ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Величина теплопотерь через ограждающие конструкции зданий. Расчет теплопотерь дома через ограждающие конструкции и инженерные коммуникации

Сегодня многие семьи выбирают для себя загородный дом как место постоянного проживания или круглогодичного отдыха. Однако его содержание, и в особенности оплата коммунальных услуг, - довольно затратны, при этом большинство домовладельцев - вовсе не олигархи. Одна из наиболее значительных статей расхода для любого домовладельца - это расходы на отопление. Чтобы минимизировать их, необходимо ещё на стадии строительства коттеджа задуматься об энергосбережении. Рассмотрим этот вопрос более подробно.

«О проблемах энергетической эффективности жилья обычно вспоминают в ракурсе городского ЖКХ, однако владельцам индивидуальных домов эта тема подчас гораздо ближе, - считает Сергей Якубов , заместитель директора по продажам и маркетингу , ведущего производителя кровельных и фасадных систем в России. - Расходы на отопление дома могут составлять гораздо больше половины стоимости его содержания в холодное время года и достигают порой десятков тысяч рублей. Однако при грамотном подходе к теплоизоляции жилого дома эту сумму можно существенно сократить ».

Собственно, отапливать дом нужно для того, чтобы постоянно поддерживать в нём комфортную температуру, независимо от того, что творится на улице. При этом нужно учитывать теплопотери как через ограждающие конструкции, так и через вентиляцию, т.к. тепло уходит вместе с нагретым воздухом, взамен которого поступает охлаждённый, а также тот факт, что некоторое количество тепла выделяют люди, находящиеся в доме, бытовая техника, лампы накаливания и т.п.

Чтобы понять, сколько тепла мы должны получить от своей системы отопления и сколько денег на это придётся потратить, попробуем оценить вклад каждого из прочих факторов в тепловой баланс на примере расположенного в Московской области кирпичного двухэтажного дома с общей площадью помещений 150 м2 (для упрощения вычислений мы считали, что размеры коттеджа в плане примерно 8,7х8,7 м и он имеет 2 этажа высотой по 2,5 м).

Теплопотери через ограждающие конструкции (кровлю, стены, пол)

Интенсивность теплопотерь определяется двумя факторами: разницей температур внутри и снаружи дома и сопротивлением его ограждающих конструкций теплопередаче. Разделив разницу температур Δt на коэффициент сопротивления теплопередаче Ro стен, кровли, пола, окон и дверей и умножив на площадь S их поверхности, можно вычислить интенсивность теплопотерь Q:

Q = (Δt/R o)*S

Разница температур Δt - величина непостоянная, она меняется от сезона к сезону, в течение дня, в зависимости от погоды и т.д. Однако нашу задачу упрощает то обстоятельство, что нам необходимо оценить потребность в тепле суммарно за год. Поэтому для приближённого расчёта мы вполне можем использовать такой показатель, как среднегодовая температура воздуха для выбранной местности. Для Московской области это +5,8°C. Если принять за комфортную температуру в доме +23°C, то наша усреднённая разница составит

Δt = 23°C - 5,8°C = 17,2°C

Стены. Площадь стен нашего дома (2 квадратных этажа 8,7х8,7 м высотой 2,5 м) будет примерно равна

S = 8,7 * 8,7 * 2,5 * 2 = 175 м 2

Однако из этого нужно вычесть площадь окон и дверей, для которых мы рассчитаем теплопотери отдельно. Предположим, что входная дверь у нас одна, стандартного размера 900х2000 мм, т.е. площадью

S двери = 0,9 * 2 = 1,8 м 2 ,

а окон - 16 штук (по 2 на каждой стороне дома на обоих этажах) размером 1500х1500 мм, суммарная площадь которых составит

S окон = 1,5 * 1,5 * 16 = 36 м 2 .

Итого - 37,8 м 2 . Оставшаяся площадь кирпичных стен -

S стен = 175 - 37,8 = 137,2 м 2 .

Коэффициент сопротивления теплопередаче стены в 2 кирпича равен 0,405 м2°C/Вт. Для простоты пренебрежём сопротивлением теплопередаче слоя штукатурки, покрывающей стены дома изнутри. Таким образом, тепловыделение всех стен дома составит:

Q стен = (17,2°C / 0,405м 2 °C/Вт) * 137,2 м 2 = 5,83 кВт

Кровля. Для простоты расчётов будем считать, что сопротивление теплопередаче кровельного пирога равно сопротивлению теплопередаче слоя утеплителя. Для лёгкой минераловатной теплоизоляции толщиной 50-100 мм, чаще всего применяемой для утепления кровель, оно примерно равно 1,7 м 2 °C/Вт. Сопротивлением теплопередаче чердачного перекрытия пренебрежём: допустим, что в доме есть мансарда, которая сообщается с другими помещениями и между всеми ними тепло распределяется равномерно.

Площадь двускатной кровли при уклоне в 30° составит

S кровли = 2 * 8,7 * 8,7 / Cos30° = 87 м 2 .

Таким образом, её тепловыделение составит:

Q кровли = (17,2°C / 1,7м 2 °C/Вт) * 87 м 2 = 0,88 кВт

Пол. Сопротивление теплопередаче деревянного пола - примерно 1,85 м2°C/Вт. Произведя аналогичные расчёты, получим тепловыделение:

Q пола = (17,2°C / 1,85м 2 °C/Вт) * 75 2 = 0,7 кВт

Двери и окна. Их сопротивление теплопередаче приблизительно равно соответственно 0,21 м 2 °C/Вт (двойная деревянная дверь) и 0,5 м 2 °C/Вт (обычный двухкамерный стеклопакет, без дополнительных энергоэффективных «примочек»). В итоге получим тепловыделение:

Q двери = (17,2°C / 0,21Вт/м 2 °C) * 1,8м 2 = 0,15 кВт

Q окна = (17,2°C / 0,5м 2 °C/Вт) * 36м 2 = 1,25 кВт

Вентиляция. По строительным нормам коэффициент воздухообмена для жилого помещения должен быть не менее 0,5, а лучше - 1, т.е. за час воздух в помещении должен обновляться полностью. Таким образом, при высоте потолков 2,5 м - это примерно 2,5 м 3 воздуха в час на квадратный метр площади. Этот воздух необходимо нагреть от уличной температуры (+5,8°C) до температуры помещения (+23°C).

Удельная теплоёмкость воздуха - это количество теплоты, необходимое для повышения температуры 1 кг вещества на 1°C - равна примерно 1,01 кДж/кг°C. При этом плотность воздуха в интересующем нас диапазоне температур составляет примерно 1,25 кг/м 3 , т.е. масса 1 его кубометра равна 1,25 кг. Таким образом, для нагрева воздуха на 23-5,8=17,2°C на каждый квадратный метр площади потребуется:

1,01 кДж/кг°C * 1,25 кг/м 3 * 2,5 м 3 /час * 17,2°C = 54,3 кДж/час

Для дома площадью 150 м2 это будет:

54,3 * 150 = 8145 кДж/час = 2,26 кВт

Подведём итог
Теплопотери через Разница температур, °C Площадь, м2 Сопротивление теплопередаче, м2°C/Вт
Теплопотери, кВт
Стены
17,2
175
0,41
5,83
Кровля
17,2
87
1,7
0,88
Пол
17,2
75
1,85
0,7
Двери
17,2
1,8
0,21
0,15
Окна
17,2
36
0,5
0,24
Вентиляция
17,2
-
-
2,26
Итого:



11,06

Сейчас надышим!

Предположим, что в доме живёт семья из двоих взрослых с двумя детьми. Норма питания взрослого человека - 2600-3000 калорий в сутки, что эквивалентно мощности тепловыделения в 126 Вт. Тепловыделение ребёнка будем оценивать в половину тепловыделения взрослого. Если все обитали дома находятся в нём 2/3 всего времени, то получим:

(2*126 + 2*126/2)*2/3 = 252 Вт

Допустим, что в доме 5 комнат, освещённых обыкновенными лампами накаливания мощностью 60 Вт (не энергосберегающими), по 3 на комнату, которые включены в среднем по 6 часов в сутки (т.е. 1/4 всего времени). Примерно 85% потребляемой лампой мощности превращается в тепло. Итого получим:

5*60*3*0,85*1/4 = 191 Вт

Холодильник - очень эффективный нагревательный прибор. Его тепловыделение - 30% от максимальной потребляемой мощности, т.е. 750 Вт.

Другая бытовая техника (пусть это будут стиральная и посудомоечная машины) выделяет в виде тепла около 30% максимальной потребляемой мощности. Средняя мощность указанных приборов - 2,5 Квт, работают они примерно по 2 часа в сутки. Итого получим 125 Вт.

Стандартная электроплита с духовкой имеет мощность примерно в 11 кВт, однако встроенный ограничитель регулирует работу нагревательных элементов таким образом, чтобы их одновременное потребление не превышало 6 кВт. Впрочем, вряд ли мы когда-то используем больше, чем половину конфорок одновременно или сразу все тэны духовки. Поэтому будем исходить из того, что средняя рабочая мощность плиты - примерно 3 кВт. Если она работает часа 3 в день, то получим тепла 375 Вт.

Каждый компьютер (а их в доме 2) выделяет примерно 300 Вт тепла и работает 4 часа в сутки. Итого - 100 Вт.

Телевизор - это 200 Вт и 6 часов в сутки, т.е. на круг - 50 Вт.

В сумме получаем: 1,84 кВт .

Теперь вычислим требуемую тепловую мощность системы отопления:

Q отопления = 11,06 - 1,84 = 9,22 кВт

Расходы на отопление

Собственно, выше мы вычислили мощность, которая будет необходима для нагрева теплоносителя. А греть его мы будем, естественно, с помощью котла. Таким образом, расходы на отопление - это расходы на топливо для этого котла. Поскольку мы рассматриваем самый общий случай, то сделаем расчёт для наиболее универсального жидкого (дизельного) топлива, т.к. газовые магистрали есть далеко не везде (а стоимость их подведения - это цифра с 6 нулями), а твёрдое топливо нужно, во-первых, как-то привозить, а во-вторых - каждые 2-3 часа подбрасывать в топку котла.

Чтобы узнать, какой объём V дизтоплива в час нам придётся жечь для обогрева дома, нужно удельную теплоту его сгорания q (количество тепла, выделяемое при сжигании единицы массы или объёма топлива, для дизтоплива - примерно 13,95 кВт*ч/л) умножить на КПД котла η (примерно 0,93 у дизельных) и затем требуемую мощность системы отопления Qотопления (9,22 кВт) поделить на полученную цифру:

V = Q отопления /(q*η) = 9,22 кВт / (13,95 кВт*ч/л) * 0,93) = 0,71 л/ч

При средней для Московской области стоимости дизтоплива 30 руб./л в год на отопление дома у нас уйдёт

0,71 * 30руб. * 24часа * 365дней = 187 тыс. руб. (округленно) .

Как сэкономить?

Естественное желание любого домовладельца - снизить затраты на отопление ещё на стадии строительства. Куда же имеет смысл вкладывать деньги?

В первую очередь следует подумать об утеплении фасада, на долю которого, как мы убедились ранее, приходится основной объём всех теплопотерь дома. В общем случае для этого может использоваться внешнее или внутреннее дополнительное утепление. Однако внутреннее утепление гораздо менее эффективно: при монтаже теплоизоляции изнутри граница раздела тёплой и холодной областей «перемещается» внутрь дома, т.е. в толще стен будет конденсироваться влага.

Существует два способа утепления фасадов: «мокрый» (штукатурка) и путём установки навесного вентилируемого фасада. Практика показывает, что из-за необходимости постоянного ремонта «мокрое» утепление с учётом эксплуатационных расходов оказывается в итоге почти вдвое дороже вентилируемого фасада. Основным недостатком штукатурного фасада является высокая стоимость его обслуживания и содержания. «Первоначальные затраты на обустройство такого фасада ниже, чем для навесного вентилируемого, всего на 20-25%, максимум на 30%, - объясняет Сергей Якубов («Металл Профиль»). - Однако с учётом расходов на текущий ремонт, который нужно делать не реже чем раз в 5 лет, уже по истечении первой пятилетки штукатурный фасад сравняется по стоимости с вентилируемым, а за 50 лет (срок службы вентфасада) - окажется дороже его в 4-5 раз ».

Что же представляет собой навесной вентилируемый фасад? Это наружный «экран», закреплённый на лёгком металлическом каркасе, который крепится к стене специальными кронштейнами. Между стеной дома и экраном размещается лёгкий утеплитель (например, Isover «ВентФасад Низ» толщиной от 50 до 200 мм), а также ветрогидрозащитная мембрана (например, Tyvek Housewrap). В качестве наружной облицовки могут использоваться различные материалы, но в индивидуальном строительстве чаще всего применяется стальной сайдинг. «Использование при производстве сайдинга современных высокотехнологичных материалов, таких как сталь с покрытием Colorcoat Prisma™, позволяет подобрать практически любое дизайнерское решение, - говорит Сергей Якубов. - Этот материал обладает превосходной устойчивостью как к коррозии, так и к механическим воздействиям. Срок гарантии на него составляет 20 лет при реальном сроке эксплуатации в 50 лет и более. Т.е. при условии использования стального сайдинга вся фасадная конструкция прослужит 50 лет без ремонта ».

Дополнительный слой фасадного утеплителя из минваты имеет сопротивление теплопередаче примерно 1,7 м2°C/Вт (см. выше). В строительстве, чтобы вычислить сопротивление теплопередаче многослойной стены, складывают соответствующие значения для каждого из слоёв. Как мы помним, наша основная несущая стена в 2 кирпича имеет сопротивление теплопередаче 0,405 м2°C/Вт. Поэтому для стены с вентфасадом получим:

0,405 + 1,7 = 2,105 м 2 °C/Вт

Таким образом, после утепления тепловыделение наших стен составит

Q фасад = (17,2°C / 2,105м 2 °C/Вт) * 137,2 м 2 = 1,12 кВт,

что в 5,2 раза меньше аналогичного показателя для неутеплённого фасада. Впечатляет, не правда ли?

Снова вычислим требуемую тепловую мощность системы отопления:

Q отопления-1 = 6,35 - 1,84 = 4,51 кВт

Расход дизтоплива:

V 1 = 4,51 кВт / (13,95 кВт*ч/л) * 0,93) = 0,35 л/ч

Сумма на отопление:

0,35 * 30руб. * 24часа * 365дней = 92 тыс. руб.

Выбор теплоизоляции, вариантов утепления стен, перекрытий и других огрождающих конструкций для большинства заказчиков-застройщиков задача сложная. Слишком много противоречивых проблем требуется решить одновременно. Данная страничка поможет Вам во всем этом разобраться.

В настоящее время теплосбережение энергоресурсов приобрело большое значение. Согласно СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплопередаче определяется по одному из двух альтернативных подходов:

  • предписывающему (нормативные требования предьявляются к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.п.)
  • потребительскому (сопротивление теплопередачи ограждения может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного).

Санитарно-гигиенические требования должны выполняться всегда.

К ним относятся

Требование, что бы перепад между температурами внутреннего воздуха и на поверхности огрождающих конструкций не превышали допустимых значений. Максимальные допустимые значения перепада для наружной стены 4°С, для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.

Требование, что бы температура на внутренней поверхности ограждения была выше температуры точки росы.

Для Москвы и ее области требуемое теплотехническое сопротивление стены по потребительскому подходу составляет 1,97 °С·м. кв./Вт, а по предписывающему подходу:

  • для дома постоянного проживания 3,13 °С·м. кв./ Вт,
  • для административных и других общественных зданий в т.ч. зданий сезонного проживания 2,55 °С·м. кв./ Вт.

Таблица толщин и термических сопротивление материалов для условий Москвы и ее области.

Наименование материала стены Толщина стены и соответствующее ей термическое сопротивление Необходимая толщина по потребительскому подходу
(R=1,97 °С·м. кв./ Вт)
и по предписывающему подходу
(R=3,13 °С·м. кв./ Вт)
Полнотелый сплошной глиняный кирпич (плотность 1600 кг/м. куб) 510 мм (кладка в два кирпича), R=0,73 °С·м. кв./Вт 1380 мм
2190 мм
Керамзитобетон (плотность 1200 кг/м. куб.) 300 мм, R=0,58 °С·м. кв./Вт 1025 мм
1630 мм
Деревянный брус 150 мм, R=0,83 °С·м. кв./Вт 355 мм
565 мм
Деревянный щит с заполнением минеральной ватой (толщины внутренней и наружной обшивки из досок по 25 мм) 150 мм, R=1,84 °С·м. кв./Вт 160 мм
235 мм

Таблица требуемых сопротивлений теплопередаче огрождающих конструкций в домах Московской области.

Наружная стена Окно, балконная дверь Покрытие и перекрытия Перекрытие чердачное и перекрытия над неотапливаемыми подвалами Входной двери
По предписывающему подходу
3,13 0,54 3,74 3,30 0,83
По потребительскому подходу
1,97 0,51 4,67 4,12 0,79

Из этих таблиц видно, что большинство загородного жилья в Подмосковье не удовлетворяют требованиям по теплосбережению, при этом даже потребительский подход несоблюдается во многих вновь строящихся зданиях.

Поэтому, подбирая котел или обогревательные приборы только по указанным в их документации способности обогреть определенную площадь, Вы утверждаете, что Ваш дом построен со строгим учетом требований СНиП 23-02-2003.

Из вышеизложенного материала следует вывод. Для правильного выбора мощности котла и обогревательных приборов, необходимо рассчитать реальные теплопотери помещений Вашего дома.

Ниже мы покажем несложную методику расчета теплопотерь Вашего дома.

Дом теряет тепло через стену, крышу, сильные выбросы тепла идут через окна, в землю тоже уходит тепло, существенные потери тепла могут приходиться на вентиляцию.

Тепловые потери в основном зависят от:

  • разницы температур в доме и на улице (чем разница больше, тем потери выше),
  • теплозащитных свойств стен, окон, перекрытий, покрытий (или, как говорят ограждающих конструкций).

Ограждающие конструкции сопротивляются утечкам тепла, поэтому их теплозащитные свойства оценивают величиной, называемой сопротивлением теплопередачи.

Сопротивление теплопередачи показывает, какое количество тепла уйдет через квадратный метр ограждающей конструкции при заданном перепаде температур. Можно сказать и наоборот, какой перепад температур возникнет при прохождении определенного количества тепла через квадратный метр ограждений.

где q - это количество тепла, которое теряет квадратный метр ограждающей поверхности. Его измеряют в ваттах на квадратный метр (Вт/м. кв.); ΔT - это разница между температурой на улице и в комнате (°С) и, R - это сопротивление теплопередачи (°С/ Вт/м. кв. или °С·м. кв./ Вт).

Когда речь идет о многослойной конструкции, то сопротивление слоев просто складываются. Например, сопротивление стены из дерева, обложенного кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.).

Распределение температуры и пограничные слои воздуха при передаче тепла через стену

Расчет на теплопотери проводят для самого неблагоприятного периода, которым является самая морозная и ветреная неделя в году.

В строительных справочниках, как правило, указывают тепловое сопротивление материалов исходя из этого условия и климатического района (или наружной температуры), где находится Ваш дом.

Таблица - Сопротивление теплопередачи различных материалов при ΔT = 50 °С (Т нар. = -30 °С, Т внутр. = 20 °С.)

Материал и толщина стены Сопротивление теплопередаче R m ,
Кирпичная стена
толщиной в 3 кирпича (79 см)
толщиной в 2,5 кирпича (67 см)
толщиной в 2 кирпича (54 см)
толщиной в 1 кирпич (25 см)

0,592
0,502
0,405
0,187
Сруб из бревен Ø 25
Ø 20
0,550
0,440
Сруб из бруса

толщиной 20 см
толщиной 10 см


0,806
0,353
Каркасная стена (доска +
минвата + доска) 20 см
0,703
Стена из пенобетона 20 см
30 см
0,476
0,709
Штукатурка по кирпичу, бетону,
пенобетону (2-3 см)
0,035
Потолочное (чердачное) перекрытие 1,43
Деревянные полы 1,85
Двойные деревянные двери 0,21

Таблица - Тепловые потери окон различной конструкции при ΔT = 50 °С (Т нар. = -30 °С, Т внутр. = 20 °С.)

Тип окна R T q , Вт/м2 Q , Вт
Обычное окно с двойными рамами 0,37 135 216
Стеклопакет (толщина стекла 4 мм)

4-16-4
4-Ar16-4
4-16-4К
4-Ar16-4К


0,32
0,34
0,53
0,59

156
147
94
85

250
235
151
136
Двухкамерный стеклопакет

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К


0,42
0,44
0,53
0,60
0,45
0,47
0,55
0,67
0,47
0,49
0,58
0,65
0,49
0,52
0,61
0,68
0,52
0,55
0,65
0,72

119
114
94
83
111
106
91
81
106
102
86
77
102
96
82
73
96
91
77
69

190
182
151
133
178
170
146
131
170
163
138
123
163
154
131
117
154
146
123
111

Примечание
. Четные цифры в условном обозначении стеклопакета означают воздушный
зазор в мм;
. Символ Ar означает, что зазор заполнен не воздухом, а аргоном;
. Литера К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Как видно из предыдущей таблицы, современные стеклопакеты позволяют уменьшить теплопотери окна почти в два раза. Например, для десяти окон размером 1,0 м х 1,6 м экономия достигнет киловатта, что в месяц дает 720 киловатт-часов.

Для правильного выбора материалов и толщин ограждающих конструкций применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один кв. метр участвуют две величины:

  • перепад температур ΔT,
  • сопротивления теплопередаче R.

Температуру в помещении определим в 20 °С, а наружную температуру примем равной -30 °С. Тогда перепад температур ΔT будет равным 50 °С. Стены выполнены из бруса толщиной 20 см, тогда R= 0,806 °С·м. кв./ Вт.

Тепловые потери составят 50 / 0,806 = 62 (Вт/м. кв.).

Для упрощения расчетов теплопотерь в строительных справочниках приводят теплопотери разного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. В частности, даются разные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разная тепловая картина для помещений первого и верхнего этажа.

Таблица - Удельные теплопотери элементов ограждения здания (на 1 кв.м. по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения
Наружная
температура,
°С
Теплопотери, Вт
Первый этаж Верхний этаж
Угловая
комната
Неугл.
комната
Угловая
комната
Неугл.
комната
Стена в 2,5 кирпича (67 см)
с внутр. штукатуркой
-24
-26
-28
-30
76
83
87
89
75
81
83
85
70
75
78
80
66
71
75
76
Стена в 2 кирпича (54 см)
с внутр. штукатуркой
-24
-26
-28
-30
91
97
102
104
90
96
101
102
82
87
91
94
79
87
89
91
Рубленая стена (25 см)
с внутр. обшивкой
-24
-26
-28
-30
61
65
67
70
60
63
66
67
55
58
61
62
52
56
58
60
Рубленая стена (20 см)
с внутр. обшивкой
-24
-26
-28
-30
76
83
87
89
76
81
84
87
69
75
78
80
66
72
75
77
Стена из бруса (18 см)
с внутр. обшивкой
-24
-26
-28
-30
76
83
87
89
76
81
84
87
69
75
78
80
66
72
75
77
Стена из бруса (10 см)
с внутр. обшивкой
-24
-26
-28
-30
87
94
98
101
85
91
96
98
78
83
87
89
76
82
85
87
Каркасная стена (20 см)
с керамзитовымзаполнением
-24
-26
-28
-30
62
65
68
71
60
63
66
69
55
58
61
63
54
56
59
62
Стена из пенобетона (20 см)
с внутр. штукатуркой
-24
-26
-28
-30
92
97
101
105
89
94
98
102
87
87
90
94
80
84
88
91

Примечание
Если за стеной находится наружное неотапливаемое помещение (сени, застекленная веранда и т. д.), то потери тепла через нее составляют 70% от расчетных, а если за этим неотапливаемым помещением не улица, а еще одно помещение наружу (например, сени, выходящие на веранду), то 40% от расчетного значения.

Таблица - Удельные теплопотери элементов ограждения здания (на 1 кв.м. по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Характеристика ограждения Наружная
температура, °С
Теплопотери,
кВт
Окно с двойным остеклением -24
-26
-28
-30
117
126
131
135
Сплошные деревянные двери (двойные) -24
-26
-28
-30
204
219
228
234
Чердачное перекрытие -24
-26
-28
-30
30
33
34
35
Деревянные полы над подвалом -24
-26
-28
-30
22
25
26
26

Рассмотрим пример расчета тепловых потерь двух разных комнат одной площади с помощью таблиц.

Пример 1.

Угловая комната (первый этаж)

Характеристики комнаты:

  • этаж первый,
  • площадь комнаты - 16 кв.м. (5х3,2),
  • высота потолка - 2,75 м,
  • наружных стен - две,
  • материал и толщина наружных стен - брус толщиной 18 см, обшит гипсокартонном и оклеен обоями,
  • окна - два (высота 1,6 м, ширина 1,0 м) с двойным остеклением,
  • полы - деревянные утепленные, снизу подвал,
  • выше чердачное перекрытие,
  • расчетная наружная температура -30 °С,
  • требуемая температура в комнате +20 °С.

Площадь наружных стен за вычетом окон:

S стен (5+3,2)х2,7-2х1,0х1,6 = 18,94 кв. м.

Площадь окон:

S окон = 2х1,0х1,6 = 3,2 кв. м.

Площадь пола:

S пола = 5х3,2 = 16 кв. м.

Площадь потолка:

S потолка = 5х3,2 = 16 кв. м.

Площадь внутренних перегородок в расчете не участвует, так как через них тепло не уходит - ведь по обе стороны перегородки температура одинакова. Тоже относится и к внутренней двери.

Теперь вычислим теплопотери каждой из поверхностей:

Q суммарные = 3094 Вт.

Заметим, что через стены уходит тепла больше чем через окна, полы и потолок.

Результат расчета показывает теплопотери комнаты в самые морозные (Т нар.= -30 °С) дни года. Естественно, чем теплее на улице, тем меньше уйдет из комнаты тепла.

Пример 2


Комната под крышей (мансарда)

Характеристики комнаты:

  • этаж верхний,
  • площадь 16 кв.м. (3,8х4,2),
  • высота потолка 2,4 м,
  • наружные стены; два ската крыши (шифер, сплошная обрешетка, 10 см минваты, вагонка), фронтоны (брус толщиной 10 см, обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 см),
  • окна - четыре (по два на каждом фронтоне), высотой 1,6 м и шириной 1,0 м с двойным остеклением,
  • расчетная наружная температура -30°С,
  • требуемая температура в комнате +20°С.

Рассчитаем площади теплоотдающих поверхностей.

Площадь торцевых наружных стен за вычетом окон:

S торц.стен = 2х(2,4х3,8-0,9х0,6-2х1,6х0,8) = 12 кв. м.

Площадь скатов крыши, ограничивающих комнату:

S скатов.стен = 2х1,0х4,2 = 8,4 кв. м.

Площадь боковых перегородок:

S бок.перегор = 2х1,5х4,2 = 12,6 кв. м.

Площадь окон:

S окон = 4х1,6х1,0 = 6,4 кв. м.

Площадь потолка:

S потолка = 2,6х4,2 = 10,92 кв. м.

Теперь рассчитаем тепловые потери этих поверхностей, при этом учтем, что через пол тепло не уходит (там теплое помещение). Теплопотери для стен и потолка мы считаем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

Суммарные теплопотери комнаты составят:

Q суммарные = 4504 Вт.

Как видим, теплая комната первого этажа теряет (или потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы такое помещение сделать пригодным для зимнего проживания, нужно в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая конструкция может быть представлена в виде многослойной стены, каждый слой которой имеет свое тепловое сопротивление и свое сопротивление прохождению воздуха. Сложив тепловое сопротивление всех слоев, получим тепловое сопротивление всей стены. Также суммируя сопротивление прохождению воздуха всех слоев, поймем, как дышит стена. Идеальная стена из бруса должна быть эквивалентна стене из бруса толщиной 15 - 20 см. Приведенная ниже таблица поможет в этом.

Таблица - Сопротивление теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Т нар. =-20 °С, Т внутр. =20 °С.)


Слой стены
Толщина
слоя
стены
Сопротивление
теплопередаче слоя стены
Сопротивл.
воздухопро-
ницаемости
эквивалентно
брусовой стене
толщиной
(см)
Ro,Эквивалент
кирпичной
кладке
толщиной
(см)
Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 см
25 см
50 см
75 см

12
25
50
75
0,15
0,3
0,65
1,0
12
25
50
75 45
68
90
10
15
20

Для объективной картины теплопотерь всего дома необходимо учесть

  1. Потери тепла через контакт фундамента с мерзлым грунтом обычно принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, связанные с вентиляцией. Эти потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же обьем свежего воздуха. Таким образом, потери связанные с вентиляцией, составляют немногим меньше сумме теплопотерь приходящиеся на ограждающие конструкции. Получается, что потери тепла через стены и остекление составляет только 40%, а потери тепла на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение тепловых потерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 - 20 см, то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%, поэтому полученную при расчете величину теплового сопротивления стены следует умножить на 1,3 (или соответственно уменьшить теплопотери).

Суммировав все теплопотери дома, Вы определите, какой мощности генератор тепла (котел) и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, расчеты подобного рода покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Рассчитать расход тепла можно и по укрупненным показателям. Так, в одно- и двухэтажных не сильно утепленных домах при наружной температуре -25 °С требуется 213 Вт на один квадратный метр общей площади, а при -30 °С - 230 Вт. Для хорошо утепленных домов - это: при -25 °С - 173 Вт на кв.м. общей площади, а при -30 °С - 177 Вт.

  1. Стоимость теплоизоляции относительно стоимости всего дома существенно мала, однако при эксплуатации здания основные затраты приходятся именно на отопление. На теплоизоляции ни в коем случае нельзя экономить, особенно при комфортном проживании на больших площадях. Цены на энергоносители во всем мире постоянно повышаются.
  2. Современные строительные материалы обладают более высоким термическим сопротивлением, чем материалы традиционные. Это позволяет делать стены тоньше, а значит, дешевле и легче. Все это хорошо, но у тонких стен меньше теплоемкость, то есть они хуже запасают тепло. Топить приходиться постоянно - стены быстро нагреваются и быстро остывают. В старых домах с толстыми стенами жарким летним днем прохладно, остывшие за ночь стены «накопили холод».
  3. Утепление необходимо рассматривать совместно с воздухопроницаемостью стен. Если увеличение теплового сопротивления стен связано со значительным уменьшением воздухопроницаемости, то не следует его применять. Идеальная стена по воздухопроницаемости эквивалентна стене из бруса толщиной 15…20 см.
  4. Очень часто, неправильное применение пароизоляции приводит к ухудшению санитарно-гигиенических свойств жилья. При правильно организованной вентиляции и «дышащих» стенах она излишня, а при плохо воздухопроницаемых стенах это ненужно. Основное ее назначение это предотвращение инфильтрации стен и защита утепления от ветра.
  5. Утепление стен снаружи существенно эффективнее внутреннего утепления.
  6. Не следует бесконечно утеплять стены. Эффективность такого подхода к энергосбережению - не высока.
  7. Вентиляция - вот основные резервы энергосбережения.
  8. Применив современные системы остекления (стеклопакеты, теплозащитное стекло и т.п.), низкотемпературные обогревающие системы, эффективную теплоизоляцию ограждающих конструкций, можно сократить затраты на отопление в 3 раза.

Варианты дополнительного утепления конструкций зданий на базе строительной теплоизоляции типа «ISOVER», при наличии в помещениях систем воздухообмена и вентиляции.



eeni2008

Рассмотрим, как рассчитать теплопотери дома через ограждающие конструкции. Расчет приводится на примере одноэтажного жилого дома. Данным расчетом можно пользоваться и для расчета теплопотерь отдельного помещения, всего дома или отдельной квартиры.

Пример технического задания для расчета теплопотерь

Сначала составляем простой план дома с указанием площадей помещений, размеров и расположения окон и входной двери. Это необходимо для определения площади поверхности дома, через которую происходят теплопотери.

Формула расчета теплопотерь

Для расчета теплопотерь применяем следующие формулы:

R = B / K - это формула расчета величины теплосопротивления ограждающих конструкций дома.

  • R - тепловое сопротивление, (м2*К)/Вт;
  • К - коэффициент теплопроводности материала, Вт/(м*К);
  • В - толщина материала, м.

Q = S . dT / R - это формула расчета теплопотерь.

  • Q - теплопотери, Вт;
  • S - площадь ограждающих конструкций дома, м2;
  • dT - разница температуры между внутренним помещением и улицой, К;
  • R - значение теплового сопротивления конструкции, м2.К/Вт

Температурный режим внутри дома для расчета берем +21..+23°С - такой режим является наиболее комфортным для человека. Минимальная уличная температура для расчета теплопотерь взята -30°С, так как в зимний период в регионе: где построен дом (Ярославская область, Россия) такая температура может продержаться более одной недели и именно наименьший температурный показатель рекомендуется закладывать в расчеты, при этом разность температур получаем dТ = 51..53, в среднем - 52 градуса.

Расчет теплопотерь дома - основа . Он нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме, провести анализ финансовой эффективности утепления т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя. Очень часто подбирая мощность отопительной системы помещения, люди руководствуются средним значением в 100 Вт на 1 м 2 площади при стандартной высоте потолков до трех метров. Однако, не всегда эта мощность достаточна для полного восполнения теплопотерь. Здания различаются по составу строительных материалов, их объему, нахождению в разных климатических зонах и т.д. Для грамотного расчета теплоизоляции и подбора мощности отопительных систем необходимо знать о реальных теплопотерях дома. Как их рассчитать - расскажем в этой статье.








Основные параметры для расчета теплопотерь

Теплопотери любого помещения зависят от трех базовых параметров:

  • объем помещения - нас интересует объем воздуха, который необходимо отопить
  • разницу температуры внутри и снаружи помещения - чем больше разница тем быстрее происходит теплообмен и воздух теряет тепло
  • теплопроводность ограждающих конструкций - способность стен, окон удерживать тепло

Самый простой рассчет теплопотерь

Qт (кВт/час)=(100 Вт/м2 x S (м2) x K1 x K2 x K3 x K4 x K5 x K6 x K7)/1000

Данная формула расчета теплопотерь по укрупненным показателям, в основе которых лежат усредненные условия 100 Вт на 1кв метр. Где основными рассчетными показателями для расчета являются следующие величины:

- тепловая мощность предполагаемого отопителя на отработанном масле, кВт/час.

100 Вт/м2 - удельная величина тепловых потерь (65-80 ватт/м2). В нее входят утечки тепловой энергии путем ее поглощения оконами, стенами, потолком полом; утечки через вентиляцию и негерметичности помещения и другие утечки.

S - площадь помещения;

K1 - коэффициент теплопотерь окон:

  • обычное остекление К1=1,27
  • двойной стеклопакет К1=1,0
  • тройной стеклопакет К1=0,85;

К2 - коэффициент теплопотерь стен:

  • плохая теплоизоляция К2=1,27
  • стена в 2 кирпича или утеплитель 150 мм толщиной К2=1,0
  • хорошая теплоизоляция К2=0,854

К3 коэффициент соотношения площадей окон и пола:

  • 10% К3=0,8
  • 20% К3=0,9
  • 30% К3=1,0
  • 40% К3=1,1
  • 50% К3=1,2;

K4 - коэффициент наружной температуры:

  • -10oC K4=0,7
  • -15oC K4=0,9
  • -20oC K4=1,1
  • -25oC K4=1,3
  • -35oC K4=1,5;

K5 - число стен, выходящих наружу:

  • одна - К5=1,1
  • две К5=1,2
  • три К5=1,3
  • четыре К5=1,4;

К6 - тип помещения, которое находится над расчитываемым:

  • холодный чердак К6=1,0
  • теплый чердак К6=0,9
  • отапливаемое помещение К6-0,8;

K7 - высота помещения:

  • 2,5 м К7=1,0
  • 3,0 м К7=1,05
  • 3,5 м К7=1,1
  • 4,0 м К7=1,15
  • 4,5 м К7=1,2.

Упрощенный рассчет теплопотерь дома

Qт = (V x ∆t x k)/860; (кВт)

V - объем помещения (куб.м)
∆t - дельта температур (уличной и в помещении)
k - коэффициент рассеивания

  • k= 3,0-4,0 - без теплоизоляции. (Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа).
  • k= 2,0-2,9 - небольшая теплоизоляция. (Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши).
  • k= 1,0-1,9 - средняя теплоизоляция. (Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей).
  • k= 0,6-0,9 - высокая теплоизоляция. (Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое количество окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

В данной формуле очень условно учитываются коэффициент рассеивания и не совсем понятно каким коэффициентами пользоваться. В классике редкое современное, выполненное из современных материалов с учетом действующих стандартов, помещение обладает ограждающими конструкциями с коэффициентом рассеивания более одного. Для более детального понимания методики расчёта предлагаем следующие более точные методики.

Сразу же акцентирую ваше внимание на то, что ограждающие конструкции в основном не являются однородными по структуре, а обычно состоят из нескольких слоёв. Пример: стена из ракушника = штукатурка + ракушник + наружная отделка. В эту конструкцию могут входить и замкнутые воздушные прослойки (пример: полости внутри кирпичей или блоков). Вышеперечисленные материалы имеют отличающиеся друг от друга теплотехнические характеристики. Основной такой характеристикой для слоя конструкции является его сопротивление теплопередачи R .

q - это количество тепла, которое теряет квадратный метр ограждающей поверхности (измеряется обычно в Вт/м.кв.)

ΔT - разница между температурой внутри рассчитываемого помещения и наружной температурой воздуха (температура наиболее холодной пятидневки °C для климатического района в котором находится рассчитываемое здание).

В основном внутренняя температура в помещениях принимается:

Когда речь идёт о многослойной конструкции, то сопротивления слоёв конструкции складываются. Отдельно хочу акцентировать ваше внимание на расчётном коэффициенте теплопроводности материала слоя λ Вт/(м°С) . Так как производители материалов чаще всего указывают его. Имея расчётный коэффициент теплопроводности материала слоя конструкции мы легко можем получить сопротивление теплопередачи слоя :

δ - толщина слоя, м;

λ - расчётный коэффициент теплопроводности материала слоя конструкции, с учетом условий эксплуатации ограждающих конструкций, Вт / (м2 оС).

Итак для расчёта тепловых потерь через ограждающие конструкции нам нужны:

1. Сопротивление теплопередачи конструкций (если конструкция многослойная то Σ R слоёв) R
2. Разница между температурой в расчётном помещении и на улице (температура наиболее холодной пятидневки °C.). ΔT
3. Площади ограждений F (Отдельно стены, окна, двери, потолок, пол)
4. Ориентация здания по отношению к сторонам света.

Формула для расчёта теплопотерь ограждением выглядит так:

Qогр=(ΔT / Rогр)* Fогр * n *(1+∑b)

Qогр - тепло потери через ограждающие конструкции, Вт
Rогр - сопротивление теплопередаче, м.кв.°C/Вт; (Если несколько слоёв то ∑ Rогр слоёв)
Fогр - площадь ограждающей конструкции, м;
n - коэффициент соприкосновения ограждающей конструкции с наружным воздухом.

Тип ограждающей конструкции

Коэффициент n

1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне

2. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне

3. Перекрытия над не отапливаемыми подвалами со световыми проемами в стенах

4. Перекрытия над не отапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли

5. Перекрытия над не отапливаемыми техническими подпольями, расположенными ниже уровня земли

(1+∑b) - добавочные потери теплоты в долях от основных потерь. Добавочные потери теплоты b через ограждающие конструкции следует принимать в долях от основных потерь:

а) в помещениях любого назначения через наружные вертикальные и наклонные (вертикальная проекция) стены, двери и окна, обращенные на север, восток, северо-восток и северо-запад - в размере 0,1, на юго-восток и запад - в размере 0,05; в угловых помещениях дополнительно — по 0,05 на каждую стену, дверь и окно, если одно из ограждений обращено на север, восток, северо-восток и северо-запад и 0,1 - в других случаях;

б) в помещениях, разрабатываемых для типового проектирования, через стены, двери и окна, обращенные на любую из сторон света, в размере 0,08 при одной наружной стене и 0,13 для угловых помещений (кроме жилых), а во всех жилых помещениях — 0,13;

в) через не обогреваемые полы первого этажа над холодными подпольями зданий в местностях с расчетной температурой наружного воздуха минус 40 °С и ниже (параметры Б) — в размере 0,05,

г) через наружные двери, не оборудованные воздушными или воздушно-тепловыми завесами, при высоте зданий Н, м, от средней планировочной отметки земли до верха карниза, центра вытяжных отверстий фонаря или устья шахты в размере: 0,2 Н — для тройных дверей с двумя тамбурами между ними; 0,27 H — для двойных дверей с тамбурами между ними; 0,34 H — для двойных дверей без тамбура; 0,22 H — для одинарных дверей;

д) через наружные ворота, не оборудованные воздушными и воздушно-тепловыми завесами, — в размере 3 при отсутствии тамбура и в размере 1 — при наличии тамбура у ворот.

Для летних и запасных наружных дверей и ворот добавочные потери теплоты по подпунктам “г” и “д” не следует учитывать.

Отдельно возьмём такой элемент как пол на грунте или на лагах. Здесь есть особенности. Пол или стена, не содержащие в своем составе утепляющих слоев из материалов с коэффициентом теплопроводности λ меньше либо равно 1,2 Вт/(м °С), называются не утепленными. Сопротивление теплопередаче такого пола принято обозначать Rн.п, (м2 оС) / Вт. Для каждой зоны не утепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

  • зона I - RI = 2,1 (м2 оС) / Вт;
  • зона II - RII = 4,3 (м2 оС) / Вт;
  • зона III - RIII = 8,6 (м2 оС) / Вт;
  • зона IV - RIV = 14,2 (м2 оС) / Вт;

Первые три зоны представляют собой полосы, расположенные параллельно периметру наружных стен. Остальную площадь относят к четвертой зоне. Ширина каждой зоны равна 2 м. Начало первой зоны находится в месте примыкания пола к наружной стене. Если неутеплёный пол примыкает к стене заглублённой в грунт то начало переносится к к верхней границе заглубления стены. Если в конструкции пола, расположенного на грунте, имеются утепляющие слои, его называют утепленным, а его сопротивление теплопередаче Rу.п, (м2 оС) / Вт, определяется по формуле:

Rу.п. = Rн.п. + Σ (γу.с. / λу.с)

Rн.п - сопротивление теплопередаче рассматриваемой зоны неутепленного пола, (м2 оС) / Вт;
γу.с - толщина утепляющего слоя, м;
λу.с - коэффициент теплопроводности материала утепляющего слоя, Вт/(м·°С).

Для пола на лагах сопротивление теплопередаче Rл, (м2 оС) / Вт, рассчитывается по формуле:

Rл = 1,18 * Rу.п

Теплопотери каждой ограждающей конструкции считаются отдельно. Величина теплопотерь через ограждающие конструкции всего помещения будет сумма теплопотерь через каждую ограждающую конструкцию помещения. Важно не напутать в измерениях. Если вместо (Вт) появится (кВт) или вообще (ккал) получите неверный результат. Ещё можно по невнимательности указать Кельвины (K) вместо градусов Цельсия (°C).

Продвинутый рассчет теплопотерь дома

В гражданских и жилых зданиях теплопотери помещений состоят из теплопотерь через различные ограждающие конструкции, такие как окна, стены, перекрытия, полы а также теплорасходов на нагревание воздуха, который инфильтрируется сквозь неплотности в защитных сооружениях (ограждающих конструкциях) даного помещения. В промышленных зданиях существуют и другие виды теплопотерь. Расчет теплопотерь помещения производится для всех ограждающих конструкций всех отапливаемых помещений. Могут не учитываться теплопотери через внутренние конструкции, при разности температуры в них с температурой соседних помещений до 3С. Теплопотери через ограждающие конструкции расчитываются по следующей формуле, Вт:

Qогр = F (tвн - tнБ) (1 + Σ β) n / Rо

tнБ - темп-ра наружного воздуха, оС;
tвн - темп-ра в помещении, оС;
F - площадь защитного сооружения, м2;
n - коэффициент, который учитывает положение ограждения или защитного сооружения (его наружной поверхности) относительно наружного воздуха;
β - теплопотери добавочные, доли от основных;
- сопротивление теплопередаче, м2·оС / Вт, которое определяется по следующей формуле:

Rо = 1/ αв + Σ (δі / λі) + 1/ αн + Rв.п., где

αв - коэффициент тепловосприятия ограждения (его внутренней поверхности), Вт/ м2· о С;
λі и δі - расчетный коэффициент теплопроводности для материала данного слоя конструкции и толщина этого слоя;
αн - коэффициент теплоотдачи ограждения (его наружной поверхности), Вт/ м2· о С;
Rв.n - в случае наличия в конструкции замкнутой воздушной прослойки, ее термосопротивление, м2· о С / Вт (см. табл.2).
Коэф-ты αн и αв принимаются согласно СНиП а для некоторых случаев приведены в таблице 1;
δі - обычно назначается согласно заданию или определяется по чертежах ограждающих конструкций;
λі - принимается по справочникам.

Таблица 1. Коэффициенты тепловосприятия αв и теплоотдачи αн

Поверхность ограждающей конструкции

αв, Вт/ м2· о С

αн, Вт/ м2· о С

Поверхность внутренняя полов, стен, гладких потолков

Поверхность наружная стен, бесчердачных перекрытий

Перекрытия чердачные и перекрытия над подвалами неотапливаемыми со световыми проемами

Перекрытия над подвалами неотапливаемыми без световых проемов

Таблица 2. Сопротивление термическое замкнутых воздушных прослоек Rв.n, м2· о С / Вт

Для дверей и окон сопротивление теплопередаче рассчитывается очень редко, а чаще принимается в зависимости от их конструкции по справочным данным и СНиПам. Площади ограждений для расчетов определяются, как правило, согласно строительных чертежей. Температуру tвн для жилых зданий выбирают из приложения і, tнБ - из приложения 2 СНиП в зависимости от расположения строительного объекта. Добавочные теплопотери указаны в табл.3, коэф-ент n - в табл.4.

Таблица 3. Добавочные теплопотери

Ограждение, его тип

Условия

Добавочные теплопотери β

Окна, двери и н аружные вертикальные стены:

ориентация на северо-запад восток, север и северо-восток

запад и юго-восток

Наружные двери, двери с тамбурами 0,2 Н без воздушной завесы при высоте строения Н, м

двери тройные с двумя тамбурами

двери двойные с тамбуром

Угловые помещения дополнительно для окон, дверей и стен

одно из ограждений ориентировано на восток, север, северо-запад или северо-восток

другие случаи

Таблица 4. Величина коэффициента n, который учитывает положение ограждения (его наружной поверхности)

Расход тепла на нагревание наружного инфильтрующегося воздуха в общественных и жилых зданиях для всех типов помещений определяется двумя расчетами. Первый расчет определяет расход тепловой энергии Qі на нагревание наружного воздуха, который поступает в і-е помещение в результате действия естественной вытяжной вентиляции. Второй расчет определяет расход тепловой энергии Qі на подогревание наружного воздуха, который проникает в данное помещение сквозь неплотности ограждений в результате ветрового и (или) теплового давлений. Для расчета принимают наибольшую величину теплопотерь из определенных по следующим уравнениям (1) и (или) (2).

Qі = 0,28 L ρн с (tвн - tнБ) (1)

L, м3/ча с - расход удаляемого наружу из помещений воздуха, для жилых зданий принимают 3 м3/час на 1 м2 площади жилых помещений, в том числе и кухни;
с - удельная теплоемкость воздуха (1 кДж /(кг · оС));
ρн - плотность воздуха снаружи помещения, кг/м3.

Удельный вес воздуха γ, Н/м3, его плотность ρ, кг/м3, определяются согласно формул:

γ= 3463/ (273 +t) , ρ = γ / g , где g = 9,81 м/с2 , t , ° с- температура воздуха.

Расход теплоты на подогревание воздуха, который попадает в помещение через различные неплотности защитных сооружений (ограждений) в результате ветрового и теплового давлений, определяется согласно формулы:

Qі = 0,28 Gі с (tвн - tнБ) k, (2)

где k - коэф-ент, учитывающий встредчный тепловой поток, для раздельно-переплетных балконных дверей и окон принимается 0,8, для одинарных и парно-переплетных окон - 1,0;
Gі - расход воздуха, проникающего (инфильтрируещегося) через защитные сооружения (ограждающие конструкции), кг/ч.

Для балконных дверей и окон значение Gі определяется:

Gі = 0,216 Σ F Δ Рі 0,67 / Rи, кг/ч

где Δ Рі - разница давлений воздуха на внутренней Рвн и наружной Рн поверхностях дверей или окон, Па;
Σ F, м2 - расчетные площади всех ограждений здания;
Rи, м2· ч/кг - сопротивление воздухопроницанию даного ограждения, которое может приниматься согласно приложения 3 СНиП. В панельных зданиях, кроме этого определяется дополнительный расход воздуха, инфильтрующегося через неплотности стыков панелей.

Величина Δ Рі определяется из уравнения, Па:

Δ Рі= (H - hі) (γн - γвн) + 0,5 ρн V2 (се,n - се,р) k1 - ріnt,
где H, м - высота здания от нулевого уровня до устья вентшахты (в бесчердачных зданиях устье обычно располагается на 1 м выше крыши, а в зданиях, имеющих чердак - на 4-5м выше перекрытия чердака);
hі, м - высота от нулевого уровня до верха балконных дверей или окон, для которых проводится расчет расхода воздуха;
γн, γвн - веса удельные наружного и внутреннего воздуха;
се,рu се,n - аэродинамические коэф-ты для подветренной и наветренной поверхностей здания соответственно. Для прямоугольных зданий се,р = -0,6, се,n= 0,8;

V, м/с - скорость ветра, которую для расчета принимают согласно приложения 2;
k1 - коэффициент, который учитывает зависимость скоростного напора ветра и высоты здания;
ріnt, Па - условно-постоянное давление воздуха, которое возникает при работе вентиляции с принудительным побуждением, при расчете жилых зданий ріnt можно не учитывать, поскольку оно равно нолю.

Для ограждений высотой до 5,0м коэффициент k1равен 0,5, высотой до 10 м равен 0,65, при высоте до 20 м - 0,85, а для ограждений 20 м и выше принимается 1,1.

Общие расчетные теплопотери в помещении, Вт:

Qрасч = Σ Qогр + Quнф - Qбыт

где Σ Qогр - суммарные потери тепла через все защитные ограждения помещения;
Qинф - максимальный расход теплоты на нагревание воздуха, который инфильтрируется принятый из расчетов согласно формул (2) u (1);
Qбыт - все тепловыделения от бытовых электрических приборов, освещения, других возможных источников тепла, которые принимаются для кухонь и жилых помещений в размере 21 Вт на 1 м2 расчетной площади.

Владивосток -24.
Владимир -28.
Волгоград -25.
Вологда -31.
Воронеж -26.
Екатеринбург -35.
Иркутск -37.
Казань -32.
Калининград -18
Краснодар -19.
Красноярск -40.
Москва -28.
Мурманск -27.
Нижний Новгород -30.
Новгород -27.
Новороссийск -13.
Новосибирск -39.
Омск -37.
Оренбург -31.
Орел -26.
Пенза -29.
Пермь -35.
Псков -26.
Ростов -22.
Рязань -27.
Самара -30.
Санкт-Петербург -26.
Смоленск -26.
Тверь -29.
Тула -27.
Тюмень -37.
Ульяновск -31.

Теплопотери помещения, которые принимаются по СНиП за расчетные при выборе тепловой мощности системы отопления, определяют как сумму расчетных потерь тепла через все его наружные ограждения. Кроме того, учитываются потери или поступления тепла через внутренние ограждения, если температура воздуха в соседних помещениях ниже или выше температуры в данном помещении на 5 0 С и более.

Рассмотрим, как принимаются для различных ограждений показатели, входящие в формулу, при определении расчетных теплопотерь.

Коэффициенты теплопередачи для наружных стен и перекрытий принимают по теплотехническому расчету. Подбирают конструкцию окон и для нее по таблице определяют коэффициент теплопередачи. Для наружных дверей значение k берется в зависимости от конструкции по таблице.

Расчет потери тепла через пол. Передача тепла из помещения нижнего этажа через конструкцию пола является сложным процессом. Учитывая сравнительно небольшой удельный вес теплопотерь через пол в общих теплопотерях помещения, применяют упрощенную методику расчета. Теплопотери через пол, расположенный на грунте, рассчитываются по зонам. Для этого поверхность пола делят на полосы шириной 2 м, параллельные наружным стенам. Полосу, ближайшую к наружной стене, обозначают первой зоной, следующие две полосы - второй и третьей зоной, а остальную поверхность пола - четвертой зоной.

Теплопотери каждой зоны рассчитывают по формуле, принимая niβi=1. За величину Ro.np принимают условное сопротивление теплопередаче, которое для каждой зоны неутепленного пола равно: для I зоны R нп =2,15(2,5); для II зоны R нп =4,3(5); для III зоны R нп =8,6(10); для IV зоны R нп =14,2 К-м2/Вт (16,5 0 C-M 2 ч/ккал).

Если в конструкции пола, расположенной непосредственно на грунте, имеются слои материалов, коэффициенты теплопроводности которых меньше 1,163 (1), то такой пол называют утепленным. Термические сопротивления утепляющих слоев в каждой зоне прибавляют к сопротивлениям Rн.п; таким образом, условное сопротивление теплопередаче каждой зоны утепленного пола R у.п оказывается равным:

R у.п = R н.п +∑(δ у.с /λ у.а);

где R н.п - сопротивление теплопередаче неутепленного пола соответствующей зоны;

δ у.с и λ у.а - толщины и коэффициенты теплопроводности утепляющих слоев.

Теплопотери через пол по лагам рассчитывают также по зонам, только условное сопротивление теплопередаче каждой зоны пола по лагам Rл принимают равным:

R л =1,18*R у.п.

где R у.п - величина, полученная по формуле с учетом утепляющих слоев. В качестве утепляющих слоев здесь дополнительно учитывают воздушную прослойку и настил пола по лагам.

Поверхность пола в первой зоне, примыкающая к наружному углу, имеет повышенные теплопотери, поэтому ее площадь размером 2X2 м дважды учитывается при определении общей площади первой зоны.

Подземные части наружных стен рассматриваются при расчете теплопотерь как продолжение пола Разбивка на полосы - зоны в этом случае делается от уровня земли по поверхности подземной части стен и далее по полу Условные сопротивления теплопередаче для зон в этом случае принимаются и рассчитываются так же, как для утепленного пола при наличии утепляющих слоев, которыми в данном случае являются слои конструкции стены.

Обмер площади наружных ограждений помещений. Площадь отдельных ограждений при подсчете потерь тепла через них должна определяться с соблюдением следующих правил обмера Эти правила по возможности учитывают сложность процесса теплопередачи через элементы ограждения и предусматривают условные увеличения и уменьшения площадей, когда фактические теплопотери могут быть соответственно больше или меньше подсчитанных по принятым простейшим формулам.

  1. Площади окон (О), дверей (Д) и фонарей измеряют по наименьшему строительному проему.
  2. Площади потолка (Пт) и пола (Пл) измеряют между осями внутренних стен и внутренней поверхностью наружной стены Площади зон пола по лагам и грунту определяют с условной их разбивкой на зоны, как указано выше.
  3. Площади наружных стен (H. с) измеряют:
  • в плане - по внешнему периметру между наружным углом и осями внутренних стен,
  • по высоте - в первом этаже (в зависимости от конструкции по-ла) от внешней поверхности пола по грунту, или от поверхности подготовки под конструкцию пола на лагах, или от нижней поверхности перекрытия над подпольем неотапливаемым подвальным помещением до чистого пола второго этажа, в средних этажах от поверхности пола до поверхности пола следующего этажа; в верхнем этаже от поверхности пола до верха конструкции чердачного перекрытия или бесчердачного покрытия При необходимости определения теплопотерь через внутренние ограждения площади принимают по внутреннему обмеру.

Добавочные теплопотери через ограждения. Основные теплопотери через ограждения, подсчитанные по формуле, при β 1 =1 часто оказываются меньше действительных теплопотерь, так как при этом не учитывается влияние на процесс некоторых факторов Потери тепла могут заметно изменяться под влиянием инфильтрации и эксфильтрации воздуха через толщу ограждений и щели в них, а также под действием облучения солнцем и противоизлучения внешней поверхности ограждений. Теплопотери в целом могут заметно возрасти за счет изменения температуры по высоте помещения, вследствие поступления холодного воздуха через открываемые проемы и пр.

Эти дополнительные потери тепла обычно учитывают добавками к основным теплопотерям Величина добавок и условное их деление по определяющим факторам следующие.

  1. Добавка на ориентацию по сторонам света принимается на все наружные вертикальные и наклонные ограждения (проекции на вертикаль) Величины добавок определяют по рисунку.
  2. Добавка на обдуваемость ограждений ветром. В районах, где расчетная зимняя скорость ветра не превышает 5 м/с, добавка принимается в размере 5% для ограждений, защищенных от ветра, и 10% для ограждений, не защищенных от ветра. Ограждение считают защищенным от ветра, если прикрывающее его строение выше верха ограждения больше чем на 2/3 расстояния между ними. В местностях со скоростью ветра более 5 и более 10 м/с приведенные величины добавок должны быть увеличены соответственно в 2 и 3 раза.
  3. Добавка на продуваемость угловых помещений и помещений, имеющих две и более наружных стен, принимается равной 5% для всех непосредственно обдуваемых ветром ограждений. Для жилых и тому подобных зданий эта добавка не вводится (учитывается повышением внутренней температуры на 20).
  4. Добавка на поступление холодного воздуха через наружные двери при их кратковременном открывании при N этажах в здании принимается равной 100 N % - при двойных дверях без тамбура, 80 N- то же, с тамбуром, 65 N% - при одинарных дверях.

Схема определения величины добавки к основным теплопотерям на ориентацию по странам света.

В промышленных помещениях добавка на поступление воздуха через ворота, которые не имеют тамбура и шлюза, если они открыты менее 15 мин в течение 1 ч, принимается равной 300%. В общественных зданиях частое открывание дверей также учитывается введением дополнительной добавки, равной 400-500%.

5. Добавка на высоту для помещений высотой более 4 м принимается в размере 2% на каждый метр высоты, стен более 4 м, но не более 15%. Эта добавка учитывает увеличение теплопотерь в верхней части помещения в результате повышения температуры воздуха с высотой. Для промышленных помещений делают специальный расчет распределения температуры по высоте, в соответствии с которым определяют теплопотери через стены и перекрытия. Для лестничных клеток добавка на высоту не принимается.

6. Добавка на этажность для многоэтажных зданий высотой в 3-8 этажей, учитывающая дополнительные затраты тепла на нагревание холодного воздуха, который при инфильтрации через ограждения проникает в помещение, принимается по СНиП.

  1. Коэффициент теплопередачи наружных стен, определенный по приведенному сопротивлению теплопередаче по наружному обмеру, k=1,01 Вт/(м2 К) .
  2. Коэффициент теплопередачи чердачного перекрытия принимаем равным k пт =0,78 Вт/(м 2 К) .

Полы первого этажа выполнены на лагах. Термическое сопротивление воздушной прослойки R в.п =0,172 К м 2 /Вт (0,2 0 С-м 2 ч/ккал); толщина дощатого настила δ=0,04 м; λ=0,175 Вт/(м К) . Теплопотери через пол по лагам определяются по зонам. Сопротивление теплопередаче утепляющих слоев конструкции пола равно:

R в.п + δ/λ=0,172+(0,04/0,175)=0,43 К*м 2 /Вт (0,5 0 С м2 ч/ккал).

Термическое сопротивление пола по лагам для I и II зон:

R л.II = 1,18(2.15+ 0,43)= 3,05 К*м 2 /Вт (3,54 0 С*м 2 *ч/ккал);

K I =0,328 Вт/м 2 *К) ;

R л.II =1,18(4,3+ 0.43) = 5,6(6,5);

K II =0,178(0,154).

Для неутепленного пола лестничной клетки

R н.п.I =2,15(2,5) .

R н.п.II =4,3(5) .

3. Для выбора конструкции окон определяем перепад температур наружного (t н5 =-26 0 С) и внутреннего (t п =18 0 С) воздуха:

t п - t н =18-(-26)=44 0 С.


Схема для расчета теплопотерь помещений

Требуемое термическое сопротивление окон жилого дома при Δt=44 0 С равно 0,31 к*м 2 /Вт (0,36 0 С*м 2 *ч/ккал). Принимаем окно с двойными раздельными деревянными переплетами; для этой конструкции k ок =3,15(2,7). Наружные двери двойные деревянные без тамбура; k дв =2,33 (2).Теплопотери через отдельные ограждения рассчитываем по формуле. Расчет сведен в таблицу.

Расчет теплопотерь через наружные ограждении помещении

№ пом. Наим. пом. и его темпер. Хар-ка ограждения Коэффициент теплопередачи ограждения k Вт/(м 2 К) [ккал/(ч м 2 0 С)] расч. разн. темп., Δt n Основн. теплопот. через огражде., Вт (ккал/ч) Добавочные теплопотери. % Коэфф. β l Теплопотери через ограждение Вт (ккал/ч)
Наим. ор. по стор. света разм., м пл. F, м 2 на ор. по стор. света на обдув. ветр. проч.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
101 Н.с. ЮЗ 4,66X3,7 17,2 1,02(0,87) 46 800(688) 0 10 0 1,10 880(755)
Н.с. СЗ 4,86X3,7 18,0 1,02(0,87) 46 837(720) 10 10 0 1,20 1090(865)
Д.о. СЗ 1,5X1,2 1,8 3,15-1,02(2,7-0,87) 46 176(152) 10 10 0 1,20 211(182)
Пл I - 8,2X2 16,4 0,328(0,282) 46 247(212) - - - 1 247(212)
Пл II - 2,2X2 4 0,179(0,154) 46 37(32) - - - 1 37(32)
2465(2046)
102 Н.с. СЗ 3,2X3,7 11,8 1,02(0,87) 44 625(452) 10 10 0 1,2 630(542)
Д.о. СЗ 1,5X1,2 1,8 2,13(1,83) 44 168(145) 10 10 0 1,2 202(174)
Пл I - 3,2X2 6,4 0,328(0,282) 44 91(78) - - - 1 91(78)
Пл II - 3,2X2 6,4 0,179(0,154) 44 62(45) - - - 1 52(45)
975(839)
201 Жилая комната, угловая. t в =20 0 С Н.с. ЮЗ 4,66X3,25 15,1 1,02(0,87) 46 702(605) 0 10 0 1,10 780(665)
Н.с. СЗ 4.86X3,25 16,8 1,02(0,87) 46 737(633) 10 10 0 1,20 885(760)
Д.о. СЗ 1.5X1,2 1,8 2,13(1,83) 46 173(152) 10 10 0 1,20 222(197)
Пт - 4,2X4 16,8 0,78(0,67) 46X0,9 547(472) - - - 1 547(472)
2434(2094)
202 Жилая комната, средняя. t в =18 0 С Н.с. ЮЗ 3,2X3,25 10,4 1,02(0,87) 44 460(397) 10 10 0 1,2 575(494)
Д.о. СЗ 1,5X1,2 1,8 2,13(1,83) 44 168(145) 10 10 0 1,2 202(174)
Пт СЗ 3,2X4 12,8 0,78(0,67) 44X0,9 400(343) - - - 1 400(343)
1177(1011)
ЛкА Лестн. клетка, t в =16 0 С Н.с. СЗ 6,95x3,2-3,5 18,7 1,02(0,87) 42 795(682) 10 10 0 1,2 950(818)
Д.о. СЗ 1,5X1,2 1,8 2,13(1,83) 42 160(138) 10 10 0 1,2 198(166)
Н.д. СЗ 1,6X2,2 3,5 2,32(2,0) 42 342(294) 10 10 100X2 3,2 1090(940)
Пл I - 3,2X2 6,4 0,465(0,4) 42 124(107) - - - 1 124(107)
Пл II - 3,2X2 6,4 0,232(0,2) 42 62(53) - - - 1 62(53)
Пт - 3,2X4 12,8 0,78(0,67) 42X0,9 380(326) - - - 1 380(326)
2799(2310)

Примечания:

  1. Для наименований ограждений приняты условные обозначение: Н.с. - наружная стена; Д.о. - двойное окно; Пл I и Пл II - соответственно I и II зоны пола; Пт - потолок; Н.д. -наружная дверь.
  2. В графе 7 коэффициент теплопередачи для окон определен как разность коэффициентов теплопередачи окна и наружной стены, при этом площадь окна не вычитается из площади степы.
  3. Теплопотеря через наружную дверь определена отдельно (на площади стены в этом случае исключается площадь двери, так как добавки на дополнительные теплопотери у наружной стены и двери разные).
  4. Расчетная разность температур в графе 8 определена как (t в -t н)n.
  5. Основные теплопогери (графа 9) определены как kFΔt n .
  6. Добавочные теплопотери даны в процентах к основным.
  7. Коэффициент β (графа 13) равен единице плюс добавочные теплопотеря, выраженные в долях единицы.
  8. Расчетные теплопотери через ограждения определены как kFΔt n β i (графа 14).