период. То есть, растения скороспелые могут потребовать воды для завершения своего сезонного цикла развития значительно меньше, чем поздние, однако это относится в основном не к многолетним, древесно-кустарниковым растениям, которые потребляют влагу весь вегетационный период.

    Хотя дефициты влаги - это ещё не сама потребность, но, во всяком случае, вычисленные помесячные дефициты влаги, дают ориентировочное представление в какие месяцы и насколько испаряемость превышает осадки, что немало для того, чтобы понять, насколько нужно орошение, или без него можно обойтись.

    Учёные установили, что для расчета суммарного водопотребления можно пользоваться эмпирическими уравнениями, связывающими дефицит влаги с фактическими расходами влаги орошаемой культурой, (если определить коэффициенты, позволяющие найти соответствие между этими показателями).
    Одна из самых простых зависимостей выглядит так:

    Мвег = 10 * Кк * Д

    (2.1)


    Где Мвег - оросительная норма вегетационного периода рассматриваемой культуры, м3/га;
    Кк - эмпирический коэффициент культуры, зависящий и от вида растений, применяемой агротехники и вегетационного периода;
    Д - суммарный дефицит влаги за вегетационный период выращиваемой культуры, мм.

    На рис. 2.2, как пример, показаны фазы развития хлопчатника, сроки начала вегетации, сроки начала поливного периода, доля физического (с поверхности почвы) испарения для центрального климатического пояса Узбекистана.


    Рис. 2.2, Характерные периоды (фазы развития) для хлопчатника для центрального климатического пояса Узбекистана.

    Для того, чтобы установить значение коэффициента Кк, учёные ведут многолетние опыты с разными вариантами поливных режимов и сопоставляют полученные урожаи с затратами воды, а далее, эти затраты сопоставляют с фактическими дефицитами влаги. Эти работы обеспечивают им (учёным) пожизненную занятость, ибо со временем меняются и сорта растений, и применяемая агротехника, и способы полива, да и климат, как известно, не постоянен…, так что можно изучать долго, можно сказать, - бесконечно долго. Для примера на рисунке 2.3 мы приведём результаты обобщения материалов изучения режимов орошения хлопчатника, примерно за лет 70. Сюда вошли результаты ~ 270 опытов, проводившихся более чем на 13 опытных станциях Узбекистана. Эта культура долгие годы была самой нужной, и по ней в Средней Азии больше всего проводилось исследований, ну, примерно раз в десять больше, чем по люцерне, пшенице и кукурузе!

    Рассмотрим внимательно три графика на рис 2.3. Поясним немного суть графиков. Здесь У - урожай на какой-либо делянке из данного опыта, а Умах - это максимальный урожай на делянке, лучше всех обеспеченной водой в данном опыте. Все сравниваемые результаты по делянкам в каждом опыте, в каждый год исследования были получены при одних и тех же погодных условиях, но для каждой из делянок в опыте значения отношения поливной нормы к дефициту влаги за вегетацию (М/Д) было разным и урожай должен был зависеть только от объёма поливной воды.
    Однако на рисунках видно, что урожай, близкий к максимальному (У/Умах = 1) бывает в разных опытах при отношении оросительной нормы к дефициту влаги за вегетационный период от 0,15, до 1.2, то есть разница почти десятикратная! И почему так, нам совершенно непонятно, поскольку из каждой, описанной в трудах учёных, серии опытов мы специально отбирали результаты только тех, где был одинаковый "фон ", а менялась только оросительная норма. И этот диапазон разброса данных почти одинаков, как при близких, так и при глубоких грунтовых водах! Ещё следует отметить, что максимальные урожаи в выбранных нами для анализа опытах не встречались, практически, ниже 45...50 ц/га, и в основном эти наинизшие показатели были характерны для северных районов Узбекистана.
    Можно предположить, что, урожай, наверное, зависит не только от "фона" и объёма поданной на полив воды, но ещё связан с искусством земледельца? А может быть от своевременности проведенных поливов? Как Вы думаете? Во всяком случае, этот богатейший материал ждёт своих исследователей и аналитиков...

    Но нам пока ничего не остаётся делать, как ориентироваться на "золотую середину" опытных "облаков" данных и принимать, в данном случае тот самый коэффициент в формуле 2.1 -
    Кк = М/Д = 0,4…0,65 (м еньшие значения для близких грунтовых вод, а большие - для глубоких). Тем не менее, для ориентировки и это уже не так плохо. Зная по метеоданным дефицит за время вегетационного периода, можно, умножив его на коэффициент Кк, получить примерную потребность в оросительной воде. Для средних широт степной зоны Узбекистана суммарный дефицит составляет за вегетацию (IV…IX месяцы) около 1000 мм. Тогда оросительная норма составит от 400 до 650 мм, или в переводе на м3/га - 4000…6500 м3/га.
    Примерно столько же требуется кукурузе на зерно, а зерновым достаточно в полтора раза меньше, то есть, 3000…4500 м3/га. Следует отметить, что часть этой потребности может покрываться запасами влаги за невегетационный период, если они могут быть сохранены в почве правильной агротехникой.


    Рисунок 2.3. Фактические данные по затратам воды для хлопчатника, полученные в опытах разных учёных. На верхнем рисунке собраны данные, полученные при близких грунтовых водах, на среднем - данные для переходных условий между близкими и глубокими грунтовыми водами, а на нижнем - при грунтовых водах ниже 3 м.
    (Точки над линией У/Умах = 1 условные, они просто показывают количество опытов, использовавшееся при оценке того или иного отношения М/Д и построения графиков).


    Пока мы говорили о среднемноголетних показателях климата, но в природе год на год не приходится, есть засушливые годы, а есть очень дождливые. Естественно, что поливать в дождливый год незачем, а вот в засушливый - очень нужно. Поэтому оборудование для орошения будет использоваться только в отдельные засушливые годы. Но в некоторых условиях стабильность продуктивности сельскохозяйственного производства по годам, может оказаться важнее некоторых лишних издержек на организацию орошения.
    Дальше мы (в лекции 9) немного расскажем, на что ещё тратится вода на оросительных системах, чтобы поддерживать нормальное развитие выращиваемых растений на полях, и "мало не покажется"!
    Ниже, в таблице 3.1 для примера приведены значения коэффициентов Кк для разных культур в Узбекистане из работы, в которой был обобщён огромный опыт многих учёных Средней Азии (Расчётные значения оросительных норм сельскохозяйственных культур в бассейнах рек Сырдарьи и Амударьи. Составители: В.Р.Шредер, В.Ф.Сафонов и др.). "Снимая шляпу" перед большим учёным - моим наставником В.Р Шредером, являвшимся идеологом этого гигантского труда, я специально предварительно ознакомил вас с данными, в основном использованными при её составлении, для того, чтобы вы критически относились ко всяким не своим выводам и на слово никому не доверяли.

    Таблица 2.1. Значения коэффициентов Кк для разных культур по климатическим зонам Узбекистана.

    Культура

    По климатическим зонам

    С-1

    С-2

    Ц-1

    Ц-2

    Ю-1

    Ю-2

    Хлопчатник

    0,60

    0,63

    0,65

    0,68

    0,70

    Люцерна и другие травы

    0,77

    0,81

    0,84

    0,88

    0,92

    0,95

    Сады и др.насаждения

    0,53

    0,55

    0,58

    0,60

    0,62

    0,65

    Виноградники

    0,44

    0,46

    0,48

    0,50

    0,52

    0,54

    Кукуруза и сорго на зерно

    0,62

    0,61

    0,62

    0,59

    0,58

    0,57

    Пропашные культуры с повторными

    0,66

    Читайте также:
    1. Sp2-Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 3 (примеры).
    2. ВВП и ВНП: понятие, методы расчета. Сложности расчета. Чистое экономическое благосостояние. ЧНП, НД, ЛД, ЛРД. Номинальный и реальный ВВП. Понятие дефлятора. Индексы цен.
    3. Влияние макроэкономической политики на состояние платежного баланса.
    4. Влияние научно-технического прогресса, демографического взрыва, урбанизации на состояние СО и процесс жизнедеятельности человека.
    5. Влияние современных тенденций развития общества на состояние здоровья человека.
    6. Воздействие управляющее - сознательное действие субъекта управления по отношению к объекту управления с целью перевода его в новое желательное состояние.
    7. Вопрос 1. Понятие права социального обеспечения, его функции, современное состояние, формы

    В среднем вода составляет 80-90% массы растения. Однако ее содержание меняется и в значительной степени зависит от видовых особенностей, ткани и органа, возраста, функциональной активности, факторов внешней среды.

    Таблица 1 - Содержание воды в разных органах растения

    Основные функции воды в растениях:

    1) Объединяет все части организма, образуя непрерывную водную фазу;

    2) Образует раствор и среду для реакций метаболизма;

    3) Принимает участие в различных процессах как вещество реакции

    6СО 2 + 6Н 2 О→С 6 Н 12 О 6 + 6О 2

    4) Обеспечивает передвижение веществ по сосудам растения, по симпласту и апопласту;

    5) Защищает ткани растений от резких колебаний температуры (благодаря высокой теплоемкости и большой удельной теплоте парообразования);

    6) Обеспечивает упругость тканей и органов, выполняет роль амортизатора при механических воздействиях;

    7) Поддерживает структуру органических молекул, мембран, цитоплазмы, клеточной стенки и других компартментов клетки.

    Функции воды обусловлены особыми физико-химическими свойствами и строением молекулы. Молекула воды полярная и представляет из себя диполь (Н δ+ - О δ-). Геометрия молекулы отвечает дважды незавершенному тетраэдру. Такая геометрическая форма вызывает разделение в пространстве «центров тяжести» отрицательного и положительного зарядов и образования диполя молекулы воды.

    Рисунок 3. Проекция на плоскости Рисунок 4. Условное изображение молекулы воды

    Вода является растворителем. Благодаря полярной природе вода обладает способностью взаимодействовать с ионами и другими полярными соединениями и смешивать их с молекулами растворителя (воды). Неполярные соединения в воде не растворяются, а образуют с водой поверхности раздела. В живых организмах на поверхностях раздела протекают многие химические реакции.

    Связанная вода – имеет измененные физические свойства главным образом в результате взаимодействия с неводными компонентами. Условно принимают под связанной водой ту, которая не замерзает при понижении температуры до – 10°С.



    Связанная вода в растениях бывает:

    1) Осмотически- связанная

    2) Коллоидно-связанная

    3) Капиллярно-связанная

    Осмотически-связанная вода – связана с ионами или низкомолекулярными веществами. Вода гидратирует растворенные вещества – ионы, молекулы. Вода электростатически связывается и образует мономолекулярный слой первичной гидратации. Вакуолярный сок содержит сахара, органические кислоты и их соли, неорганические катионы и анионы. Эти вещества удерживают воду осмотически.

    Коллоидно-связанная вода – включает воду, которая находится внутри коллоидной системы и воду, которая находится на поверхности коллоидов и между ними, а также иммобилизованную воду. Иммобилизация представляет собой механический захват воды при конформационных изменениях макромолекул или их комплексов, при этом вода оказывается заключенной в замкнутом пространстве макромолекулы. Значительное количество коллоидно-связанной воды находится на поверхности фибрилл клеточной стенки, а также в биоколлоидах цитоплазмы и матриксе мембранных структур клетки