ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Вода составляет в среднем массы растения. Процесс присоединения воды к различным ионам, молекулам. Что называется интенсивностью транспирации

Роль натрия в жизни растений

Натрий регулирует транспорт углеводов в растении. Хорошая обеспеченность растений натрием повышает их зимостойкость. При его недостатке замедляется образование хлорофилла.

В организме животного содержится примерно 0,1% натрия (по массе).

Натрий распределяется по всему организму. В организме человека натрий содержится в эритроцитах, сыворотке крови, пищеварительных соках, мышцах, во всех внутренних органах, коже. 40% натрия находится в костной ткани.

Совместно с калием натрий создает трансмембранный потенциал клетки и обеспечивает возбудимость клеточной мембраны. Входит также в состав натрий-калиевого насоса, особого белка (порового комплекса), пронизывающего всю толщу мембраны. Внеклеточная концентрация ионов Na + всегда выше, чем внутриклеточная, за счет чего градиент концентрации этих ионов направлен внутрь клетки, обеспечивая активный транспорт веществ в клетку. Натрий поддерживает кислотно-щелочной баланс в
организме, регулирует кровяное давление, функ-ционирование нервов и мышц, поглощение глюкозы клетками, образование гликогена, синтез белков, влияет на состояние слизистых оболочек жизненно важных органов пищеварительного тракта. Обмен натрия находится под контролем щитовидной же-лезы.

Его недостаток приводит к головным болям, ослаблению памяти, потере аппетита, повышению кислотности желудочного сока, могут возникнуть проблемы с мочевым пузырем, утомляемость.

Избыток натрия приводит к задержке воды в организме (отекам), гипертонии, заболеваниям сердца.

Поваренная соль. Все соленые продукты. Море-продукты. Овощи и зелень: капуста, мята, укроп, петрушка, морковь, лук, салат-латук, перец, спаржа, хрен, чеснок. Фрукты и ягоды: черная смородина, клюква, лимоны. Продукты животного происхождения: колбаса, сало, соленая рыба, икра, сыр.

NaCl

NaHCO 3 – гидрокарбонат натрия, питьевая сода.

Знаете ли вы, что…

    Натрий был открыт в 1807 г. английским химиком и физиком Г.Дэви и название получил от арабск. натрон или натрун – моющее средство – по применению природной соды и едкого натра для изготовления мыла.

    Число атомов натрия в организме человека составляет 2,8 х 10 24 , а в одной человеческой клетке – 2,8 х 10 10 .

    Суточное поступление натрия в организм с продуктами питания составляет в среднем 4,4 г.

    В медицине хлористый натрий применяют в виде изотонического 0,9% раствора при обезвоживании организма. Натрий входит в состав многих лекар-ственных препаратов, в том числе антибиотиков, викасола – синтетического производного витамина K.

Кальций

Роль кальция в жизни растений

Содержание кальция в растениях составляет в среднем 0,3% (по массе). Пектиновые вещества (кальциевые и магниевые соли галактуроновой кислоты) входят в состав клеточных стенок и межклеточного вещества высших и низших растений. Кальций используется как строительное вещество для срединной пластинки, а также является компонентом «внешнего скелета» водорослей; увеличивает прочность растительных тканей и способствует повышению выносливости растений.

Недостаток Са вызывает набухание пектиновых веществ, ослизнение клеточных стенок и загнивание растений; страдает корневая система, происходит побеление верхушек растений и молодых листьев. Вновь образующиеся листья мелкие, искривленные, с неправильной формой краев, на пластинке появляются светло-желтые пятна, края листьев загибаются вниз. При сильном дефиците кальция верхушка побега погибает.

Если в почве повышенное содержание кальция, то на этих участках хорошо произрастают растения-индикаторы: Венерин башмачок, солнцецвет, степная астра, папоротник из рода пеллея, ятрышники, мордовники, льнянка, наперстянка крупноцветковая, порезник горный и др.

Роль в жизни животных и человека

В организме животного в среднем от 1,9% до 2,5% кальция (по массе). Кальций – это материал для постройки костных скелетов. Карбонат кальция CaCO 3 входит в состав кораллов, раковин моллюсков, панцирей морских ежей и скелетов микроорганизмов.

В организме человека 98–99% кальция содержится в костях скелета, которые выполняют функцию «депо» кальция; ионы кальция присутствуют во всех тканях и жидкостях организма: 1 г – в плазме крови, 6–8 г – в мягких тканях. При весе человека 70 кг содержание Са в организме составляет 1700 г, причем 80% – фосфата кальция Ca 3 (PO 4) 2 и 13% – карбоната кальция CaCO 3 .

Кальций необходим для процессов кроветворения и свертывания крови, для регуляции работы сердца, мышечного сокращения, обмена веществ, уменьшения проницаемости сосудов, для норма-льного роста костей (скелет, зубы). Соединения ка-льция благотворно влияют на состояние нервной системы, проведение нервных импульсов, оказывают противовоспалительное действие, обеспечивают проницаемость клеточной мембраны, активацию некоторых ферментов. Обмен кальция регулируется в организме человека и животных кальцитонином – гормоном щитовидной железы, паратгормоном – гормоном околощитовидной железы и кальциферолами – группа витамина D. Необходимо помнить, что организм усваивает кальций только в присутствии жиров: на каждые 0,06 г кальция нужно 1 г жира. Выводится кальций из организма через кишечник и почки.

Недостаток кальция приводит к остеопорозу, нарушениям в опорно-двигательной, нервной системах, недостаточной свертываемости крови.

Основные источники поступления в организм

Овощи и злаки: горох, чечевица, соя, бобы, фасоль, шпинат, морковь, репа, молодые листья одуванчиков, сельдерей, спаржа, капуста, свекла, картофель, огурцы, салат, лук, зерна пшеницы, хлеб ржаной, крупа овсяная. Фрукты и ягоды: яблоки, вишня, крыжовник, земляника, абрикосы, смородина, ежевика, апельсины, ананасы, персики, виноград. Миндаль. Кисломолочные продукты: творог, сметана, кефир.

Наиболее распространенные соединения

CaCO 3 – карбонат кальция, мел, мрамор, известняк.
Са(ОН) 2 – гидроксид кальция, гашеная известь (пушонка).
СаО – оксид кальция, негашеная известь (кипелка).
CaOCl 2 – смешанная соль соляной и хлорноватистой кислот, хлорная известь (хлорка).
CaSO 4 х 2H 2 O – двухводный сульфат кальция, гипс.

Знаете ли вы, что…

    Кальций был открыт английским химиком Х.Дэни в 1808 г. при электролизе влажной гашеной извести Са(ОН) 2 . Его название происходит от лат. калцис (род. падеж лат. калкс – камень, известняк) по его содержанию в известняке.

    Число атомов кальция в теле человека составляет 1,6 х 10 25 , а в одной клетке 1,6 х 10 11 .

    Суточное поступление кальция с продуктами питания и водой составляет 500–1500 мг.

    Известковые скелеты коралловых полипов, состоящие из карбоната кальция, образуют в тропических морях рифы и атоллы, коралловые острова. Из скелетов коралловых полипов, отмиравших в течение многих тысячелетий, образовались толщи известняка, мела и мрамора, которые используются как строительный материал.

    Существуют растения – кальцефилы (от греч. филео – люблю), которые растут преимущественно на щелочных почвах, богатых кальцием, а также в местах выхода известняков, мела (ветреница лесная, таволга шестилепестная, лиственница европейская и др.).

    Существуют растения – кальцефобы (от греч. фобос – страх), которые избегают известняковых почв, т.к. присутствие ионов кальция тормозит их рост (торфяные мхи, некоторые злаки).

Сера

Роль серы в жизни растений, микроорганизмов

Содержание серы в растениях составляет в среднем 0,05 % (по массе). Сера входит в состав аминокислот (цистин, цистеин, метионин). Растения получают серу из почвы из растворимых сульфатов, а гнилостные бактерии превращают серу белков в сероводород Н 2 S (отсюда – отвратительный запах гниения). Но большая часть сероводорода образуется при восстановлении сульфатов сульфатредуцирующими бактериями. Этот H 2 S фототрофными бактериями в отсутствие молекулярного кислорода окисляется до серы и сульфатов, а в присутствии О 2 его окисляют до сульфатов аэробные серобактерии.

У многих бактерий сера временно сохраняется в виде шариков. Ее количество зависит от содержания сероводорода: при его недостатке сера окисляется до серной кислоты.

2H 2 S + O 2 ––> 2H 2 O + 2S + энергия

2S + 3O 2 + 2H 2 O ––> 2H 2 SO 4 + энергия

В водоемах, вода которых содержит сероводород, живут бесцветные серобактерии бежиатоа и тиотрикс. Им не нужна органическая пища. Для хемосинтеза они используют сероводород: в результате реакций между H 2 S, CO 2 и O 2 образуются углеводы и элементарная сера.

Большая часть серы не усваивается растениями, но помогает им усваивать фосфор. Нехватка серы снижает интенсивность фотосинтеза. Индикатором повышенного содержания серы в почве являются астрагалы.

Роль в жизни животных и человека

В организме животного содержится 0,25 % серы (по массе). Простейшие планктонные радиолярии имеют минеральный скелет из сернокислого стронция, который обеспечивает не только защиту, но и «парение» в толще воды.

В организме человека серы содержится 400–700 миллионных долей от массы. Сера входит в состав белков и аминокислот, ферментов и витаминов. Особенно важна она для синтеза белков кожи, ногтей и волос. Сера является составной частью активных веществ: витаминов и гормонов (например, инсулина). Она участвует в окислительно-восстановительных процессах, энергетическом метаболизме и реакциях детоксикации, активирует ферменты.

При недостатке серы кожа подвергается воспалительным заболеваниям, наблюдается ломкость костей и выпадение волос.

Среди соединений серы особенно опасным считается сероводород – газ, обладающий не только резким запахом, но и большой токсичностью. В чистом виде он убивает человека мгновенно. Опасность велика даже при незначительном (порядка 0,01%) содержании сероводорода в воздухе. Сероводород опасен тем, что накапливаясь в организме, он соединяется с железом, входящим в состав гемоглобина, что может привести к тяжелейшему кислородному голоданию и смерти.

Основные источники поступления в организм

Продукты растительного происхождения: орехи, бобовые, капуста, хрен, чеснок, тыква, инжир, крыжовник, слива, виноград. Продукты животного происхождения: мясо, яйца, сыр, молоко.

Наиболее распространенные соединения

H 2 S – сероводород.
Na 2 S – сульфид натрия.

Знаете ли вы, что…

    Сера известна с I в. до н.э. Названия происходит от древнеиндусского сира – светло-желтый, по цвету природной серы; латинское название от санскр. сулвери – горючий порошок.

    Число атомов серы в теле человека 3,3 х 10 24 , а в одной клетке – 2,4 х 10 10 .

    Сероводород H 2 S – ядовитый зловонный газ, используется в химической промышленности, а также как лечебное средство (сернистые ванны). Сера входит в состав лекарств, в том числе антибиотиков, которые способны подавлять активность микробов. Мелкодисперсная сера – основа мазей для лечения грибковых заболеваний кожи.

    Природные сульфиды составляют основу руд цветных и редких металлов и широко используются в металлургии. Сульфиды щелочных и щелочно-земельных металлов Na 2 S, CaS, BaS применяются в кожевенном производстве.

Хлор

Роль хлора в жизни растений, микроорганизмов

Содержание хлора в организме растений составляет примерно 0,1% (по массе). Это один из основных элементов водно-солевого обмена всех живых организмов. Некоторые растения (галофиты) не только способны расти на засоленных почвах с высоким содержанием поваренной соли (NaCl), но и накапливать хлориды. К ним относятся солянки, солерос, сведа, тамарикс и др. Ионы хлора Cl – участвуют в энергетическом обмене, положительно влияют на поглощение корнями кислорода. У растений хлор принимает участие в окислительных реакциях и фотосинтезе.

Галофильные микроорганизмы обитают в среде с концентрацией NaCl до 32% – в соленых водоемах и засоленных почвах. Это бактерии родов Paracoccus , Pseudomonas , Vibrion и некоторые другие. Высокие концентрации NaCl необходимы им для поддержания структурной целостности цито-плазматической мембраны и функционирования связанных с ней ферментных систем.

Роль в жизни животных и человека

В организме животного содержится от 0,08 до 0,2% хлора (по массе). Отрицательно заряженные ионы хлора, преобладающие в организме животных, играют огромную роль в в водно-солевом обмене. В условиях высокой солености, при содержании соли в воде не ниже 3%, обитают галофиты: радиолярии, рифообразующие кораллы, обитатели коралловых рифов и мангровых зарослей, большинство иглокожих, головоногие моллюски, многие ракообразные. Во внутриматериковых водоемах с соленостью от 2,4–10 до 30% обитают некоторые коловратки, рачок Artemia salina , личинка комара Aedes togoi и некоторые другие.

Мышечная ткань человека содержит 0,20–0,52% хлора, костная – 0,09%, в крови – 2,89 г/л. В организме взрослого человека около 95 г хлора. Ежедневно с пищей человек получает 3–6 г хлора. Основная форма его поступления в организм – хлорид натрия. Он стимулирует обмен веществ, рост волос. Хлор определяет физико-химические процессы в тканях организма, участвует в поддержании кислотно-щелочного равновесия в тканях (осморегуляция). Хлор – основное осмотически активное вещество крови, лимфы и других жидкостей тела.

Соляная кислота, которая входит в состав желудочного сока, играет собую роль в пищеварении, обеспечивая активизацию фермента пепсина, и оказывает бактерицидное действие.

Присутствие в воздухе около 0,0001% хлора раздражающе действует на слизистые оболочки. Постоянное пребывание в такой атмосфере может привести к заболеванию бронхов, резкому ухудшению самочувствия. По существующим санитарным нормам содержание хлора в воздухе рабочих помеще-ний не должно превышать 0,001 мг/л, т.е. 0,00003%. Содержание хлора в воздухе в количестве 0,1% вызывает острое отравление, первый признак которого – приступы сильнейшего кашля. При отравлении хлором необходим абсолютный покой, полезно вдыхать кислород или аммиак (нашатырный спирт), или пары спирта с эфиром.

Основные источники поступления в организм

Хлорид натрия – поваренная соль. Соленые продукты. Ежедневно человек должен потреблять около 20 г поваренной соли.

Наиболее распространенные соединения

NaCl – хлорид натрия, поваренная соль.
НСl – хлороводородная кислота, соляная кислота.
HgCl 2 – хлорид ртути (II), сулема.

Знаете ли вы, что…

    Хлор впервые получил шведский химик К.Шееле при взаимодействии соляной кислоты с пиролюзитом MnO 2 х H 2 O. Название происходит от греч. клорос – желто-зеленый цвет увядающей листвы – по окраске газообразного хлора.

    С соединениями хлора, прежде всего с поваренной солью NaCl, человечество знакомо с доисторических времен. Алхимикам была известна соляная кислота НСl и смесь ее с азотной кислотой HNO 3 – царская водка.

    Число атомов хлора в теле человека составляет 1,8 х 10 24 , а в одной клетке – 1,8 х 10 10 .

    В небольших дозах ядовитый хлор иногда может служить и противоядием. Так, пострадавшим от сероводорода дают нюхать нестойкую хлорную известь. Взаимодействуя, два яда взаимно нейтрализуются.

    Хлорирование водопроводной воды уничтожает болезнетворные бактерии.

    Существуют водные организмы – галофобы, не переносящие высоких значений солености и обитающие только в пресных (соленость не выше 0,05%) или слабосоленых (до 0,5%) водоемах. Это многие водоросли, простейшие, некоторые губки и кишечнополостные (гидра), большинство пиявок, многие брюхоногие и двустворчатые моллюски, большин-ство водных насекомых и пресноводных рыб, все земноводные.

    HgCl 2 – сулема – очень сильный яд. Разбавленные растворы ее (1: 1000) используют в медицине как дезинфицирующее средство.

Продолжение следует

Читайте также:
  1. Sp2-Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 3 (примеры).
  2. ВВП и ВНП: понятие, методы расчета. Сложности расчета. Чистое экономическое благосостояние. ЧНП, НД, ЛД, ЛРД. Номинальный и реальный ВВП. Понятие дефлятора. Индексы цен.
  3. Влияние макроэкономической политики на состояние платежного баланса.
  4. Влияние научно-технического прогресса, демографического взрыва, урбанизации на состояние СО и процесс жизнедеятельности человека.
  5. Влияние современных тенденций развития общества на состояние здоровья человека.
  6. Воздействие управляющее - сознательное действие субъекта управления по отношению к объекту управления с целью перевода его в новое желательное состояние.
  7. Вопрос 1. Понятие права социального обеспечения, его функции, современное состояние, формы

В среднем вода составляет 80-90% массы растения. Однако ее содержание меняется и в значительной степени зависит от видовых особенностей, ткани и органа, возраста, функциональной активности, факторов внешней среды.

Таблица 1 - Содержание воды в разных органах растения

Основные функции воды в растениях:

1) Объединяет все части организма, образуя непрерывную водную фазу;

2) Образует раствор и среду для реакций метаболизма;

3) Принимает участие в различных процессах как вещество реакции

6СО 2 + 6Н 2 О→С 6 Н 12 О 6 + 6О 2

4) Обеспечивает передвижение веществ по сосудам растения, по симпласту и апопласту;

5) Защищает ткани растений от резких колебаний температуры (благодаря высокой теплоемкости и большой удельной теплоте парообразования);

6) Обеспечивает упругость тканей и органов, выполняет роль амортизатора при механических воздействиях;

7) Поддерживает структуру органических молекул, мембран, цитоплазмы, клеточной стенки и других компартментов клетки.

Функции воды обусловлены особыми физико-химическими свойствами и строением молекулы. Молекула воды полярная и представляет из себя диполь (Н δ+ - О δ-). Геометрия молекулы отвечает дважды незавершенному тетраэдру. Такая геометрическая форма вызывает разделение в пространстве «центров тяжести» отрицательного и положительного зарядов и образования диполя молекулы воды.

Рисунок 3. Проекция на плоскости Рисунок 4. Условное изображение молекулы воды

Вода является растворителем. Благодаря полярной природе вода обладает способностью взаимодействовать с ионами и другими полярными соединениями и смешивать их с молекулами растворителя (воды). Неполярные соединения в воде не растворяются, а образуют с водой поверхности раздела. В живых организмах на поверхностях раздела протекают многие химические реакции.

Связанная вода – имеет измененные физические свойства главным образом в результате взаимодействия с неводными компонентами. Условно принимают под связанной водой ту, которая не замерзает при понижении температуры до – 10°С.



Связанная вода в растениях бывает:

1) Осмотически- связанная

2) Коллоидно-связанная

3) Капиллярно-связанная

Осмотически-связанная вода – связана с ионами или низкомолекулярными веществами. Вода гидратирует растворенные вещества – ионы, молекулы. Вода электростатически связывается и образует мономолекулярный слой первичной гидратации. Вакуолярный сок содержит сахара, органические кислоты и их соли, неорганические катионы и анионы. Эти вещества удерживают воду осмотически.

Коллоидно-связанная вода – включает воду, которая находится внутри коллоидной системы и воду, которая находится на поверхности коллоидов и между ними, а также иммобилизованную воду. Иммобилизация представляет собой механический захват воды при конформационных изменениях макромолекул или их комплексов, при этом вода оказывается заключенной в замкнутом пространстве макромолекулы. Значительное количество коллоидно-связанной воды находится на поверхности фибрилл клеточной стенки, а также в биоколлоидах цитоплазмы и матриксе мембранных структур клетки

В книге рассказывается о воде и ее значении в жизни Земли. Отмечая влияние хозяйственной деятельности человека на состояние водных ресурсов планеты, авторы затрагивают актуальные вопросы их охраны и комплексного использования. В частности, они останавливаются на научной разработке бессточной технологии и современных методов очистки сточных вод, защите Мирового океана от загрязнения и других аспектах проблемы «чистая вода».

Книга:

Вода в живом организме

<<< Назад
Вперед >>>

Вода в живом организме

На долю воды приходится основная часть массы любого живого существа на Земле. У взрослого человека вода составляет больше половины массы тела. Именно у взрослого человека, потому что в разные периоды жизни содержание воды в организме изменяется. У эмбриона оно достигает 97 %; сразу после рождения общее количество воды в организме быстро уменьшается - у новорожденного ее уже только 77 %. Дальше содержание воды продолжает постепенно снижаться, пока не станет в зрелом возрасте относительно постоянным. В среднем содержание воды в организме мужчин от 18 до 50 лет составляет 61 %, женщин - 54 % от массы тела. Разница эта связана с тем, что организм взрослых женщин содержит больше жира; при отложении жира вес тела увеличивается и доля воды в нем снижается (у людей, страдающих ожирением, содержание воды может уменьшиться до 40 % от массы тела). После 50 лет организм человека начинает «усыхать»: воды в нем становится меньше.

Больше всего воды - 70 % всей воды организма - находится внутри клеток, в составе клеточной протоплазмы. Остальное - это внеклеточная вода: часть ее (около 7 %) находится внутри кровеносных сосудов и образует плазму крови, а часть (около 23 %) омывает клетки - это так называемая межтканевая жидкость.

Еще в 1858 г. знаменитый французский физиолог Клод Бернар сформулировал принцип постоянства внутренней среды организма - нечто вроде закона сохранения массы - энергии для живых существ. Этот принцип гласит: поступление в организм различных веществ должно быть равно их выделению. Ясно, что и потребление воды должно быть равным расходу. Как же человек расходует воду?

Водные потери организма учесть довольно трудно, потому что немалая часть их приходится на долю так называемых неощутимых потерь. Например, вода в виде паров содержится во выдыхаемом воздухе - это примерно 400 мл/сут. Около 600 мл/сут ее испаряется с поверхности кожи. Немного воды выделяют слезные железы (и не только тогда, когда мы плачем: выделяемая ими жидкость постоянно омывает глазное яблоко); вода теряется также с капельками слюны при разговоре, кашле и т. д. Остальные пути выделения воды легче поддаются учету: это 800-1300 мл в сутки, выделяемые с мочой, и около 200 мл - с испражнениями. Если суммировать все вышеуказанные цифры, то получается около 2–2,5 л; эта цифра, средняя, потому что расход воды может сильно колебаться в зависимости от внешних условий, индивидуальных особенностей обмена или в результате его нарушений.

В соответствии с этим и суточная потребность организма взрослого человека в воде составляет в среднем около 2,5 л. Это, впрочем, вовсе не означает, что человек должен каждый день выпивать не меньше 10 стаканов воды: основная часть потребляемой нами воды содержится в пище. Часть воды образуется также непосредственно в организме в процессе жизнедеятельности - при распаде белков, жиров и углеводов (эндогенная вода). Например, при окислении 100 г жиров возникает 107 мл воды, 100 г углеводов - 55 мл. Следовательно, наиболее выгоден (в смысле получения эндогенной воды) жир. И не случайно значительные жировые отложения наблюдаются как раз У тех животных, которые приспособились длительное время обходиться без воды извне, вырабатывая ее в своем организме. В их числе крупное животное пустыни - верблюд. Резерв жира в его горбе при полном окислении позволяет получить около 40 л эндогенной воды, что составляет суточную потребность в ней животного. Разумеется, солидный запас жира не заменяет полностью верблюду питьевой воды. Жировыми отложениями - источником эндогенной воды, кроме верблюда, обладают в пустыне курдючные породы овец. Жир накапливается в хвостах некоторых тушканчиков, под кожей желтого и малого суслика, ежей и т. д. Исключительно эндогенной водой утоляют жажду австралийские мыши.

Ни один жизненный процесс в организме человека или животного не может совершаться без воды и ни одна клетка не в состоянии обойтись без водной среды. С участием воды протекают практически все функции организма. Так, испаряясь с поверхности кожи и дыхательных органов, вода принимает участие в процессах терморегуляции.

Процесс пищеварения - важнейшая функция организма. Процесс пищеварения в желудочно-кишечном тракте протекает только в водной среде. В этом процессе вода играет роль хорошего растворителя почти всех пищевых продуктов.

Выпитая вода прежде всего всасывается сквозь стенки желудка и кишечника в кровь и с ней равномерно распределяется по всему организму, переходя из крови в межтканевую жидкость, а затем и в клетки. Такой обмен воды происходит довольно интенсивно. Находясь в состоянии соединения с водой, пищевые продукты (белки, углеводы, жиры, минеральные соли) также легко всасываются в кровь и поступают во все органы и затем ткани организма.

Переход воды из крови в межтканевую жидкость целиком подчинен физическим законам. Работа сердца создает внутри сосудов гидростатическое давление, стремящееся вытолкнуть жидкость сквозь стенку сосуда. Этому противодействует осмотическое давление, которое создают растворенные в крови вещества. Точнее говоря, главную роль здесь играет не осмотическое давление, а только та малая его часть (примерно 1/220), которую образуют белки плазмы крови - это так называемое онкотическое давление. Дело в том, что и воду, и низкомолекулярные растворенные вещества, создающие основную часть осмотического давления, стенки капилляров пропускают свободно, но для белков они практически непроницаемы. И именно онкотическое давление, создаваемое белками, удерживает воду внутри капилляра.

В начальной, артериальной части капилляра гидростатическое давление велико - оно гораздо больше онкотического. Поэтому вода вместе с растворенными в ней низкомолекулярными веществами выжимается сквозь стенки капилляра в межклеточное пространство. В конечной, венозной части капилляра гидростатическое давление значительно меньше, потому что здесь капилляр расширяется. Онкотическое же давление, образованное белками, здесь, наоборот, повышается, поскольку часть воды уже покинула капилляр и объем плазмы уменьшился, а концентрация белков в ней возросла. Теперь онкотическое давление становится больше гидростатического, и здесь вода, несущая с собой продукты жизнедеятельности клеток, поступает из межклеточного пространства обратно в сосудистое русло.

Такова общая картина обмена воды между кровью и тканями. Правда, этот механизм применим не во всех случаях; с его помощью, например, нельзя объяснить обмен жидкости в печени. Гидростатическое давление в печеночных капиллярах недостаточно для того, чтобы вызвать переход жидкости из них в межтканевое пространство. Здесь играют роль уже не столько физические законы, сколько ферментативные процессы.

Из межтканевой жидкости вода попадает в клетки. Этот процесс также определяется не только законами осмоса, но и свойствами клеточной мембраны. Такая мембрана, кроме пассивной проницаемости, зависящей от концентрации того или иного вещества по разные ее стороны, обладает еще и свойством активно переносить определенные вещества даже против градиента концентрации, т. е. из более разбавленного раствора в менее разбавленный. Другими словами, мембрана действует как «биологический насос». Регулируя таким путем осмотическое давление, клеточная мембрана управляет и процессами перехода сквозь нее воды из межклеточного пространства внутрь клетки и обратно.

Главный путь выведения воды из организма - почки; через них проходит около половины воды, покидающей тело. Почки - один из наиболее энергично работающих органов, потребление энергии на единицу веса здесь больше, чем в любом другом. Из всего поглощаемого человеком кислорода не менее 8-10 % используется именно в почках, хотя их вес составляет всего 1/200 часть веса тела. Все это свидетельствует о важности тех процессов, которые в них происходят.

В сутки через почки проходит более 1000 л крови - это значит, что каждая капля крови за сутки побывает здесь не меньше двухсот раз. Здесь кровь очищается от ненужных продуктов обмена веществ , которые она приносит из всех органов и тканей растворенными в плазме, т. е. в конечном счете опять-таки в воде.

Когда кровь проходит через начальную, артериальную часть почечного капилляра, около 20 % ее благодаря высокому гидростатическому давлению (в почечных капиллярах оно вдвое выше, чем в обычных) выходит сквозь стенку капилляра в полость почечного клубочка - это так называемая первичная моча. При этом, как и во всех остальных капилярах организма, сквозь стенку почечного капилляра проходят все растворенные в плазме вещества, кроме белков. Среди них помимо отбросов, которые необходимо удалить из организма, есть и нужные вещества, выделение которых было бы бессмысленным расточительством. Этого организм позволить себе не может, и поэтому в почечном канальце, куда первичная моча попадает из почечного клубочка, производится тщательная сортировка. Питательные вещества, различные соли, другие соединения постоянно реабсорбируются - переходят сквозь стенки канальца обратно в кровь, в примыкающий к канальцу капилляр. Ведущую роль в этом процессе реабсорбции играют сложные ферментативные реакции.

Вместе с полезными веществами покидает первичную мочу и вода. В начальном отделе почечного канальца вода реабсорбируется пассивно: она переходит в кровь вслед за активно реабсорбируемым натрием, глюкозой и другими веществами, выравнивая возникающую разницу в осмотическом давлении.

В конечном же отделе почечного канальца, когда реабсорбция полезных веществ уже в основном закончена, возвращение воды в кровь регулируется иным механизмом и зависит только от того, насколько нужна организму сама эта вода. В стенках кровеносных сосудов разбросаны нервные рецепторы, которые очень тонко реагируют на изменение содержания воды в крови. Как только воды становится меньше, чем нужно, нервные импульсы от этих рецепторов поступают в гипофиз, где начинает выделяться гормон вазопрессин. Под влиянием его вырабатывается фермент гиалуронидаза. Фермент делает проницаемым для воды стенки почечных канальцев, разрушая водонепроницаемые полимерные комплексы, входящие в их состав, - как будто открывает кран для выхода воды сквозь стенку канальца. В результате вода, теперь уже следуя законам осмоса, переходит в кровь. Чем меньше воды в организме, тем больше выделяется вазопрессина, тем больше вырабатывается гиалуронидазы, тем больше воды всосется обратно в кровь.

В конечном счете из всей первичной мочи лишь меньше 1 % выделяется почками в виде «настоящей» мочи, которая теперь уже содержит только отработанные продукты жизнедеятельности и только ненужную организму воду.

Экспериментально установлено, что для удаления отходов жизнедеятельности человеческого организма требуется ежедневно не менее 500 мл мочи. Если человек пьет много воды, она разбавляет мочу, удельный вес которой понижается. При недостаточном поступлении воды в организм, когда после восполнения потерь ее через кожу и легкие на долю почек остается меньше 500 мл, часть отработанных продуктов жизнедеятельности остается в организме и может вызвать его отравление. Именно этим опасно водное голодание.

Особенно тяжело человек переносит обезвоживание. Если потери воды не восполняются, то в результате нарушений физиологических процессов ухудшается самочувствие, падает работоспособность, а при высокой температуре воздуха нарушается терморегуляция и может наступить перегрев организма. При потере влаги, составляющей 6–8 % от веса тела, у человека повышается температура тела, краснеет кожа, ускоряется сердцебиение, учащается дыхание, переходящее в одышку, появляется мышечная слабость, головокружение, головные боли и наступает полуобморочное состояние. При потере 10 % воды могут происходить необратимые изменения в организме. Потеря воды в количестве 15–20 % при температуре воздуха выше 30° является уже смертельной, а потеря 25 % воды смертельна и при более низких температурах.

Отходы жизнедеятельности человека выделяются также с потом. В среднем поверхность человеческого тела занимает 1,5 м 2 .

Человек в сильную жару очень потеет. За сутки он буквально «выдает» ведро пота: был бы сух воздух.

Главная составная часть жидкости в таком ведре - обычная, ничем не примечательная вода. В ней растворены нелетучие и летучие компоненты. С нелетучими ознакомиться просто - пот соленый: около 1 % NaCl, да еще фосфаты и сульфаты. Много в поте и креатинина. А вот с летучими компонентами плохо знакомы даже специалисты, но кое-что все же известно: космобиологи пришли к выводу, что даже мало потеющий человек через кожу выделяет столько веществ, что трехкубовая замкнутая атмосфера за сутки насытится вредоносными соединениями выше предельно допустимых норм. На Земле это не беда, но в космосе форточку не откроешь.


Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы - 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в корнях - 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены.

Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, протоплазме. Вакуоли - наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в протоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотически-связанная) и свободная вода. В оболочке растительной клетки вода связана главным образом высокополимерными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотически-связанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в протоплазме имеется определенное количество ионов, а следовательно, часть воды осмотически связана.

Физиологическое значение свободной и связанной воды различно. Большинство исследователей полагает, что интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и устойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.

Растительная клетка поглощает воду по законам осмоса. Осмос наблюдается при наличии двух систем с различной концентрацией веществ, когда они сообщаются с помощью полупроницаемой мембраны. В этом случае по законам термодинамики выравнивание концентраций происходит за счет вещества, для которого мембрана проницаема.

При рассмотрении двух систем с различной концентрацией осмотически активных веществ следует, что выравнивание концентраций в системе 1 и 2 возможно только за счет перемещение воды. В системе 1 концентрация воды выше, поэтому поток воды направлен от системы 1 к системе 2. По достижении равновесия реальный поток будет равен нулю.

Растительную клетку можно рассматривать как осмотическую систему. Клеточная стенка, окружающая клетку, обладает определенной эластичностью и может растягиваться. В вакуоли накапливаются растворимые в воде вещества (сахара, органические кислоты, соли), которые обладают осмотической активностью. Тонопласт и плазмалемма выполняют в данной системе функцию полупроницаемой мембраны, поскольку эти структуры избирательно проницаемы, и вода проходит через них значительно легче, чем вещества, растворенные в клеточном соке и цитоплазме. В связи с этим, если клетка попадает в окружающую среду, где концентрация осмотически активных веществ будет меньше по сравнению с концентрацией внутри клетки (или клетка помещена в воду), вода по законам осмоса должна поступать внутрь клетки.

Возможность молекул воды перемещаться из одного места в другое измеряется водным потенциалом (Ψв). По законам термодинамики вода всегда движется из области с более высоким водным потенциалом в область с более низким потенциалом.

Водный потенциал (Ψ в) – показатель термодинамического состояния воды. Молекулы воды обладают кинетической энергией, в жидкости и водяном паре они беспорядочно движутся. Водный потенциал больше в той системе, где выше концентрация молекул и больше их общая кинетическая энергия. Максимальным водным потенциалом обладает чистая (дистиллированная) вода. Водный потенциал такой системы условно принят за нуль.

Единицей измерения водного потенциала являются единицы давления: атмосферы, паскали, бары:

1 Па = 1 Н/м 2 (Н- ньютон) ; 1 бар=0,987 атм =10 5 Па=100 кПА;

1 атм =1,0132 бар; 1000 кПа = 1 МПа

При растворении в воде другого вещества, понижается концентрация воды, уменьшается кинетическая энергия молекул воды, снижается водный потенциал. Во всех растворах водный потенциал ниже, чем у чистый воды, т.е. в стандартных условиях он выражается отрицательной величиной. Количественно это понижение выражают величиной, которая называется осмотическим потенциалом (Ψ осм.). Осмотический потенциал – это мера снижения водного потенциала за счет присутствия растворенных веществ. Чем больше в растворе молекул растворенного вещества, тем осмотический потенциал ниже.

При поступлении воды в клетку ее размеры увеличиваются, внутри клетки повышается гидростатическое давление, которое заставляет плазмалемму прижиматься к клеточной стенке. Клеточная оболочка, в свою очередь, оказывает противодавление, которое характеризуется потенциалом давления (Ψ давл.) или гидростатическим потенциалом, он обычно положителен и тем больше, чем больше воды в клетке.

Таким образом, водный потенциал клетки зависит от концентрации осмотически действующих веществ – осмотического потенциала (Ψ осм.) и от потенциала давления (Ψ давл.).

При условии, когда вода не давит на клеточную оболочку (состояние плазмолиза или увядания), противодавление клеточной оболочки равно нулю, водный потенциал равен осмотическому:

Ψ в. = Ψ осм.

По мере поступления воды в клетку появляется противодавление клеточной оболочки, водный потенциал будет равен разности между осмотическим потенциалом и потенциалом давления:

Ψ в. = Ψ осм. + Ψ давл.

Разница между осмотическим потенциалом клеточного сока и противодавлением клеточной оболочки определяет поступление воды в каждый данный момент.

При условии, когда клеточная оболочка растягивается до предела, осмотический потенциал целиком уравновешивается противодавлением клеточной оболочки, водный потенциал становиться равным нулю, вода в клетку перестает поступать:

- Ψ осм. = Ψ давл. , Ψ в. = 0

Вода всегда поступает в сторону более отрицательного водного потенциала: от той системы, где энергия больше, к той системе, где энергия меньше.

Вода в клетку может поступать также за счет сил набухания. Белки и другие вещества, входящие в состав клетки, имея положительно и отрицательно заряженные группы, притягивают диполи воды. К набуханию способны клеточная стенка, имеющая в своем составе гемицеллюлозы и пектиновые вещества, цитоплазма, в которой высокомолекулярные полярные соединения составляют около 80% сухой массы. Вода проникает в набухающую структуру путем диффузии, движение воды идет по градиенту концентрации. Силу набухания обозначают термином матричный потенциал (Ψ матр.). Он зависит от наличия высокомолекулярных компонентов клетки. Матричный потенциал всегда отрицательный. Большое значение Ψ матр. имеет при поглощении воды структурами, в которых отсутствуют вакуоли (семенами, клетками меристем).

 Вода в жизни растений играет огромную роль, она является составной частью каждого растения, каждого его органа. Процентное содержание воды в растительном организме:
  • в протоплазме содержится около 80% воды,
  • в клеточном соке - 96-98% воды,
  • в оболочках растительных клеток до 50% воды.
  • в листьях содержание воды достигает 80-90%.
Большой процент воды содержится в сочных плодах:
  • в - до 98%,
  • в - 94%,
  • в - 92%,
  • в - 77%.
Сочные плоды содержат большой процент воды.

Вода - основной растворитель

Высокое содержание воды в тканях растения необходимо для активной синтетической деятельности. Вода - основной растворитель , и при ее участии осуществляется поступление в растение растворенных в воде питательных веществ через корни и передвижение их из одних клеток в другие.

Вода во взаимодействии растений с окружающей средой

Благодаря воде осуществляется взаимодействие растения с окружающей средой . В процессе фотосинтеза вода принимает непосредственное участие в образовании углеводов . Из 1000 частей воды, проходящих через растение, только 2-3 части используются в процессе фотосинтеза на образование углеводов, а 997-998 частей воды проходит через растение для поддержания его тканей в состоянии насыщения и для компенсации испаряющейся воды. Большая листовая поверхность растений приводит к трате огромного количества воды: за один час растения расходуют до 80-90% содержащейся в них воды. От количества воды в замыкающих клетках устьиц зависит степень их открытия; при большом ее содержании устьица открыты, и через них поступает углекислый газ в растение.

Расход воды растениями

Различные растения содержат неодинаковое количество воды , оно изменяется как в течение суток, так и в течение вегетационного периода. К концу вегетации содержание воды уменьшается.
Расход воды растениями. Из высших растений обезвоживание выдерживают очень немногие представители пустынной флоры, (подробнее: ) тогда как сухие семена, некоторые и лишайники могут сохранять жизнеспособность и при малом содержании воды. В различных условиях произрастания потребность растения в воде неодинакова. В сухом и жарком климате растения за вегетационный период расходуют воды в 2-3 раза больше, чем в умеренном климате.

Состояние воды в растениях

Вода в растениях бывает в двух состояниях - в свободном и связанном . Связанной водой считают воду, которая удерживается гидрофильными коллоидами протоплазмы и активными веществами. Связанная вода теряет свойства растворителя и не принимает активного участия в превращении и передвижении веществ по растению. Роль связанной воды заключается в том, что она препятствует слипанию мицелл между собой и придает структурную устойчивость гидрофильным коллоидам протоплазмы. Количество связанной воды в растении непостоянно, в молодых растениях больше связанной воды, чем в старых. Свободная вода в растении - среда, в, которой протекают все процессы его жизнедеятельности. Большое количество свободной воды испаряется растением. Подобное разделение воды на свободную и связанную условно, так как вся имеющаяся в клетках вода связана с веществами, входящими в состав протоплазмы, клеточного сока и оболочки. Эти формы воды различаются лишь по характеру и прочности связей. Биологи провели ряд опытов с тяжелой водой , содержащей О 18 . У молодых растений фасоли, погруженных корнями в тяжелую воду, происходила быстрая смена части воды тканей на воду, содержащую О 18 .
Куст растения фасоли в цветении. В тканях листьев и корней, имеющих быстрый обмен веществ, равновесие с внешним раствором наступало уже через 15-20 минут, при этом обменивалось немного более половины воды. Вода в стебле заменялась на 90%. При увядании листьев быстрее всего терял воду клеточный сок, вода цитоплазмы удерживалась значительно сильнее, меньше всего терялась вода, входящая в состав органоидов. На основании этих опытов были сделаны выводы, что в растении имеется трудно и легко обмениваемая вода .