ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Дополнительные теплопотери через ограждения зданий. Расчет теплопотерь дома через ограждающие конструкции

Проектирование системы отопления «на глазок» с большой вероятностью может привести либо к неоправданному завышению расходов на ее эксплуатацию, либо к недогреву жилища.

Чтобы не случилось ни того ни другого, необходимо в первую очередь грамотно выполнить расчет теплопотерь дома.

И только на основании полученных результатов подбирается мощность котла и радиаторов. Наш разговор пойдет о том, каким способом производятся эти вычисления и что при этом нужно учитывать.

Авторы многих статей сводят расчет теплопотерь к одному простому действию: предлагается умножить площадь отапливаемого помещения на 100 Вт. Единственное условие, которое при этом выдвигается, относится к высоте потолка - она должна составлять 2,5 м (при других значениях предлагается вводить поправочный коэффициент).

На самом деле такой расчет является настолько приблизительным, что полученные с его помощью цифры можно смело приравнивать к «взятым с потолка». Ведь на удельную величину теплопотерь влияет целый ряд факторов: материал ограждающих конструкций, наружная температура, площадь и тип остекления, кратность воздухообмена и пр.

Теплопотери дома

Более того, даже для домов с различной отапливаемой площадью при прочих равных условиях ее значение будет разным: в маленьком доме - больше, в большом - меньше. Так проявляется закон квадрата-куба.

Поэтому владельцу дома крайне важно освоить более точную методику определения теплопотерь. Такой навык позволит не только подобрать отопительное оборудование с оптимальной мощностью, но и оценить, к примеру, экономический эффект от утепления. В частности, можно будет понять, превзойдет ли срок службы теплоизолятора период его окупаемости.

Первое, что необходимо сделать исполнителю - разложить общие теплопотери на три составляющие:

  • потери через ограждающие конструкции;
  • обусловленные работой вентиляционной системы;
  • связанные со сбросом нагретой воды в канализацию.

Рассмотрим каждую из разновидностей подробно.

Базальтовый утеплитель — популярный теплоизолятор, но ходят слухи о его вреде для здоровья человека. и экологическая безопасность.

Как правильно утеплить стены квартиры изнутри без вреда для конструкции здания, читайте .

Холодная кровля мешает создать уютную мансарду. вы узнаете, как утеплить потолок под холодной крышей и какие материалы самые эффективные.

Расчет теплопотерь

Вот как следует производить вычисления:

Теплопотери через ограждающие конструкции

Для каждого материала, входящего в состав ограждающих конструкций, в справочнике или предоставленном производителем паспорте находим значение коэффициента теплопроводности Кт (единица измерения - Вт/м*градус).

Для каждого слоя ограждающих конструкций определяем термическое сопротивление по формуле: R = S/Кт, где S – толщина данного слоя, м.

Для многослойных конструкций сопротивления всех слоев нужно сложить.

Определяем теплопотери для каждой конструкции по формуле Q = (A / R) *dT,

  • А - площадь ограждающей конструкции, кв. м;
  • dT - разность наружной и внутренней температур.
  • dT следует определять для самой холодной пятидневки.

Теплопотери через вентиляцию

Для этой части расчета необходимо знать кратность воздухообмена.

В жилых зданиях, возведенных по отечественным стандартам (стены являются паропроницаемыми), она равна единице, то есть за час должен обновиться весь объем воздуха в помещении.

В домах, построенных по европейской технологии (стандарт DIN), при которой стены изнутри застилаются пароизоляцией, кратность воздухообмена приходится увеличивать до 2-х. То есть за час воздух в помещении должен обновиться дважды.

Теплопотери через вентиляцию определим по формуле:

Qв = (V*Кв / 3600) * р * с * dT,

  • V - объем помещения, куб. м;
  • Кв - кратность воздухообмена;
  • Р - плотность воздуха, принимается равной 1,2047 кг/куб. м;
  • С - удельная теплоемкость воздуха, принимается равной 1005 Дж/кг*С.

Приведенный расчет позволяет определить мощность, которую должен иметь теплогенератор системы отопления. Если она оказалась слишком высокой, можно сделать следующее:

Заметим, что рекуператор полезен не только зимой, но и летом: в жару он позволяет сэкономить произведенный кондиционером холод, хотя и работает в это время не столь эффективно, как в мороз.

Правильнее всего при проектировании дома выполнить зонирование, то есть назначить для каждого помещения свою температуру исходя из требуемого комфорта. К примеру, в детской или комнате пожилого человека следует обеспечить температуру порядка 25-ти градусов, тогда как для гостиной будет достаточно и 22-х. На лестничной площадке или в помещении, где жильцы появляются редко либо имеются источники тепловыделения, расчетную температуру можно вообще ограничить 18-ю градусами.

Очевидно, что цифры, полученные в данном расчете, актуальны только для очень короткого периода - самой холодной пятидневки. Чтобы определить общий объем энергозатрат за холодный сезон, параметр dT нужно вычислять с учетом не самой низкой, а средней температуры. Затем нужно выполнить следующее действие:

W = ((Q + Qв) * 24 * N)/1000,

  • W - количество энергии, требующейся для восполнения теплопотерь через ограждающие конструкции и вентиляцию, кВт*ч;
  • N - количество дней в отопительном сезоне.

Однако, данный расчет окажется неполным, если не будут учтены потери тепла в канализационную систему.

Для приема гигиенических процедур и мытья посуды жильцы дома греют воду и произведенное тепло уходит в канализационную трубу.

Но в данной части расчета следует учитывать не только прямой нагрев воды, но и косвенный - отбор тепла осуществляет вода в бачке и сифоне унитаза, которая также сбрасывается в канализацию.

Исходя из этого, средняя температура нагрева воды принимается равной всего 30-ти градусам. Теплопотери через канализацию рассчитываем по следующей формуле:

Qк = (Vв * T * р * с * dT) / 3 600 000,

  • Vв - месячный объем потребления воды без разделения на горячую и холодную, куб. м/мес.;
  • Р - плотность воды, принимаем р = 1000 кг/куб. м;
  • С - теплоемкость воды, принимаем с = 4183 Дж/кг*С;
  • dT - разность температур. Учитывая, что вода на входе зимой имеет температуру около +7 градусов, а среднюю температуру нагретой воды мы условились считать равной 30-ти градусам, следует принимать dT = 23 градуса.
  • 3 600 000 - количество джоулей (Дж) в 1-м кВт*ч.

Пример расчета теплопотерь дома

Рассчитаем теплопотери 2-этажного дома высотой 7 м, имеющего размеры в плане 10х10 м.

Стены имеют толщину 500 мм и выстроены из теплой керамики (Кт = 0,16 Вт/м*С), снаружи утеплены минеральной ватой толщиной 50 мм (Кт = 0,04 Вт/м*С).

В доме имеется 16 окон площадью по 2,5 кв. м.

Наружная температура в самую холодную пятидневку составляет -25 градусов.

Средняя наружная температура за отопительный период - (-5) градусов.

Внутри дома требуется обеспечить температуру +23 градуса.

Потребление воды - 15 куб. м/мес.

Продолжительность отопительного периода - 6 мес.

Определяем теплопотери через ограждающие конструкции (для примера рассмотрим только стены)

Термическое сопротивление:

  • основного материала: R1 = 0,5 / 0,16 = 3,125 кв. м*С/Вт;
  • утеплителя: R2 = 0,05/0,04 = 1,25 кв. м*С/Вт.

То же для стены в целом: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м*С/Вт.

Определяем площадь стен: А = 10 х 4 х 7 – 16 х 2,5 = 240 кв. м.

Теплопотери через стены составят:

Qс = (240 / 4.375) * (23 – (-25)) = 2633 Вт.

Аналогичным образом рассчитываются теплопотери через крышу, пол, фундамент, окна и входную дверь, после чего все полученные значения суммируются. Термическое сопротивление дверей и окон производители обычно указывают в паспорте на изделие.

Обратите внимание на то, что при расчете теплопотерь через пол и фундамент (при наличии подвала) разность температур dT будет намного меньшей, так как при ее вычислении учитывается температура не воздуха, а грунта, который зимой является гораздо более теплым.

Теплопотери через вентиляцию

Определяем объем воздуха в помещении (для упрощения расчета толщина стен не учитывается):

V = 10х10х7 = 700 куб. м.

Принимая кратность воздухообмена Кв = 1, определяем теплопотери:

Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-25)) = 11300 Вт.


Вентиляция в доме

Теплопотери через канализацию

С учетом того, что жильцы потребляют 15 куб. м воды в месяц, а расчетный период составляет 6 мес., теплопотери через канализацию составят:

Qк = (15 * 6 * 1000 * 4183 * 23) / 3 600 000 = 2405 кВт*ч

Если вы не живете в дачном домике зимой, в межсезонье или в холодное лето необходимо все равно его обогревать. в данном случае бывает самым целесообразным.

О причинах падения давления в системе отопления вы можете почитать . Устранение неполадок.

Оценка полного объема энергозатрат

Для оценки всего объема энергозатрат за отопительный период необходимо пересчитать теплопотери через вентиляцию и ограждающие конструкции с учетом средней температуры, то есть dT составит не 48, а только 28 градусов.

Тогда средняя мощность потерь через стены составят:

Qс = (240 / 4.375) * (23 – (-5)) = 1536 Вт.

Предположим, что через крышу, пол, окна и двери дополнительно теряется в среднем 800 Вт, тогда совокупная средняя мощность теплопотерь через ограждающие конструкции составит Q = 1536 + 800 = 2336 Вт.

Средняя мощность теплопотерь через вентиляцию составит:

Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-5)) =6592 Вт.

Тогда за весь период на отопление придется затратить:

W = ((2336 + 6592)*24*183)/1000 = 39211 кВт*ч.

К этой величине нужно прибавить 2405 кВт*ч потерь через канализацию, так что общий объем энергозатрат за отопительный период составит 41616 кВт*ч.

Если в качестве энергоносителя используется только газ, из 1-го куб. м которого удается получить 9,45 кВт*ч тепла, то его понадобится 41616 / 9,45 = 4404 куб. м.

Видео на тему


В гражданских и жилых зданиях теплопотери помещений состоят из теплопотерь через различные ограждающие конструкции, такие как окна, стены, перекрытия, полы а также теплорасходов на нагревание воздуха, который инфильтрируется сквозь неплотности в защитных сооружениях (ограждающих конструкциях) даного помещения. В промышленных зданиях существуют и другие виды теплопотерь.
Расчет теплопотерь помещения производится для всех ограждающих конструкций всех отапливаемых помещений. Могут не учитываться теплопотери через внутренние конструкции, при разности температуры в них с температурой соседних помещений до 3 о С.

Теплопотери через ограждающие конструкции расчитываются по следующей формуле, Вт:
Q огр = F (t вн – t н Б) (1 + Σ β) n / R о, где
t н Б – темп-ра наружного воздуха, о С;
t вн – темп-ра в помещении, о С;
F – площадь защитного сооружения, м 2 ;
n – коэффициент, который учитывает положение ограждения или защитного сооружения (его наружной поверхности) относительно наружного воздуха;
β – теплопотери добавочныедоли от основных;
R о – сопротивление теплопередаче, м 2 · о С / Вт, которое определяется по следующей формуле:
R о = 1/ α в + Σ (δ і / λ і) + 1/ α н + R в.п. , где
α в – коэффициент тепловосприятия ограждения (его внутренней поверхности), Вт/ м 2 · о С;
λ і и δ і – расчетный коэффициент теплопроводности для материала данного слоя конструкции и толщина этого слоя;
α н – коэффициент теплоотдачи ограждения (его наружной поверхности), Вт/ м 2 · о с;
R в.n – в случае наличия в конструкции замкнутой воздушной прослойки, ее термосопротивление, м 2 · о с / Вт (см. табл.2).
Коэф-ты α н и α в принимаются согласно СНиП а для некоторых случаев приведены в таблице 1;
δ і – обычно назначается согласно заданию или определяется по чертежах ограждающих конструкций;
λ і – принимается по справочникам.

Таблица 1. Коэффициенты тепловосприятия α в и теплоотдачи α н

Поверхность ограждающей конструкции

α в, Вт/ м 2 · о С

α н, Вт/ м 2 · о С

Поверхность внутренняя полов, стен, гладких потолков

Поверхность наружная стен, бесчердачных перекрытий

Перекрытия чердачные и перекрытия над подвалами неотапливаемыми со световыми проемами

Перекрытия над подвалами неотапливаемыми без световых проемов

Таблица 2. Сопротивление термическое замкнутых воздушных прослоек
R в.n , м 2 · о С/Вт

Толщина прослойки воздушной, мм

Горизонтальная и вертикальная прослойки при тепловом потоке снизу вверх

Прослойка горизонтальная при тепловом потоке сверху вниз

При температуре в пространстве воздушной прослойки

Для дверей и окон сопротивление теплопередаче рассчитывается очень редко, а чаще принимается в зависимости от их конструкции по справочным данным и СНиПам.

Площади ограждений для расчетов определяются, как правило, согласно строительных чертежей. Температуру t вн для жилых зданий выбирают из приложения 1, t н Б – из приложения 2 СНиП в зависимости от расположения строительного объекта. Добавочные теплопотери указаны в табл.3коэф-ент n – в табл.4.

Таблица 3. Добавочные теплопотери

Ограждение, его тип

Добавочные теплопотери β

Окна, двери и н аружные вертикальные стены:

ориентация на северо-запад восток, север и северо-восток

запад и юго-восток

Наружные двери, двери с тамбурами 0,2 Н без воздушной завесы при высоте строения Н, м

двери тройные с двумя тамбурами

двери двойные с тамбуром

Угловые помещения дополнительно для окон, дверей и стен

одно из ограждений ориентировано на восток, северсеверо-запад или северо-восток

другие случаи

Таблица 4. Величина коэффициента n, который учитывает положение ограждения (его наружной поверхности)

Расход тепла на нагревание наружного инфильтрующегося воздуха в общественных и жилых зданиях для всех типов помещений определяется двумя расчетами.
Первый расчет определяет расход тепловой энергии Q і на нагревание наружного воздуха, который поступает в і-е помещение в результате действия естественной вытяжной вентиляции.
Второй расчет определяет расход тепловой энергии Q і на подогревание наружного воздуха, который проникает в данное помещение сквозь неплотности ограждений в результате ветрового и (или) теплового давлений. Для расчета принимают наибольшую величину теплопотерь из определенных по следующим уравнениям (1) и (или) (2).

Q і = 0,28 L ρ н с (t вн – t н Б) 1)
где L, м 3 /час – расход удаляемого наружу из помещений воздуха, для жилых зданий принимают 3 м 3 /час на 1 м 2 площади жилых помещений, в том числе и кухни;
с – удельная теплоемкость воздуха (1 кДж /(кг · о С));
ρ н – плотность воздуха снаружи помещения, кг/м 3 .
Удельный вес воздуха γ, Н/м 3 , его плотность ρ, кг/м 3 , определяются согласно формул:
γ= 3463/ (273 +t) , ρ = γ / g ,
где g = 9,81 м/с 2 , t, °с– температура воздуха.

Расход теплоты на подогревание воздуха, который попадает в помещение через различные неплотности защитных сооружений (ограждений) в результате ветрового и теплового давлений, определяется согласно формулы:
Q і = 0,28 G і с (t вн – t н Б) k, (2)
где k – коэф-ент, учитывающий встредчный тепловой поток, для раздельно-переплетных балконных дверей и окон принимается 0,8, для одинарных и парно-переплетных окон – 1,0;
G і – расход воздуха, проникающего (инфильтрируещегося) через защитные сооружения (ограждающие конструкции), кг/ч.

Для балконных дверей и окон значение G і определяется: G і = 0,216 Σ F Δ Р і 0,67 / R и, кг/ч
где Δ Р і – разница давлений воздуха на внутренней Р вн и наружной Р н поверхностях дверей или окон, Па;
Σ F, м 2 – расчетные площади всех ограждений здания;
R и, м 2 · ч/кг – сопротивление воздухопроницанию даного ограждения, которое может приниматься согласно приложения 3 СНиП. В панельных зданиях, кроме этого определяется дополнительный расход воздуха, инфильтрующегося через неплотности стыков панелей.
Величина Δ Р і определяется из уравнения, Па:
Δ Р і = (H – h і) (γ н – γ вн) + 0,5 ρ н V 2 (с е,n – с е,р) k 1 – р іnt ,
где H, м – высота здания от нулевого уровня до устья вентшахты (в бесчердачных зданиях устье обычно располагается на 1 м выше крыши, а в зданиях, имеющих чердак - на 4–5м выше перекрытия чердака);
h і, м – высота от нулевого уровня до верха балконных дверей или окон, для которых проводится расчет расхода воздуха;
γ н, γ вн – веса удельные наружного и внутреннего воздуха;
с е,р u с е,n – аэродинамические коэф-ты для подветренной и наветренной поверхностей здания соответственно. Для прямоугольных зданий с е,р = –0,6, с е,n = 0,8;

V, м/с – скорость ветра, которую для расчета принимают согласно приложения 2;
k 1 – коэффициент, который учитывает зависимость скоростного напора ветра и высоты здания;
р іnt , Па – условно-постоянное давление воздуха, которое возникает при работе вентиляции с принудительным побуждением, при расчете жилых зданий р іnt можно не учитывать, поскольку оно равно нолю.

Для ограждений высотой до 5,0м коэффициент k 1 равен 0,5, высотой до 10 м равен 0,65, при высоте до 20 м – 0,85, а для ограждений 20 м и выше принимается 1,1.
Общие расчетные теплопотери в помещении, Вт:
Q расч = Σ Q огр + Q uнф – Q быт ,
где Σ Q огр – суммарные потери тепла через все защитные ограждения помещения;
Q инф – максимальный расход теплоты на нагревание воздуха, который инфильтрируется принятый из расчетов согласно формул (2) u (1);
Q быт – все тепловыделения от бытовых электрических приборов, освещения, других возможных источников тепла, которые принимаются для кухонь и жилых помещений в размере 21 Вт на 1 м 2 расчетной площади.
Расчет теплопотерь помещения можно считать завешенным. Результаты всех расчетов заносятся в соответствующую таблицу.

НОРМАТИВНЫЙ МЕТОД РАСЧЕТА ТЕПЛОПОТЕРЬ ЧЕРЕЗ ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ

Лекция 8. Цель лекции: Расчет основных и дополнительных теплопотерь через различные ограждающие конструкции.

Расчетные теплопотери через ограждения определяются по формуле, учитывающей основные теплопотери при стационарном режиме и дополнительные, определяемые в долях единицы от основных:

Q огр = å(F i / R о i пр)(t п - t н) n i (1 + åb i), (6.1)

где R о i пр – приведенное сопротивление теплопередаче ограждения, учитывающее неоднородность слоев в толщине конструкции стены (пустоты, ребра, связи);

n i – коэффициент, учитывающий фактическое понижение расчетной разности температур (t п - t н) для ограждений, которые отделяют отапливаемое помещение от неотапливаемого (подвал, чердак и др.). Определяется по СНиП « Строительная теплотехника»;

b i – коэффициент, учитывающий дополнительные теплопотери через ограждения;

F i – площадь ограждения;

t п – температура помещения, при расчетах в условиях конвективного отопления принимают t п = t в , которая дается в СНиП для рабочей зоны высотой до 4 м. В производственных помещениях высотой более 4 м в связи с неравномерностью температуры по высоте принимают: для пола и вертикальных ограждений на высоту до 4 м от пола – нормируемую температуру в рабочей зоне t р.з ; для стен и окон, расположенных выше 4 м от пола – среднюю температуру воздуха по высоте помещения: t ср = (t р.з + t в) / 2; для покрытия и световых фонарей – температуру воздуха в верхней зоне t в.з (при воздушном отоплении на 3 о С выше температуры в рабочей зоне); в других случаях: t в.з = t р.з + D(h - 4);

t н = t н.5 расчетная температура наружного воздуха на отопление.

Теплообмен между соседними помещениями учитывается только при разности температур в них на 3 и более градуса.

6.1.1 Определение температуры в неотапливаемом помещении

Обычно температуру в неотапливаемых помещениях для определения теплопотерь не рассчитывают. (Теплопотери определяют по приведенной выше формуле (6.1) с учетом коэффициента n ).

При необходимости, эта температура может быть определена из уравнения теплового баланса:

Теплопотери из отапливаемого в неотапливаемое помещение:

Q 1 =å(F 1 / R 1) (t в - t нх);

Теплопотери из неотапливаемого помещения:

Q 2 =å(F 2 / R 2) (t нх - t н);

где t нх – температура неотапливаемого помещения (тамбура, подвала, чердака, фонаря);

å R 1 ,åF 1 – коэффициенты сопротивления теплопередаче и площади внутренних ограждений (стена, дверь);

å R 2 ,åF 2 – коэффициенты сопротивления теплопередаче и площади наружных ограждений (наружных дверей, стен, потолка, пола).

6.1.2 Определение расчетной поверхности ограждения

Площадь ограждения и линейные размеры ограждений вычисляются на основании нормативных указаний, которые при использовании простейших формул дают возможность учитывать в определенной мере сложность процесса теплопередачи.

Схема обмера ограждений показания на рисунке 6.1.

Безусловно, основные очаги теплопотери в доме - двери и окна, но при просмотре картины через экран тепловизора легко увидеть, что это не единственные источники утечки. Тепло теряется и через неграмотно монтированную кровлю, холодный пол, не утепленные стены. Теплопотери дома сегодня рассчитываются при помощи специального калькулятора. Это позволяет подобрать оптимальный вариант отопления и провести дополнительные работы по утеплению строения. Интересно, что для каждого типа строений (из бруса, бревен, силикатного или керамического кирпича) уровень теплопотерь будет разным. Поговорим об этом подробнее.

Основы расчета теплопотерь

Контроль над теплопотерями систематично проводится только для помещений, отапливающихся в соответствии с сезоном. Помещения, не предназначенные для сезонного проживания, не подпадают под категорию зданий, поддающихся тепловому анализу. Программа теплопотери дома в этом случае не будет иметь практического значения.

Чтобы провести полный анализ, рассчитать теплоизоляционные материалы и подобрать систему отопления с оптимальной мощностью, необходимо обладать знаниями о реальной теплопотере жилища. Стены, крыша, окна и пол - не единственные очаги утечки энергии из дома. Большая часть тепла уходит из помещения через неправильно монтированные вентиляционные системы.

Факторы, влияющие на теплопотери

Основными факторами, влияющими на уровень теплопотерь, являются:

  • Высокий уровень перепада температур между внутренним микроклиматом помещения и температурой на улице.
  • Характер теплоизоляционных свойств ограждающих конструкций, к которым относятся стены, перекрытия, окна и др.

Величины измерения теплопотери

Ограждающие конструкции выполняют барьерную функцию для тепла и не позволяют ему свободно выходить наружу. Такой эффект объясняется теплоизоляционными свойствами изделий. Величина, использующаяся для измерения теплоизоляционных свойств, зовется теплопередающим сопротивлением. Такой показатель отвечает за отражение перепада значения температур при прохождении n-ого количества тепла через участок оградительных конструкций площадью 1 м 2. Итак, разберемся с тем, как рассчитать теплопотери дома.


К основным величинам, необходимым для вычисления теплопотери дома, относятся:

  • q - величина, обозначающая количество тепла, уходящего из помещения наружу через 1 м 2 барьерной конструкции. Измеряется в Вт/м 2 .
  • ∆T - разница между температурой в доме и на улице. Измеряется в градусах (о С).
  • R - сопротивление теплопередаче. Измеряется в °С/Вт/м² или °С·м²/Вт.
  • S - площадь здания или поверхности (используется по необходимости).

Формула расчета теплопотери

Программа теплопотери дома рассчитывается по специальной формуле:

Проводя расчет, помните, что для конструкций, состоящих из нескольких слоев, суммируется сопротивление каждого слоя. Итак, как рассчитать теплопотери каркасного дома, обложенного кирпичом снаружи? Сопротивление потере тепла будет равно сумме сопротивления кирпича и дерева с учетом воздушной прослойкой между слоями.


Важно! Обратите внимание, что расчет сопротивления проводится для самого холодного времени года, когда разница температур достигает своего пика. В справочниках и пособиях всегда указывается именно это опорное значение, использующееся для дальнейших расчетов.

Особенности расчета теплопотерь деревянного дома

Расчет теплопотерь дома, особенности которого при вычислении необходимо учитывать, проводится в несколько этапов. Процесс требует особого внимания и сосредоточенности. Вычислить теплопотери в частном доме по простой схеме можно так:

  • Определяют через стены.
  • Рассчитывают через оконные конструкции.
  • Через дверные проемы.
  • Производят расчет через перекрытия.
  • Вычисляют теплопотери деревянного дома через напольное покрытие.
  • Складывают полученные ранее значения.
  • Учитывая тепловое сопротивление и потерю энергии через вентиляцию: от 10 до 360%.


Для результатов пунктов 1-5 используется стандартная формула расчета теплопотери дома (из бруса, кирпича, дерева).

Важно! Теплосопротивление для оконных конструкций берется из СНИП ІІ-3-79.

Строительные справочники зачастую содержат информацию в упрощенной форме, то есть результаты расчета теплопотери дома из бруса приводятся для разных типов стен и перекрытий. Например, вычисляют сопротивление при разнице температур для нетипичных помещений: угловых и не угловых комнат, одно- и многоэтажных строений.

Необходимость расчета теплопотерь

Обустройство комфортного жилища требует строгого контроля процесса на каждом из этапов выполнения работ. Поэтому организацию системы отопления, которой предшествует выбор самого метода обогрева помещения, нельзя упускать из виду. Работая над возведением дома, немало времени придется уделить не только проектной документации, но и расчету теплопотери дома. Если в дальнейшем вы собираетесь работать в области проектирования, то инженерные навыки расчета теплопотерь вам точно пригодятся. Так почему бы не потренироваться выполнять эту работу на опыте и сделать подробный расчет теплопотерь для собственного дома.

Важно! Выбор способа и мощности системы отопления напрямую зависит от проведенных вами расчетов. Вычислив показатель теплопотери неверно, вы рискуете мерзнуть в холодное время или изнемогать от жары из-за чрезмерного обогрева помещения. Необходимо не только правильно выбрать прибор, но и определить количество батарей или радиаторов, способное обогреть одну комнату.

Оценка теплопотери на расчетном примере

Если у вас нет необходимости изучать расчет теплопотери дома подробно, остановимся на оценочном разборе и определении потери тепла. Иногда в процессе расчетов возникают погрешности, поэтому лучше прибавлять минимальное значение к предполагаемой мощности отопительной системы. Для того чтобы приступить к расчетам, необходимо знать показатель сопротивления стен. Он отличается в зависимости от типа материала, из которого изготовлена постройка.


Сопротивление (R) для домов из керамического кирпича (при толщине кладки в два кирпича - 51 см) равно 0,73 °С·м²/Вт. Минимальный показатель толщины при таком значении должен составлять 138 см. При использовании в качестве базового материала керамзитбетона (при толщине стены 30 см) R составляет 0,58 °С·м²/Вт при минимальной толщине в 102 см. В деревянном доме или постройке из бруса с толщиной стен в 15 см и уровнем сопротивления 0,83 °С·м²/Вт требуется минимальная толщина в 36 см.

Стройматериалы и их сопротивление теплопередаче

Опираясь на эти параметры, можно с легкостью проводить расчеты. Найти значения сопротивлений вы можете в справочнике. В строительстве чаще всего используются кирпич, сруб из бруса или бревен, пенобетон, деревянный пол, потолочные перекрытия.

Значения сопротивления теплопередаче для:

  • кирпичной стены (толщ. 2 кирпича) - 0,4;
  • сруба из бруса (толщ. 200 мм) - 0,81;
  • сруба из бревна (диаметром 200 мм) - 0,45;
  • пенобетона (толщ. 300 мм) - 0,71;
  • деревянного пола - 1,86;
  • перекрытия потолка - 1,44.


Исходя из поданной выше информации, можно сделать вывод, что для правильного расчета теплопотерь потребуется всего две величины: показатель перепада температур и уровень сопротивления теплопередаче. Например, дом сделан из дерева (бревна) толщиной 200 мм. Тогда сопротивление равно 0,45 °С·м²/ Вт. Зная эти данные, можно вычислить процент теплопотери. Для этого проводят операцию деления: 50/0,45=111,11 Вт/м².

Расчет теплопотери по площади выполняется так: теплопотери умножаются на 100 (111,11*100=11111 Вт). С учетом расшифровки величины (1 Вт=3600) полученное число умножаем на 3600 Дж/час: 11111*3600=39,999 МДж/час. Проведя такие простые математические операции, любой хозяин может узнать о теплопотерях своего дома за час.

Расчет теплопотери помещения в онлайн-режиме

В интернете есть множество сайтов, предлагающих услугу онлайн-расчета теплопотери здания в режиме реального времени. Калькулятор представляет собой программу со специальной формой для заполнения, куда вы введете свои данные и после автоматического проведения подсчета увидите результат - цифру, которая и будет означать количество выхода тепла из жилого помещения.

Жилое помещение - это постройка, в которой проживают в течение всего отопительного сезона. Как правило, дачные строения, где отопительная система работает периодически и по необходимости, к категории жилых строений не относятся. Чтобы провести переоснащение и достичь оптимального режима теплообеспечения, придется провести ряд работ и по необходимости увеличить мощность системы отопления. Такое переоснащение может затянуться на длительный период. В целом весь процесс зависит от конструктивных особенностей дома и показателей увеличения мощности системы отопления.

Многие даже не слышали о существовании такого понятия, как «теплопотери дома», и впоследствии, сделав конструктивно правильный монтаж отопительной системы, всю жизнь мучаются от недостатка или избытка тепла в доме, даже не догадываясь об истинной причине. Именно поэтому так важно учитывать каждую деталь при проектировании жилища, заниматься лично контролем и построением, чтобы в итоге получить качественный результат. В любом случае жилище, независимо от того, из какого материала оно строится, должно быть комфортным. А такой показатель, как теплопотеря строения жилого характера, поможет сделать пребывание дома еще приятнее.

eeni2008

Рассмотрим, как рассчитать теплопотери дома через ограждающие конструкции. Расчет приводится на примере одноэтажного жилого дома. Данным расчетом можно пользоваться и для расчета теплопотерь отдельного помещения, всего дома или отдельной квартиры.

Пример технического задания для расчета теплопотерь

Сначала составляем простой план дома с указанием площадей помещений, размеров и расположения окон и входной двери. Это необходимо для определения площади поверхности дома, через которую происходят теплопотери.

Формула расчета теплопотерь

Для расчета теплопотерь применяем следующие формулы:

R = B / K - это формула расчета величины теплосопротивления ограждающих конструкций дома.

  • R - тепловое сопротивление, (м2*К)/Вт;
  • К - коэффициент теплопроводности материала, Вт/(м*К);
  • В - толщина материала, м.

Q = S . dT / R - это формула расчета теплопотерь.

  • Q - теплопотери, Вт;
  • S - площадь ограждающих конструкций дома, м2;
  • dT - разница температуры между внутренним помещением и улицой, К;
  • R - значение теплового сопротивления конструкции, м2.К/Вт

Температурный режим внутри дома для расчета берем +21..+23°С - такой режим является наиболее комфортным для человека. Минимальная уличная температура для расчета теплопотерь взята -30°С, так как в зимний период в регионе: где построен дом (Ярославская область, Россия) такая температура может продержаться более одной недели и именно наименьший температурный показатель рекомендуется закладывать в расчеты, при этом разность температур получаем dТ = 51..53, в среднем - 52 градуса.