ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Паровой котел де 10 14

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «Брянский государственный технический университет»

Факультет Энергетики и Электроники

Кафедра «Промышленная теплоэнергетика»

Курсовая работа

по дисциплине

«Нагнетатели и тепловые двигатели»

«Тепловой и аэродинамический расчет котельного агрегата, выбор дымососа и дутьевого вентилятора для котла ДЕ-10-14ГМ »

Студентка группы 09-ПТЭ

Труфанова И.Ю.

__________________

Преподаватель

Анисин А.К.

__________________

Брянск 2012

Техническое задание

Произвести тепловой и аэродинамический расчет котельного агрегата

· Паропроизводительность на рабочем режиме 10 т/ч

· Рабочее избыточное давление пара 1,4 МПа

· Состояние пара насыщенный

· Температура питательной воды 100˚С

· Внутренний диаметр барабанов 1000 мм

· Расположение труб конвективного пучка коридорное

· Диаметр и толщина стенки экранных и

конвективных труб, мм 51х2,5

Содержание

Введение.......................................................................................................... 4

Техническое описание котла ДЕ-10-14ГМ...........................................................5

Сведения о топке и горелке котла ДЕ-10-14ГМ..................................................8

1. Тепловой расчет парового котельного агрегата.............................................9

1.1. Топливо, состав и количество продуктов горения, их теплосодержание. 9

1.2. Тепловой расчет топки.............................................................. ....17

1.3. Расчет газоходов.......................................................................... 18

1.3.1. Расчет первого газохода..............................................................19

1.3.2. Расчет второго газохода..............................................................21

1.3.3. Расчет третьего газохода.............................................................24

1.3.4.Расчет четвертого газохода. .......................................................27

1.4. Расчет водяного экономайзера..................................................... 29

2. Аэродинамический расчет котельного агрегата..................................... 31

2.1. Расчет общего сопротивления котла............................................ 31

2.2. Газовый тракт................................................................................ 35

2.3. Расчет сопротивления газового тракта........................................ 37

2.4. Расчет дымовой трубы и выбор дымососа.................................. 38

2.5. Дымосос..................................................................................... ....39

2.6. Подбор дымососа.................................................................................40

2.7. Воздушный тракт................................................................................42

2.8. Расчет сопротивления воздушного тракта.........................................43



2.9.Выбор дутьевого вентилятора.............................................................43

2.10. Подбор вентилятора..............................................................................44

Трубопроводы, арматура котла............................................................................44

Водяные экономайзеры.........................................................................................47

Деаэрация……………………………………………………………………….48

Продувка.................................................................................................................49

Заключение.............................................................................................................51

Список используемой литературы.......................................................................52

Введение

В данной курсовой работе проводится тепловой расчет котла ДЕ-10-14ГМ. Котел двухбарабанный вертикально-водотрубный, предназначен для выработки насыщенного и перегретого пара используемого для технических нужд промышленных предприятий, на теплоснабжение систем отопления, вентиляции и горячего водоснабжения. Основным оборудованием установки является топочная камера, экранные и конвективные поверхности нагрева, водяной экономайзер. Топочная камера предназначена для организации процесса горения топлива. Основными частями котла являются верхний и нижний барабаны, конвективный пучок, фронтовой задний и боковой экран, образующие топочную камеру, которая располагается сбоку от конвективного пучка.

В водном пространстве верхнего барабана находится питательная труба и направляющие щиты, в паровом объеме - сепараторное устройство. В нижнем барабане расположено устройство для парового прогрева воды в барабане при растопке и патрубкидля спуска воды.

Поверхности нагрева в зависимости от передачи им тепла различают на экранные (лучевоспринимающие) и конвективные. Первые располагаются в топочной камере по периметру и образуют канал, в котором установлен конвективный пучок. Продукты сгорания, образуясь в камере сгорания (топке) пройдя через конвективный пучок, попадают в экономайзер расположенный позади котла. Водяной экономайзер предназначен для утилизации тепла, которое не было воспринято котлом и последующего возвращения его в котел с помощью питательной воды.



В качестве топлива используется природный газ.

Таблица 2.

Определение расхода топлива

Расчетный часовой расход топлива:

1.2. Тепловой расчет топки

1.Площадь ограждающих поверхностей топкиH ст =47,698м 2

2.Общая лучевоспринимающая поверхность нагрева топки H л =39,02м 2 .

3.Расчет теплообмена в топке:

Полезное тепловыделение в топке:

Ккал/нм 3

34654 кДж/кг.

На I диаграмме по прямой, построенной при значении коэффициента избытка воздуха α т =1,15 при найденном теплосодержании I тг =8286,55 ккал/м 3 находим температуру горения: тг =1780 оС.

Для определения температуры на выходе из топки составляем таблицу №3.

Таблица 3.

Расчет температуры газов на выходе из топки

Наименование величин Расчетные данные Результаты
Объем топочного пространства V т, м 2 По 17,14
Общая площадь ограждающих поверхностей Н ст, м 2 П.п. 1.2.1 47,698
Эффективная толщина излучающего слоя S, м S=3,6 1,29
Лучевоспринимающая поверхность нагрева Н л, м 2 принято 39,02
Степень экранирования топки ψ Ψ=Н л /Н ст =39,02/47,698 0,83
Положение максимума температур X Рис. 1 X=h 1 /h 2 =600/1375 0,44
Значение коэффициента m Табл.
Суммарная поглощательная способность трехатомных газов , м*ата r n S= 0,337
Температура газов на выходе из топки Принимаем с последующим уточнением
Коэффициент ослабления лучей трехатомными газами к г Рис. IV.1. 0,7
Коэффициент ослабления лучей топочной средой к К= К г r п =0,7·0,337 0,235
Сила поглощения запыленным потоком газов, Кр=К г r п ·s=0,235·1,29 0,304
Степень черноты несветящейся части пламени, а нс а нс =1-e -kps =1-e -0, 304 0,26
Степень черноты факела, а ф а ф =а нс (1-m)=0,26(1-0) 0,26
Условный коэффициент загрязнения лучевоспринимающей поверхности нагрева =0,8 0,8
Произведение ψ 0,664
Тепловыделение в топке 1м 2 ограждающих её поверхностей, ккал/м 2 (540121кДж/м 2 ч)
Постоянные величины расчетного коэффициента М А=0,52 Б=0,3
Расчетный коэффициент М М=А-БX=0,52-0,3 0,388
Температура дымовых газов на выходе из топки , о С Номограмма рис.IV.4. (1114 по
Энтальпия дымовых газов на выходе из топки , ккал/нм 3 Рис. 1. 4800,4 (20075,3кДж/кг)
Тепло переданное излучением в топке Q л, ккал/нм 3 3425,1 (14324 кДж/кг)
Тепловое напряжение топочного объема Q/V Т, ккал/м 3 (1526176 кДж/кг)

Температура газов на выходе из топки оказалась почти равной предварительно принятой; не превышает допустимых норм и тепловое напряжение объема топочного пространства, следовательно, расчет теплообмена в топке произведен верно.


Расчет газоходов

Определим основные конструктивные характеристики газохода и поместим их в таблицу 4.

Таблица 4

Основные конструктивные характеристики газоходов

Наименование величин Усл. обозн. Ед. изм. Формула или источник I ый газоход II ой газоход
1 ая часть 2 ая часть 1 ая часть 2 ая часть
Высота газохода минимальная максимальная эффективная а min a max a э мм мм мм По чертежу
Ширина газохода B мм По чертежу
Число труб поперек газохода Z 1 - По чертежу
Диаметр труб D мм По чертежу
Площадь сечения газохода F I м 2 По чертежу 1,1 0,986 0,703 0,544
Эффективная толщина излучающего слоя S м 2 По чертежу 0,165 0,165 0,165 0,165
Шаги труб продольный поперечный S 1 S 2 мм мм По чертежу
Поверхность нагрева газохода H г м 2 По чертежу 35,75 28,38 17,03 11,92

1.3.1. Расчет первого газохода

Задаемся двумя значениями температуры дымовых газов на выходе из первой части первого газохода = 750 С 0 и = 600 С 0 и проводим для этих значений температур два параллельных расчета. Все необходимые расчетные данные располагаем в таблице 5. Расчёт первой части производим при .

Приращением значения коэффициента избытка воздуха пренебрегаем, т.е. .

Таблица 5.

Тепловой расчет первого газохода

Результаты при t T
750 C о 600 С о
1. Температура дымовых газов перед первым газоходом C Из расчета t T
2. Теплосодержание дымовых газов перед первым газоходом Табл.5 Н Т 4800,4 (20099,3 кДж/м 3) 4800,4 (20099,3 кДж/м 3)
3. Температура дымовых газов за первым газоходом Задаем -
4. Теплосодержание дымовых газов за первым газоходом Табл. 5 - (14078 кДж/м 3) (10977 кДж/м 3)
5. Тепловосприятие первого газохода по уравнению теплового баланса Q Б jBр(I ’ 1 -I 1 ’’ +DI В) 0,9825·742·(4800,4-3360+0) 0,9825·742·(4800,4-2494,6+0) 1,05·10 6 (4,39·10 6 кДж/ч) 1,59·10 6 (6,66·10 6 кДж/ч)
Dt ср 723,4 620,2
7. Средняя температура дымовых газов. t ср
8. Средняя скорость дымовых газов. w ch м/c 9,83 9,21
9. Значение коэффициента теплоотдачи конвекцией. a к 0,98·1,03·53,8 0,98·1,03·52,5 54,3 52,9
10. Суммарная поглощательная способность трехатомных газов. p n S м.ат. r n S 0,26·0,165 0,043 0,043
11. Значение коэф. ослабления лучей трехатомными газами. k г - - 2,94 3,04
12. Значение коэф. ослабления лучей трехатомными газами. kp n S м.ат. k г r n S 2,94·0,043 3,04·0,043 0,126 0,130
13. Степень черноты газового потока. a - - 0,04 0,05
14. Значение коэф. загрязнения по поверхности нагрева. e Таблица. - 0,005 0,005
15. Температура наружной поверхности загрязненной стенки. t ст (194,1+0,005· Q Б)/24 340,9 416,4
16. Значение коэффициента теплоотдачи излучением незапыленного потока. a л . 125 · 0,04 · 0,96 87 · 0,05 · 0,94 4,032 4,089
17.Значение коэф. омывания газохода дымовыми газами. w - [ 1, cтр.143] 0,9 0,9
18. Значение коэф. теплоотдачи в первом газоходе к т 41,8 40,07
19.Тепловосприятие первого газохода по ур-ю Т-пр Q т 41,8·35,75·723,4 41,07·35,75·620,2 1,11·10 6 (4,65·10 6 кДж/ч) 0,7 ·10 6 (2,73 ·10 6 кДж/ч)

По значениям Q Б и Q Т строим вспомогательный график (рис. 5) и определяем температуру газов на выходе из первого газохода.

Рис.5.

Температура газов на выходе из первого газохода, равная = 738 ⁰С, является и температурой дымовых газов при входе во второй газоход.

Расчет второго газохода

Задаемся двумя значениями температуры дымовых газов на выходе из второго газохода = 600 С 0 и = 500 С 0 и проводим для этих значений температур два параллельных расчета. Все необходимые расчетные данные располагаем в таблице 6. Расчёт второго газохода производим при .


Таблица 6.

Тепловой расчет второго газохода

Результаты при t T
600 C о 500 С о
1. Температура дымовых газов перед вторым газоходом C Из расчета t T
2. Теплосодержание дымовых газов перед вторым газоходом Табл.5 Н Т 13743 кДж/м 3 13743 кДж/м 3
3. Температура дымовых газов за вторым газоходом Задаем -
4. Теплосодержание дымовых газов за вторым газоходом Табл. 5 - 11242 кДж/м 3 9149 кДж/м 3
5. Тепловосприятие второго газохода по уравнению теплового баланса Q Б jBр(I ’ 2 -I 2 ’’ +DI В) 0,9825·742·(3280- +0.1·9,4·0,32·30) 0,443·10 6 1,85*10 6 кДж/ч 0,786 ·10 6 3,29*10 6 кДж/ч
6. Средний температурный напор Dt ср 471,6 413,6
ν ср
w ch м/c 9,36 8,86
a к 0,98·1,05·52 0,98·1,05·50 53,5 51,45
p n S м.ат. r n S 0,24·0,165 0,04 0,04
11. Значение коэф. ослабления лучей трехатомными газами k г - -­­­­ 3,5 3,7
kp n S м.ат. k г r n S 3,5·0,04 3,7·0,04 0,14 0,148
a - - 0,051 0,06
14. Значение коэф-та загрязнения по поверхности нагрева e Таблица. - 0,005 0,005
t ст (194,1+0,005· Q Б)/20
a л . 70 · 0,051 · 0,98 60 · 0,06 · 0,97 3,5 3,49
17.Значение коэф. омывания газохода дымовыми газами w - [ 1, cтр.143] 0,9 0,9
18. Значение коэф. теплоотдачи во втором газоходе к т
19.Тепловосприятие второго газохода по уравнению Т-пр Q т 41·28,38·471,6 40·28,38·413,6 0,54·10 6 (2,26·10 6 кДж/ч) 0,469 ·10 6 (1,96 ·10 6 кДж/ч)

По значениям Q Б и Q Т строим вспомогательный график (рис. 6) и определяем температуру газов на выходе из второго газохода.


Температура газов на выходе из второго газохода, равная = 572 ⁰С, является и температурой дымовых газов при входе в третий газоход.

Расчет третьего газохода производим при значении коэффициента избытка воздуха .

Расчет третьего газохода

Задаемся двумя значениями температуры дымовых газов на выходе из третьего газохода = 300 С 0 и = 400 С 0 и проводим для этих значений температур два параллельных расчета. Все необходимые расчетные данные располагаем в таблице 7.

Таблица 7.

Тепловой расчет третьего газохода

Результаты при t T
500 C о 300 С о
1. Температура дымовых газов перед третьем газоходом Из расчета первого газохода -
2. Теплосодержание дымовых газов перед третьем газоходом Табл. 5 - 10558 кДж/м 3 10558 кДж/м 3
3. Температура дымовых газов за третьем газоходом Задаем -
4.Теплосодержание дымовых газов за третьем газоходом Табл. 5 - 9322кДж/м 3 5447 кДж/м 3
5. Тепловосприятие третьего газохода по уравнению теплового баланс. Q Б jBр(Н 2 -Н 2 +DН) 0,9825·742·(2520-2225+0.1·9,98·0,32·30) 0,9825·742·(2520-1300 +0.1·9,98·0,32·30) 0,215,*10 6 0,9*10 6 кДж/ч 0,889*10 6 3,72*10 6 кДж/ч
6. Средний температурный напор Dt ср 340,6 213,8
7. Средняя температура дымовых газов t ср
8. Средняя скорость дымовых газов w ch м/c 12,1 10,6
9. Значение коэффициента теплоотдачи конвекцией a к 0,92·1,04·64 0,92·1,07·56 61,2 55,1
10. Суммарная поглощательная способность трехатомных газов p n S м.ат. r n S 0,227·0,165 0,037 0,037
11. Значение коэффициента ослабления лучей трехатомными газами k г - - 3,7 4,15
12. Суммарная сила поглощения газовым потоком kp n S м.ат. k г r n S 3,7*0,037 4,15*0,037 0,137 0,15
13. Степень черноты газового потока a - - 0,06 0,08
14. Значение коэффициента загрязнения по поверхности нагрева e - 0,005 0,005
15. Температура наружной поверхности загрязненной стенки t ст (194,1+0,005· Q Б)/12
16. Значение коэф. теплоотдачи излучением незапыленного потока a л 62 · 0,06 · 0,97 55 · 0,08 · 0,90 3,6 3,96
17. Значение коэф. омывания газохода дымовыми газами w - [ 1, cтр.143] - 0,9 0,9
18. Значение коэф. теплоотдачи в третьем газоходе к т 45,79 42,24
19.Тепловосприя-тие третьего газохода по уравнению Т-пр Q т 45,79·17,03·340,6 42,24·17,03·213,8 0,26*10 6 1,08*10 6 кДж/ч 0,32*10 6 1,34*10 6 кДж/ч

По значениям Q Б и Q Т строим вспомогательный график (рис. 7) и определяем температуру газов на выходе из третьего газохода.

48,7 46,9 19.Тепловосприя-тие четвертого газохода по уравнению Т-пр Q т 48,7·11,92·257,5 46,9·11,92·142,9 0,149*10 6 0,62*106 кДж/ч 0,8*10 6 3,53*10 6 кДж/ч

По значениям Q Б и Q Т строим вспомогательный график (рис. 8) и определяем температуру газов на выходе из четвертого газохода.


Температура газов на выходе из чет

Газомазутный вертикально-водотрубный котёл, предназначенный для выработки насыщенного или перегретого до 225 °С пара, используемого на технологические нужды, отполение, вентиляцию и горячее водоснабжение. Отличительной особенностью котла, как и всей серии паровых котлов ДЕ, является расположение топочной камеры сбоку конвективного пучка, образованного вертикальными трубами, развальцованными в верхнем и нижнем барабанах.

Общий вид котла ДЕ-10-14 ГМ-О

Базовая и дополнительная комплектации котла ДЕ-10-14 ГМ-О

Описание и принципы работы парового котла ДЕ-10-14 ГМ-О

Котлы типа ДЕ (Е) состоят из верхнего и нижнего барабанов, трубной системы и комплектующих. В качестве хвостовых поверхностей нагрева применяются стальные или чугунные экономайзеры. Котлы могут комплектоваться как отечественными, так и импортными горелками. Котлы типа ДЕ могут оборудоваться системой очистки поверхностей нагрева.

Для всех типоразмеров котлов внутренний диаметр верхнего и нижнего барабанов составляет 1000 мм. Поперечное сечение топочной камеры также одинаково для всех котлов. Однако, глубина топочной камеры увеличивается с повышением паропроизводительности котлов.

Топочная камера котлов ДЕ размещается сбоку от конвективного пучка, оборудованного вертикальными трубами, развальцованными в верхнем и нижнем барабанах. Топочный блок образуется конвективным пучком, фронтовым, боковым и задним экранами. Конвективный пучок отделен от топочной камеры газоплотной перегородкой, в задней части которой имеется окно для входа газов в пучок. Для поддержания необходимого уровня скорости газов в конвективных пучках устанавливаются продольные ступенчатые перегородки, изменяется ширина пучка. Дымовые газы, проходя по всему сечению конвективного пучка, выходят через переднюю стенку в газовый короб, который размещён над топочной камерой, и по нему проходят к расположенному сзади котла экономайзеру.

В водяном пространстве верхнего барабана находятся питательная труба и труба для ввода сульфатов, в паровом объёме – сепарационные устройства. В нижнем барабане размещаются устройство для парового прогрева воды в барабане при растопке и патрубки для спуска воды, перфорированные трубы непрерывной продувки.

В котлах типа ДЕ применена схема одноступенчатого испарения. Вода циркулирует следующим образом: питательная подогретая вода подается в верхний барабан под уровень воды. В нижний барабан вода поступает по экранным трубам. Из нижнего барабана вода поступает в конвективный пучок, под нагревом превращаясь в пароводяную смесь, поднимается в верхний барабан.

На верхнем барабане котла устанавливается следующая арматура: главная паровая задвижка, клапаны для отбора проб пара, отбора пара на собственные нужды. Каждый котел снабжен манометром, двумя пружинными предохранительными клапанами, один из которых является контрольным клапаном. Для удобства обслуживания котлы ДЕ оснащаются лестницами и площадками.

Технические характеристики ДЕ-10-14 ГМ-О

Показатель Значение
Тип котла Паровой
Вид расчетного топлива Газ, Жидкое топливо
Паропроизводительность, т/ч 10
Рабочее (избыточное) давление теплоносителя на выходе, МПа (кгс/см 2) 1,3(13,0)
Температура пара на выходе, °С насыщ. 194
Температура питательной воды, °С 100
Расчетный КПД (топливо газ), % 93
Расчетный КПД (топливо жидкое), % 91
Расход расчетного топлива (топливо газ) , кг/ч (м3/ч - для газа и жидкого топлива) 710
Расход расчетного топлива (топливо жидкое) , кг/ч (м3/ч - для газа и жидкого топлива) 671
Габариты транспортабельного блока, LxBxH, мм 5710х3030х4028
Габариты компоновки, LxBxH, мм 6530х4050х5050
Масса транспортабельного блока котла, кг 16680
Вид поставки В сборе (транспортабельный блок котла)

Устройство котла ДЕ-10-14ГМ

9.3.1.Основными частями котла является верхний и нижний барабан (Смотри схему 12,13,14 - разрез котла.), конвективный пучок, фронтовой, боковой и задний экран, образующие топочную камеру.

Характерной особенностью котла является боковое (относительно топочной камеры) расположение конвективной части.,

9.3.2.Топочная камера имеет высоту 2400мм и ширину по осям боковых экранов – 1790мм.

9.3.3.Конвективнные пучки от топочной камеры отделены газо-плотной перегородкой из труб, в задней части которой имеется окно для выхода газов.

9.3.4.Трубы перегородки и правого бокового экрана, образующего также пол и потолок камеры, вводится непосредственно в верхний и нижний барабаны. Основная часть труб конвективного пучка и правого топочного экрана присоединяются к барабанам котла вальцовкой.

9.3.5.Трубы, устанавливаемые в отверстиях, расположенных в сварных швах или около шовной зоны, а также трубы левого топочного экрана (газоплотная перегородка) – приваривается к верхнему и нижнему барабану электросваркой. Концы труб заднего и фронтового экрана привариваются к верхнему и нижнему коллекторам d 159х6 мм.

9.3.6.Верхний и нижний барабаны котлов изготовлены из низколегированной стали 16ГС и имеют внутренний диаметр 1000мм.

Котлы выполнены по схеме с одноступенчатым испарением.

9.3.7.Для контроля за тепловым расширением элементов котла в продольном направлении в районе заднего днища нижнего барабана установлен репер.

9.3.8.Плотно экранирование боковых стенок (относительно шага труб s=1,08), потолка и пола топочной камеры позволяет ограничится легкой изоляцией толщиной 100мм, укладываемой на слой шамотобетона толщиной 15-20мм.

9.3.9.В котлах предусмотрена продувка с нижнего барабана.

9.3.10.В верхних барабанах котлов для разделения пароводяной смеси, организация зеркала испарения и получения осушенного пара устанавливается внутри барабанные и паро-сепарационные устройства. Отбойные щиты, направляющие козырьки, жалюзийные сепараторы и дырчатые листы выполняются съемными для облегчения полного контроля и ремонта вальцовочных соединений труб с барабаном.

9.3.11.В конвективных пучках установлены продольные перегородки, обеспечивающие разворот газов в пучках и выход их через заднюю стенку котла.

9.3.12.Котлы оборудованы стационарными обдувочными аппаратами, расположенными с левой стороны котла.

Обдувочными аппарат имеет трубу с соплами, которая вращается при обдувки конвективной части котла. Вращение обдувочной трубы производится вручную при помощи маховика и цепи. Для обдувки котла используется насыщенный пар работающих котлов при давлении не менее 7кг/см2. На стенах топочной камеры установлены три лючка гляделки.

9.3.13.Все котлы смонтированы на опорной раме, воспринимающей вес элементов котла, работающих под давлением, котловой воды, а также обвязочного каркаса, натуральной обмуровки и обшивки.

Неподвижными (мертвыми) опорами котлов являются передние опоры нижнего барабана. Средние и задние опоры нижнего барабана – подвижные и имеют овальные отверстия для шпилек, которыми крепятся к раме.

9.4.Газомазутная горелка.

9.4.1.Для сжигания топочного мазута и природного газа на котлах установлены газомазутные горелки ГМ-7.

Газомазуточная ГМ предназначена для раздельного сжигания топочного мазута и природного газа.

Допускается кратковременное совместное сжигание топочного мазута и природного газа во время перехода с одного вида топлива на другой.

В качестве запального устройства предусмотрено использование ЗЗУ-4.

Устройство горелкиГМ-7 и ее детали смотри рисунок №3.

9.4.2.Газовая часть /2/ представляет собой устройство, состоящее из газового коллектора с отверстиями и подводящей трубы.

Кольцевой коллектор в сечении имеет прямоугольную форму. К торцу газового коллектора присоединен обтекатель для плавного входа воздуха в воздухо-направляющее устройство.

9.4.3.Лопаточный завехритель воздуха /3/ обеспечивает смешивание газа с воздухом. Завехритель состоит из профельных лопаток внутренней и внешней обечаек. Они позволяют уменьшить аэродинамическое сопротивление.

9.4.4.Зажигание горелки производится дистанционно запальником. Наблюдение за работой запальника осуществляется через смотровой лючок на задней стенке топки у правого бокового экрана.

Факел запальника должен быть устойчивым и достаточно длинным, чтобы надежно воспламенить газ.

При розжиге на природном газе его давление перед горелкой должно составлять 5000-1000Па.

9.4.5.На фронте горелки предусмотрена гляделка. (10)

9.4.6. Остановка горелки производиться путем плавного и пропорционального прекращения подачи топлива и частичного воздуха. После полного прекращения подачи воздуха в течении 15 минут.

9.5.Пуск котла в работу.

9.5.1.Осмотр перед растопкой.

При осмотре убедиться в исправном состоянии элементов котла и арматуры, отсутствие в котле и газоходах посторонних предметов. Проверить состояние и плотность экрана между топкой и конвективным пучком, плотность перегородки в пучке и стыков перегородки с барабанами и обмуровкой. Опробуйте приводы к воздушным заслонкам и газовым шиберам, убедитесь в наличии естественной тяги в котле. Убедитесь в нормальном состоянии деталей горелки, огнеупорной футеровки камеры сжигания топлива, правильности сборки форсунки горелок ГМ-7.

Проверить правильность положения и отсутствия заедание обдувочных труб, которые должны легко и свободно проворачиваться за маховиком. Сопла должны быть установлены так, чтобы оси их были симметричны по отношению к зазору между рядами кипятильных труб. После осмотра топки и газоходов, лазы и люки плотно закройте. Проверить наличие диафрагмы взрывных (предохранительных) клапанов топки и газоходов.

После проверки исправности арматуры убедиться, что:

Продувочные вентили котлов плотно закрыты;

Манометры и экономайзер в рабочем положении, т. е. трубка манометра соединена трехходовым краном с барабаном;

Водоуказательные стекла включены, паровые и водяные вентили отключены, а продувочные свечи закрыты;

Вентили на питательных линиях к котлоагрегату открыты, кроме

питательного регулирующего клапана перед водяным экономайзером;

Проверить готовность к пуску и к работе дутьевой вентилятор и дымосос;

Проверить степень освещенности котлов и исправность аварийного освещения.

9.5.2.Заполнение котла водой.

Холодный котел заполнить водой через байпасную линию регулятора питания с температурой не ниже 5С. Заполнение вести до низшей отметки водоуказательного стекла. Проверить заполнение водой водяного экономайзера. Во время наполнения котла проверить плотность закрытия люков, фланцев и продувочной арматуры (о пропуске можно судить по нагреванию труб за вентилями, если котел заполняется горячей водой).

9.5.3.Включить тумблер питания щита КИП и А.

9.5.4.Проверить работу исполнительных механизмов направляющих аппаратов дымососа и вентилятора дистанционным управлением со щита.

9.5.5.Открыть продувочный вентиль. Проверить закрытие газозапорной арматуры. Сделать запись в журнале: ""Котел к вентиляции готов"", время и подпись.

9.5.6.Включить дымосос.

9.5.7.Включить вентилятор.

9.5.8. Ключ блокировки дымососа и вентилятора установить в положение ""сблокировано"".

9.5.9.Отрегулировать разряжение в топке 2,5 кг/см2 в автомате.

9.5.10.Провентилировать топку в течении 10-15 минут.

По окончанию вентиляции проверить закрытие газозапорной арматуры, определить содержание природного газа газоанализатором ШИ-11 и сделать запись в журнале"" КОТЕЛ К ПРИЕМУ ГАЗА ГОТОВ"", время и роспись.

9.5.11.Открыть вентиль на газопроводе запальника.

9.5.12.Установить ключ управления в положение"" Розжиг"".

9.5.13. Убедиться визуально в наличии пламени запальника, его величину расположение его в топке, а также по прибору контроля пламени запальника на щите управления.

9.5.14.В случае отсутствия пламени запальника или его исчезновения, розжиг прекратить до выяснения и устранения неполадок.

После устранения неполадок, розжиг запальников повторить.

9.5.15. Ключ управления установить в положение ""Работа"".

9.5.16.Взвести ПЗК.

9.5.17.Произвести розжиг основной горелки. Сделать запись в журнале ""КОТЕЛ РОЗОЖГЛИ"", время, роспись.

9.5.18.Установить давление газа перед горелкой 50-100кг/м2.

9.5.19.Убедиться устойчивости пламени основной горелки визуально и по прибору контроля пламени щита управления. Следить за ростом давления и уровня воды в барабане котла, регулировать их количество расходом топлива и подачей воды от питательного насоса.

9.5.20.Работу котла вести согласно режимной карте.

9.5.21.При давлении пара 0,5-1,0кг/см2 по манометру продуйте водоуказательные стекла и трубку манометра. Откройте паровую задвижку на 1/3 в атмосферу.

9.5.22.Темп подъема давления в барабане котла заполненного водой с температурой меньше 80С:

Через 20 минут после начала растопки-1кг/см2.

Через 40 минут после начала растопки-4 кг/см2.

Через 60 минут после начала растопки –13 кг/см2.

9.5.23.При давлении 3 кг/см2 продуть водоуказательные стекла.

9.5.24.Продувку котла производить при давлении до 7 кг/см2, согласно указаний по водному режиму.

9.5.25.С ростом давления и температуры контролировать величину продольных тепловых расширений блоков котла (нижнего барабана). Максимальная величина-12,5мм.

9.5.26.Проверка газоплотности амбразуры горелки и изоляции верхнего барабана осуществляется путем осмотра топки через задний лючок в периоды снижения нагрузки.

9.5.27.Необходимо следить, чтобы факел равномерно заполнял всю топочную камеру, не затягивался в конвективный пучок, не ударялся о трубы экранов.

9.5.28.При достижении давления в барабане котла 13 кг/см2, проверить работу предохранительных клапанов. Срабатывание контрольного-13,4 кг/см2, рабочего-13,4кг/см2.

Проверка предохранительных клапанов осуществляется принудительно рычагом –при приеме смены.

9.6.Техническое обслуживание котла.

9.6.1.При эксплуатации котлов избыточное давление должно быть не менее 7 кгм/см2. Подача пара на мазутное хозяйство и возврат конденсата будет описано в отдельной инструкции. Подача пара посторонним потребителям будет описана после заключения договора.

9.6.2.В процессе работы котла необходимо контролировать:

Уровень воды в барабане котла средний;

Давление в барабане котла не более 13 кг/см2;

Разряжение в топке котла 2,5-3,0 кгм/см.

9.6.3.Топочный режим должен соответствовать режимной карте.

9.6.4.Во время работы котла необходимо поддерживать заданное рабочее давление пара. Стрелка манометра не должна заходить за красную черту, соответствующую максимальному рабочему давлению.

9.6.5. По мере загрязнения труб конвективного пучка, в зависимости от характера отложений, производите обдувку поверхностей нагрева котла, перегревателя и хвостовых поверхностей нагрева. Обдувка стационарными обдувочными аппаратами проводить при минимальной нагрузке и максимальном давлении в котле. Перед обдувкой прогрейте и продуйте через дренаж участок трубопровода до обдувочного аппарата. Помните, что постоянный пропуск пара в газоходы вызывает коррозию (сильное загрязнение поверхности нагрева).

9.6.6.Следите за температурой уходящих газов и сопротивлением за котлом, повышение их указывает на перетекание газов через плотный левый экран или загрязнение труб конвективного пучка. Периодически осматривать огнеупорную форму горелки, форсунку, поверхности нагрева и изоляции барабанов, не допускайте образование коксовых наростов. Наблюдение за состоянием топочной камеры в период работы котла ведется через три лючка,два из них установлены на боковой стенке в начале и конце топочной камеры, третий- на задней стенке у правого бокового экрана. В передний лючок должен просматриваться выходной край амбразуры горелок.

9.6.7.В процессе эксплуатации нельзя допускать коксование амбразуры горелки или камеры сгорания при работе мазута. Боковой лючок, расположенный в конце топки, служит для наблюдения за режимом горения. Конец факела, наблюдаемый в этот лючок, должен быть чистым, бездымным. В задний лючок ведется наблюдение за работой запальника при отладке ЗЗУ, за омыванием факелом бокового экрана, проверяется отсутствие кокса и состояние футеровки амбразуры и камеры двухступенчатого сжигания при остановках котла или перевода его на газ.

Топочный режим должен соответствовать режимной карте.

9.6.8.Для увеличения нагрузки необходимо сначала прибавить подачу газа, затем воздух, после чего отрегулировать тягу.

9.6.9.Строго соблюдать инструкцию водного режима и продувки котла. Не допускайте эксплуатацию котла при наличии не плотностей в вальцовочных соединениях (парение, наросты солей).

9.6.10.Следить за тепловым перемещением элементов котла по реперам.

Если тепловые перемещения значительно меньше расчетного – 12,5мм, проверьте, нет ли защемления подвижных опор котла.

9.6.11.Машинист обязан тщательно следить за исправным состоянием всех соединительных частей трубопроводов, задвижек, вентилей, кранов и другой арматуры. Вентиля, задвижки. Краны на всех трубопроводах открываются медленно и осторожно, закрывайте плотно, причем последние обороты делайте быстро. Вентиля, задвижки и краны, редко используемые в работе, проверяйте не реже одного раза в 10 дней, путем частичного открытия и закрытия их.

9.7.Остановка котла.

9.7.1.Остановку котла выполняете в соответствии с пунктом 7.11. данной инструкции. После выключения горелки продуйте водоуказательные стекла, прекратите непрерывную продувку, закройте главный паровой вентиль, откройте продувку пароперегревателя, подпитайте котел до высшего уровня по стеклу, а затем прекратите подпитку. В дальнейшем, по мере падения уровня необходимо периодически подпитывать котел. Ведите наблюдение за уровнем воды в барабане котла до полного снижения давления.

9.7.2.Охлаждение котла ведите медленно, за счет естественного остывания. Дверки, гляделки, лазы держите закрытыми. В случае остановки котла для ремонта через 1,5 – 2 часа откройте дверки и лазы газоходов, и шибер за котлом.

9.7.3.Воду из котла можно слить лишь после снижения температуры воды до 79-80 С. Спуск ведите медленно, при поднятом предохранительном клапане или открытом воздушнике.

9.8.Аварийная остановка котла.

9.8.1.Аварийная остановка котла производится быстрым прекращением подачи топлива нажатием на щите кнопки ""Аварийная остановка"". Не прекращайте вентиляцию топки минимум 30 минут.

Отключите дутьевой вентилятор и дымосос.

Отключите котел от паровой магистрали.

9.8.2.Случаи аварийной остановки котла:

При разрыве кипятильных или экранных труб. Разрыв кипятильных или экранных труб сопровождается следующим явлением: шум вытекающей паровой смеси в топке или в газоходах, выброс газов через топочные отверстия, лючки, гляделки. И в этом случае останавливается дымосос.

При снижении уровня воды в барабане котла и невозможность его восстановить. Если уровень в водоуказательном стекле остается видимым, пустить в работу резервный, питательный насос, выключить автомат питания и перейти на ручное регулирование. Если уровень воды в стекле не устанавливается, прекратить питание, закройте парозапорные вентиля на котле и паропроводе и откройте дренажный вентиль паропровода. Дымосос остановить после того, как основное количество пара выйдет из котла.

При увеличении уровня воды в барабане котла и невозможность его снизить (байпасом регулятора, дренажированием).

При выходе из строя водоуказательных приборов.

При повышении давления пара в барабане котла и не срабатыванием предохранительных клапанов.

9.9.Контрольно-измерительные приборы и приборы безопасности.

9.9.1.Каждый котел комплектуется двумя пружинными предохранительными клапанами, один из которых является контрольным. Оба клапана устанавливаются на верхнем барабане котла, и любой из них может быть контрольным.

9.9.2.На котлах устанавливаются два водоуказательных прибора прямого действия, которые присоединяются к трубам, идущим низ парового и водяного объема верхнего барабана.

Водоуказательное стекло служит для контроля уровня в барабане котла. Представляет собой специальное стекло, работающее под большим давлением (система Клин Гер). Оно состоит из металлического корпуса (сплошная задняя стенка и передняя рамка) между ними закрепляется рефренное стекло, уплотняется прокладкой. В верхней части имеется штуцер для подключения к паровому пространству. Подключается при помощи специального крана. В нижней части штуцер для соединения с водяным пространством. Также подключается через водяной кран. В нижней части стекла имеется штуцер с трех ходовым краном для продувки стекла. В штуцерах, против водяного и парового канала имеется пробочки, для механической очистки ходов.

9.9.3.Котел оборудован контрольно-измерительными приборами по месту и на щите контроля и управления:

Щит котла ДЕ-10-14ГМ:

№пп Наименование параметра Тип прибора Шкала Ед.изм.
Расход газа на паровом котле КСД 2 м3/час
Расход мазута к котлам ДЕ-10-14ГМ КСД 2 кг/час
Расход пара на мазутное хозяйство КСД 2 т/час
Расход обратного мазута КСД 2 кг/час

7.3. Устройство и работа теплогенератора ДЕ-10-14 ГМ

Газомазутные котлы ДЕ конструкции котельного завода г. Бийска и ЦКТИ предназначены для выработки насыщенного или слабо перегретого пара с абсолютным давлением 14 кгс/см 2 или 24 кгс/см 2 , паропроизводительностью 1; 4; 6,5; 10; 16 и 25 т/ч и сжигания газообразного и жидкого топлива. Основные характеристики котлов серии ДЕ и их комплектация приведены в табл. 8.20, 8.22 .

Принципиальная схема устройства и работы теплогенератора ДЕ-10-14 ГМ приведена на рис. 7.5.

Рис. 7.5. Принципиальная схема теплогенератора ДЕ-10-14 ГМ:

1 , 2 – верхний и нижний барабаны; 3 , 4 – кипятильные трубы первого и

второго газохода; 5 – металлическая перегородка; 6 – газоплотный экран;

7 , 8 , 9 – подовый, правый боковой и потолочный экраны топки; 10 – задний топочный экран; 11 , 12 – нижний и верхний коллекторы заднего топочного экрана; 13 – рециркуляционная трубка; 14 – фронтовой экран топки; 15 – направляющие экраны; 16 – горелка; 17 – торкрет; 18 – паропровод

Рис. 7.6. Продольный разрез теплогенератора ДЕ-10-14

Рис. 7.7. Разрез (в плане) теплогенератора ДЕ-10-14

Все газомазутные котлы ДЕ имеют опорную наклонную раму, которая опирается на фундамент. На раму передается масса элементов котла и воды, обвязочного каркаса, натрубная обмуровка и обшивка.

Переднее днище нижнего барабана имеет неподвижную опору, а остальные опоры скользящие. На заднем днище нижнего барабана установлен репер (указатель) для контроля теплового расширения элементов котла при работе и растопке.

Теплогенераторы состоят из верхнего 1 и нижнего 2 барабанов одинаковой длины, которые соединены между собой коридорно-расположенными вертикальными изогнутыми трубами и образуют соответственно первый 3 и второй 4 газоходы конвективной поверхности нагрева. Продольный шаг кипятильных труб вдоль барабана 90 мм, а поперечный – 110 мм. Котлы паропроизводительностью 4; 6,5; 10 т/ч в конвективных пучках имеют продольные металлические перегородки 5 по всей высоте газохода с окном (от фронта котла) спереди, что обеспечивает разворот топочных газов в пучке на 180° и выход газов в экономайзер через заднюю стенку котла. Котлы паропроизводительностью 16 и 25 т/ч таких перегородок не имеют, и газы идут по всему сечению газохода к фронту котла, выходят из котла, а затем по газовому коробу, размещенному над топочной камерой, направляются в водяной экономайзер, расположенный в хвостовой части котла.

Для всех типоразмеров газомазутных котлов ДЕ диаметры верхнего и нижнего барабанов – 1000 мм, расстояние между барабанами по осям – 2750 мм. Ширина топочной камеры всех котлов по осям экранных труб – 1790 мм, средняя высота топочной камеры – 2400 мм. Барабаны котлов изготавливают из стали 16 ГС и толщиной стенки 13 и 22 мм, соответственно для избыточного давления 13 и 23 кгс/см2. Все трубы радиационной и конвективной поверхности нагрева развальцованы в барабанах и имеют наружный диаметр 51 × 2,5 мм, чем достигается лучшая естественная циркуляция в контурах котла. В нижнем барабане размещены перфорированные трубы для периодической продувки и парового прогрева воды от соседних котлов при растопке, а также штуцеры для спуска воды.

Топочная камера находится сбоку (справа) от конвективного пучка и отделена от него слева газоплотной перегородкой 6 из труб, установленных с шагом 55 мм и сваренных между собой металлическими полосками. Концы труб газоплотного экрана 6 обсажены до 38 мм, выведены в два ряда и уплотнены гребенкой, примыкающей к трубам и барабану. В задней части газоплотного экрана, на расстоянии 700 мм от задней стенки котла, имеется окно для выхода топочных газов из топки в конвективный пучок.

Подовый 7 , правый боковой топочный экран 8 и потолок топки 9 образованы длинными изогнутыми трубами, установленными с шагом 55 мм. Концы этих труб разведены в два ряда и соединены непосредственно с верхним и нижним барабанами на вальцовке. Под (нижняя часть топки) в топке выложен слоем огнеупорного кирпича – торкрет 17 . Шамотный кирпич также укладывается на боковую часть нижнего барабана в топке и крепится на шпильках на боковую часть верхнего барабана в топке между газоплотным 6 и потолочным 9 экранами.

Вертикальные трубы заднего топочного экрана 10 не имеют обсадных концов и приварены к нижнему 11 и верхнему 12 наклонным коллекторам диаметром 159 × 6 мм. Верхний коллектор заднего топочного экрана приварен к верхнему барабану с наклоном вниз, а нижний коллектор – к нижнему барабану с наклоном вверх. Кроме того, верхний и нижний коллекторы объединены не обогреваемой трубой 13 диаметром 76 × 3,5 мм, которая замурована в шамотный кирпич обмуровки. По рециркуляционной трубе 13 происходит сток воды из верхнего коллектора в нижний при отделении ее из пароводяной смеси. Для защиты от теплового излучения коллекторов заднего топочного экрана они снабжены двумя изогнутыми трубами, развальцованными в нижний и верхний барабаны (на схеме не показаны).

Фронтовой экран топки котлов образован четырьмя изогнутыми трубами 14 , развальцованными в верхний и нижний барабаны, что позволяет разместить на фронтовой стене амбразуры горелки 16 и лаз.

Лаз совмещен с взрывным клапаном. (В первой серии котлов производительностью 4…10 т/ч фронтовой экран имел вертикальные трубы, приваренные к коллекторам, аналогично конструкции заднего топочного экрана). Котлы производительностью 4…10 т/ч имеют по две модернизированные горелки ГМГ или по одной ГМ, а котлы производительностью 16 и 25 т/ч – горелки ГМ-10 и ГМП-16.

Кроме того, у котлов производительностью 4…10 т/ч в топке впереди заднего топочного экрана установлены два ряда труб 15 по шесть штук (всего двенадцать труб), которые развальцованы в верхний и нижний барабаны и являются направляющими экранами для закрутки и хода движения топочных газов из топки в кипятильный пучок труб.

Котлы ДЕ производительностью 4…10 т/ч выполнены с одноступенчатым испарением, а в котлах с производительностью 16 и 25 т/ч применено двухступенчатое испарение с внутрибарабанным солевым отсеком.

У котлов ДЕ паропроизводительностью 16 и 25 т/ч в барабанах на расстоянии 1,5 м от задней стенки установлены перегородки, которые образуют чистый, расположенный в передней части котла, и солевой отсеки. В верхнем барабане перегородка установлена до середины парового пространства, а в нижнем – сплошная перегородка, отделяющая вторую ступень испарения от первой. Опускная система первой ступени испарения состоит из последних по ходу газов рядов труб конвективного пучка. Во вторую ступень испарения выделены первые по ходу топочных газов ряды труб конвективного пучка. Опускная система контура солевого отсека состоит из трех не обогреваемых труб диаметром 159 × 4,5 мм, по которым вода из верхнего барабана опускается в нижний. Отсеки ступенчатого испарения сообщаются между собой по пару через окно над поперечной перегородкой, а по воде – через сопло, расположенное в нижней части перегородки водяного объема верхнего барабана. Это сопло выполняет роль продувки из чистого отсека в солевой.

В качестве сепарационных устройств первой ступени испарения используются установленные в верхнем барабане щитки и козырьки, направляющие пароводяную смесь из экранных труб на уровень воды. Для выравнивания скоростей пара по всей длине барабана все котлы (всех производительностей) снабжаются верхним дырчатым пароприемным потолком. На всех котлах, кроме котлов до 4 т/ч, перед пароприемным потолком установлен горизонтальный жалюзийный сепаратор. Сепарационными устройствами второй ступени испарения являются продольные щитки, направляющие движение пароводяной смеси в торец барабана к поперечной перегородке, разделяющей отсеки.

На котлах паропроизводительностью 4…10 т/ч периодическая продувка совмещается с трубой непрерывной продувки. На котлах 16 и 25 т/ч периодическая продувка производится из чистого и солевого отсеков, а непрерывная продувка осуществляется из солевого отсека верхнего барабана. Качество котловой (продувочной) воды нормируется по общему солесодержанию (сухому остатку) без учета абсолютной щелочности.

Для производства перегретого__ пара устанавливают пароперегреватель. На котлах 4…10 т/ч пароперегреватель выполнен змеевиковым из труб диаметром 32 × 3 мм, а на котлах 16 и 25 т/ч – двухрядным из труб 51 × 2,5 мм. В качестве хвостовых поверхностей нагрева применяются стандартные чугунные водяные экономайзеры ЭП 2.

Обмуровка боковых стен, общей толщиной 100 мм, выполнена натрубной и состоит из шамотобетона (25 мм) по сетке и изоляционных (асбестовермикулитовых) плит. Обмуровка фронтовой и задней стен, общей толщиной 100 мм, состоит из шамотобетона (65 мм) и изоляционных плит; для котлов производительностью 16 и 25 т/ч толщина теплоизоляционных плит 256…300 мм. Обмуровка котла снаружи покрывается металлической листовой обшивкой для уменьшения присосов воздуха в газовый тракт.

Котлы оборудованы стационарными обдувочными аппаратами, расположенными с левой стороны конвективного пучка. Обдувочная труба, с целью повышения надежности работы, выполняется из жаропрочной стали. Вращение трубы для обдувки производится вручную при помощи шкива и цепи. Для обдувки труб котла используется сухой насыщенный или перегретый пар с давлением не менее 0,7 МПа. Котлы оборудованы индивидуальным дутьевым вентилятором и дымососом.

Каждый котел ДЕ снабжен согласно правилам котлонадзора:

Двумя пружинными предохранительными клапанами, из которых один является контрольным; на котлах без пароперегревателя оба клапана устанавливаются на верхнем барабане (и любой может быть выбран как контрольный); на котлах с пароперегревателем контрольным служит клапан на выходном коллекторе пароперегревателя;

Двумя водоуказательными приборами;

Необходимым количеством термометров, манометров, запорной, дренажной и сливной арматуры;

Приборами регулирования и безопасности.

Газовоздушный тракт. Топливо и воздух подаются в горелки 16 топки, где образуется факел горения. Теплота от топочных газов в топке, за счет радиационного и конвективного теплообмена, передается всем экранным трубам (радиационным поверхностям нагрева), где эта теплота за счет теплопроводности металлической стенки труб и конвективного теплообмена от труб передается воде, циркулирующей по экранам.

Затем топочные газы тремя потоками проходят через два ряда труб направляющего экрана 15 , откуда с температурой 980…1060 °С выходят из топки и через окно переходят в первый газоход 3 , где передают теплоту конвективному пучку труб. С температурой около 650 °С топочные газы огибают металлическую перегородку 5 , входят во второй газоход 4 кипятильного пучка труб и с температурой около 270…370 °С выходят из котла и направляются в водяной экономайзер.

В котлах 16 и 25 т/ч топочные газы идут по всему сечению общего газохода к фронту котла, а затем по газовому коробу, размещенному над топочной камерой, направляются в водяной экономайзер,

Основные контуры естественной циркуляции котлов ДЕ-10-14 ГМ. После умягчения и деаэрации (из деаэратора и водяного экономайзера) по двум трубопроводам питательной линии питательнаявода подводится в водный объем верхнего барабана 1 , где смешивается с котловой водой. В водномобъеме верхнего барабана находится и труба ввода фосфатов, а паровом объеме – сепарационные устройства.

В котле имеются пять контуров естественной циркуляции.

1-й контур (по кипятильным трубам). Котловая вода из верхнего барабана 1 опускается в нижний барабан 2 по кипятильным трубам 4 конвективного пучка, расположенным во втором газоходе – в области более низких температур топочных газов. Образующаяся пароводяная смесь (ПВС) поднимается в верхний барабан по трубам газоплотного экрана 6 и кипятильным трубам 3 , расположенным в первом газоходе – в области более высоких температур топочных газов.

2-й контур (по фронтовому топочному экрану) – котловая вода из нижнего барабана поднимается по четырем трубам 14 вверх и в виде ПВС поступает в верхний барабан.

3-й контур (по подовому, правому боковому и потолочному экрану) – котловая вода из нижнего барабана заполняет все трубы и в виде ПВС поступает в верхний барабан.

4-й контур (по заднему топочному экрану) – котловая вода из нижнего барабана поступает в нижний коллектор 11 экрана, распределяется по экранным трубам, а образующаяся в них ПВС поднимается в верхний коллектор 12 . За счет расслоения потока в верхнем коллекторе 12 пар идет в верхний барабан, а отделившаяся из ПВС вода опускается в нижний коллектор 11 по опускной необогреваемой трубе 13 .

5-й контур (по трубам направляющего экрана) – котловая вода из нижнего барабана заполняет все двенадцать труб 15 , а образующаяся ПВС поднимается в верхний барабан.

Полученный влажный насыщенный пар в верхнем барабане проходит паросепарационные устройства, в результате чего его влажность уменьшается и образуется сухой насыщенный пар, который по паропроводу идет к потребителю или в пароперегреватель, если потребителю нужен перегретый пар.

Основные контуры естественной циркуляции котлов ДЕ-25-14 ГМ. Питательная вода подается в водный объем чистого отсека верхнего барабана, где смешивается с котловой водой. В котле шесть контуров естественной циркуляции: три в чистом и три в солевом отсеке:

Чистый отсек , первая ступень испарения .

1-й контур (по кипятильным трубам чистого отсека). Котловая вода из верхнего барабана опускается в нижний барабан, по кипятильным трубам расположенным ближе к фронту котла – в области более низких температур топочных газов, а по кипятильным трубам, расположенным ближе к перегородке – в области более высоких температур, вода и пароводяная смесь (ПВС) поднимаются в верхний барабан.

2-й контур (по фронтовому экрану) – котловая вода из нижнего барабана по четырем трубам поднимается вверх и в виде ПВС поступает в верхний барабан.

3-й контур (по подовому, правому боковому и потолочному экрану, расположенным до перегородки) – котловая вода из нижнего барабана заполняет трубы и в виде ПВС поступает в верхний барабан.

Солевой отсек , вторая ступень испарения .

4-й контур (по кипятильным трубам солевого отсека) – котловая вода из верхнего барабана по трем опускным необогреваемым трубам идет в нижний барабан, а по кипятильным трубам, расположенным за перегородкой, образующаяся ПВС поднимается в верхний барабан.

5-й контур (по заднему топочному экрану) – котловая вода из нижнего барабана поступает в нижний коллектор экрана, распределяется по экранным трубам, а образующаяся в них ПВС поднимается в верхний коллектор. За счет расслоения потока в верхнем коллекторе пар идет в верхний барабан, а отделившаяся из ПВС вода опускается в нижний коллектор по опускной необогреваемой трубе.

6-й контур (по подовому, правому боковому и потолочному экрану, расположенным за перегородкой) – котловая вода из нижнего барабана заполняет трубы и в виде ПВС поступает в верхний барабан.

Влажно-насыщенный пар в верхнем барабане проходит паросепарационные устройства, а полученный сухой насыщенный пар отбирается из чистого отсека и по паропроводу идет к потребителю.

7.4. Устройство и работа теплогенератора БГМ-35

Газомазутные котлы БГМ конструкции котельного завода г. Белгорода предназначены для выработки сухого насыщенного или перегретого пара до 440 °С, с производительностью 35 т/ч и абсолютным давлением 4 МПа (40 кг/см 2). Котел экранного типа имеет П-образную компоновку с экранированной топкой настолько, что в ней передается вся теплота, необходимая для получения пара, в результате чего отпадает необходимость в установке конвективной поверхности нагрева, а вместо кипятильных труб установлены хвостовые поверхности: пароперегреватель, водяной экономайзер, воздухоподогреватель. Котел имеет барабан, каркас, фундамент, обмуровку, необходимую арматуру и гарнитуру. Размеры габаритные: верхняя отметка – 15,8 м, ширина по осям колонн – 5,31 м, глубина – 12,28 м. Основные характеристики теплогенератора БГМ-35 приведены в табл. 8.23 . Принципиальная схема унифицированного котла БГМ-35 приведена на рис. 7.8.

Рис. 7.8. Принципиальная схема теплогенератора БГМ-35:

1 – питательный насос; 2 , 4 – коллекторы водяного экономайзера; 3 – водяной экономайзер; 5 – питательные линии; 6 – питательная линия к пароохладителю; 7 – барабан котла; 8 , 11 , 15 , 22 – опускные трубы; 9 – нижний коллектор фронтового экрана; 10 – фронтовой экран; 12 – нижний коллектор заднего экрана; 13 – задний топочный экран; 14 – фестон; 16 , 18 – нижний и верхний коллекторы левого бокового экрана; 17 – боковой экран; 19 – пароотводящие трубы; 20 – выносной циклон; 21 – пароотводящие линии; 23 , 24 – непрерывная и периодическая продувка; 25 – паропровод; 26 , 28 – пароперегреватель; 27 – пароохладитель; 29 – сборный коллектор перегретого пара; 30 – воздухоподогреватель; 31 – горелки; 32 – обмуровка

В котле БГМ-35 двухступенчатая схема испарения. К первой ступени испарения (чистый отсек) относят передний 10 и задний 13 экраны топки. Трубы переднего экрана внизу вварены в нижний коллектор 9 , а вверху образуют потолочный экран и концы труб потолочного экрана развальцованы в барабан.

Трубы заднего экрана внизу вварены в нижний коллектор 12 , а вверху, в зоне прохода топочных газов, разведены в четырехрядный фестон 14 и развальцованы в барабан.

Кроме того, фронтовой коллектор 9 соединен с верхним барабаном четырьмя опускными трубами 8 , расположенными снаружи обмуровки, а нижний коллектор 12 заднего топочного экрана соединен с верхним барабаном шестью опускными трубами 11 , также расположенными снаружи обмуровки. Поперечный фронтовой коллектор 9 расположен над горелками 31 .

Ко второй ступени испарения (солевой отсек) отнесены два боковых экрана – левый 17 и правый, выполненный аналогично левому. Трубы боковых экранов вварены в нижний 16 и верхний 18 коллекторы. Кроме того, нижние коллекторы боковых экранов соединены с верхним барабаном двумя опускными трубами 15 , расположенными снаружи обмуровки. Левый и правый боковые экраны имеют в отдельности выносной циклон 20 и соединены между собой тремя пароотводящими трубами 19 . Все экраны в топке выполнены из труб 60 × 3 мм.

Газовоздушный тракт. Воздух дутьевым вентилятором нагнетается в трубчатый двухступенчатый воздухоподогреватель 30 , где нагревается примерно до 170 °С и подается в горелки 31 , установленные на фронте котла в количестве пяти штук: три вверху и две внизу (причем нижние – растопочные). Топочные газы отдают теплоту в топке всем экранным поверхностям нагрева, а затем, пройдя фестон 14 , трубки пароперегревателя 28 и 26 , водяной экономайзер 3 , воздухоподогреватель 30 , с температурой 158.. 180 °С дымососом удаляются в атмосферу через дымовую трубу.

Основные контуры естественной циркуляции. Питательная вода из бака деаэратора питательным насосом 1 подается в коллектор 2 , а затем в трубы 3 кипящего водяного экономайзера, где вода нагревается примерно до 145 °С и пройдя сборный коллектор 4 , по трем питательным линиям 5 подается в барабан котла 7 , где смешивается с котловой водой. Одна (из трех) питательная труба 6 подводится к пароохладителю 27 , установленному в рассечку пароперегревателя, для регулирования температуры перегретого пара.

Чистый отсек . Часть котловой воды из барабана по четырем опускным трубам 8 9 , распределяется по трубам переднего топочного экрана 10 , который экранирует фронт и потолок топки, а образующаяся пароводяная смесь (ПВС) по этому экрану идет в барабан.

Часть котловой воды из барабана по шести опускным трубам 11 подводится в нижний коллектор 12 , распределяется по трубам заднего топочного экрана 13 , а образующаяся ПВС по этому экрану и фестону 14 идет в барабан.

Солевой отсек . Часть котловой воды из барабана по двум опускным трубам 15 подводится в нижний коллектор 16 , распределяется по трубам левого бокового топочного экрана 17 , а образующаяся ПВС по этому экрану поднимается в верхний коллектор 18 , откуда по трем пароотводящим трубам 19 идет в выносной циклон 20 . В циклоне происходит разделение пара и воды: пар по двум пароотводящим линиям 21 идет в барабан 7 , а вода из циклона 20 по трем опускным трубам 22 возвращается в нижний коллектор 16 бокового экрана. Аналогично работает и правый боковой топочный экран. Непрерывная продувка 23 производится только из двух выносных циклонов, а периодическая 24 – из нижних частей двух циклонов и из всех (четырех) нижних коллекторов котла.

Пар и пароводяная смесь из всех контуров циркуляции поднимается в барабан, где в паросепарационных устройствах отделяется пар, а вода смешивается с котловой водой и процесс циркуляций повторяется. После паросепарационных устройств полученный сухой насыщенный пар по паропроводу 25 направляется в пароперегреватель для получения перегретого пара. Сухой насыщенный пар вначале проходит дальнюю часть пароперегревателя 26 , где вначале противотоком, а затем прямотоком (на схеме не показано) нагревается и поступает в пароохладитель 27 поверхностного типа. Из пароохладителя, после регулирования температуры, пар идет в ближнюю часть 28 пароперегревателя, где после движения прямотоком и противотоком (на схеме не показано) нагревается топочными газами и поступает в сборный коллектор перегретого пара 29 , откуда идет к потребителю. На сборном коллекторе установлены предохранительный контрольный клапан, термометр, манометр, вентиль для продувки паропровода во время растопки котла и вентиль, соединяющий с главным паропроводом котельной.

Котлы БГМ-35 выпускаются и без циклонов, и у них нет верхних боковых коллекторов, а трубы боковых экранов развальцованы в барабан котла. Но в барабане котла имеются две поперечные перегородки с переливными трубами (соплами) в водном объеме, которые делят пространство котла на три отсека: один чистый и два солевых.

Очистка пароперегревателя осуществляется стационарными паровыми обдувочными аппаратами.

Костылев И.И. 1993 г. МЕТОДИЧЕСКИЕ ПОСОБИЯ Котельные установки и парогенераторы . Метод. указания к курсовому проектированию.Тихонов В.М. 2001 г. Котельные установки ...

  • Регистрационный номер ___209 тех/дс СТАНДАРТ

    котельные установки , парогенераторы Котельные установки и парогенераторы котельных установок, их...

  • 1 общая характеристика направления подготовки дипломир ованного специалиста по направлению « тепло энергетика»

    Перечень образовательных программ

    И эксплуатация энергетических установок: котлы, котельные установки , парогенераторы , испарители, турбины, вспомогательное тепломеханическое... 240 СД.02 Котельные установки и парогенераторы : общая характеристика современных котельных установок, их...

  • Составители учебно-тематического плана программы повышения квалификации

    Программа

    Модуль 1 «Водоподготовка»; модуль 2 «Котельные установки и парогенераторы» ; модуль 3 «Паротурбинные установки ТЭС и АЭС»; модуль 4 « ... . ун-т, 2007. 65 с. Модуль 2. «Котельные установки и парогенераторы» Лабораторные работы 1. Раздел 2. Темы 2.1, 2.2, ...

  • Газомазутные котлы ДЕ конструкции котельного завода г. Бийска и ЦКТИ предназначены для вы­работки насыщенного или слабо перегретого пара с абсолютным давлением 14 кгс/см2 или 24 кгс/см2, паропроизводительностью 1; 4; 6,5; 10; 16 и 25 т/ч и сжигания газообразного и жидкого топлива. Ос­новные характеристики котлов серии ДЕ и их комплектация приведены в табл. П1, табл. 8.20, 8.22 .

    Принципиальная схема устройства и работы теплогенератора ДЕ-10-14 ГМ приведена на рис. 5.3, а ДЕ-25-14 - на рис. 6 .

    Задний топочный

    Б-Б дымовые g-g

    1, 2 - верхний и нижний барабаны; 3, 4 - кипятильные трубы первого и второго газохода; 5 - металлическая перегородка; 6 - газоплотный экран;

    7, 8, 9 - подовый, правый боковой и потолочный экраны топки;

    10 - задний топочный экран; 11, 12 - нижний и верхний коллекторы заднего топочного экрана; 13 - рециркуляционная трубка;

    16 - горелка; 17 - торкрет; 18 - паропровод Все газомазутные котлы ДЕ имеют опорную наклонную раму, которая опирается на фундамент. На раму передается масса элементов котла и воды, обвязочного каркаса, натрубная обмуровка и обшивка. Переднее днище нижнего барабана имеет неподвижную опору, а остальные опоры скользящие. На зад­нем днище нижнего барабана установлен репер (указатель) для контроля теплового расширения эле­ментов котла при работе и растопке.

    Теплогенераторы состоят из верхнего 1 и нижнего 2 барабанов одинаковой длины, которые соеди­нены между собой коридорно-расположенными вертикальными изогнутыми трубами и образуют соот­ветственно первый 3 и второй 4 газоходы конвективной поверхности нагрева. Продольный шаг кипя­тильных труб вдоль барабана 90 мм, а поперечный - 110 мм. Котлы паропроизводительностью 4; 6,5; 10 т/ч в конвективных пучках имеют продольные металлические перегородки 5 по всей высоте газохода с окном (от фронта котла) спереди, что обеспечивает разворот топочных газов в пучке на 180° и выход газов в экономайзер через заднюю стенку котла. Котлы паропроизводительностью 16 и 25 т/ч таких пе­регородок не имеют, и газы идут по всему сечению газохода к фронту котла, выходят из котла, а затем по газовому коробу, размещенному над топочной камерой, направляются в водяной экономайзер, рас­положенный в хвостовой части котла.

    Для всех типоразмеров газомазутных котлов ДЕ диаметры верхнего и нижнего барабанов - 1000 мм, расстояние между барабанами по осям - 2750 мм. Ширина топочной камеры всех котлов по осям экранных труб - 1790 мм, средняя высота топочной камеры - 2400 мм. Барабаны котлов изготавливают из стали 16 ГС и толщиной стенки 13 и 22 мм, соответственно для избыточного давления 13 и 23
    кгс/см2. Все трубы радиационной и конвективной поверхности нагрева развальцованы в барабанах и имеют наружный диаметр 51 х 2,5 мм, чем достигается лучшая естественная циркуляция в контурах котла. В нижнем барабане размещены перфорированные трубы для периодической продувки и парового прогрева воды от соседних котлов при растопке, а также штуцеры для спуска воды.

    Топочная камера находится сбоку (справа) от конвективного пучка и отделена от него слева газо­плотной перегородкой 6 из труб, установленных с шагом 55 мм и сваренных между собой металличе­скими полосками. Концы труб газоплотного экрана 6 обсажены до 38 мм, выведены в два ряда и уплот­нены гребенкой, примыкающей к трубам и барабану. В задней части газоплотного экрана, на расстоя­нии 700 мм от задней стенки котла, имеется окно для выхода топочных газов из топки в конвективный пучок.

    Подовый 7, правый боковой топочный экран 8 и потолок топки 9 образованы длинными изогнуты­ми трубами, установленными с шагом 55 мм. Концы этих труб разведены в два ряда и соединены непо­средственно с верхним и нижним барабанами на вальцовке. Под (нижняя часть топки) в топке выложен слоем огнеупорного кирпича - торкрет 17. Шамотный кирпич также укладывается на боковую часть нижнего барабана в топке и крепится на шпильках на боковую часть верхнего барабана в топке между газоплотным 6 и потолочным 9 экранами.

    Вертикальные трубы заднего топочного экрана 10 не имеют обсадных концов и приварены к ниж­нему 11 и верхнему 12 наклонным коллекторам диаметром 159 х 6 мм. Верхний коллектор заднего то­почного экрана приварен к верхнему барабану с наклоном вниз, а нижний коллектор - к нижнему бара­бану с наклоном вверх. Кроме того, верхний и нижний коллекторы объединены не обогреваемой трубой 13 диаметром 76 х 3,5 мм, которая замурована в шамотный кирпич обмуровки. По рециркуляционной трубе 13 происходит сток воды из верхнего коллектора в нижний при отделении ее из пароводяной сме­си. Для защиты от теплового излучения коллекторов заднего топочного экрана они снабжены двумя изогнутыми трубами, развальцованными в нижний и верхний барабаны (на схеме не показаны).

    Фронтовой экран топки котлов образован четырьмя изогнутыми трубами 14, развальцованными в верхний и нижний барабаны, что позволяет разместить на фронтовой стене амбразуры горелки 16 и лаз. Лаз совмещен с взрывным клапаном. (В первой серии котлов производительностью 4.10 т/ч фронто­вой экран имел вертикальные трубы, приваренные к коллекторам, аналогично конструкции заднего то­почного экрана). Котлы производительностью 4.10 т/ч имеют по две модернизированные горелки ГМГ или по одной ГМ, а котлы производительностью 16 и 25 т/ч - горелки ГМ-10 и ГМП-16.

    Кроме того, у котлов производительностью 4.10 т/ч в топке впереди заднего топочного экрана ус­тановлены два ряда труб 15 по шесть штук (всего двенадцать труб), которые развальцованы в верхний и нижний барабаны и являются направляющими экранами для закрутки и хода движения топочных газов из топки в кипятильный пучок труб.

    1- й контур (по кипятильным трубам чистого отсека). Котловая вода из верхнего барабана опускает­ся в нижний барабан, по кипятильным трубам расположенным ближе к фронту котла - в области более низких температур топочных газов, а по кипятильным трубам, расположенным ближе к перегородке - в области более высоких температур, вода и пароводяная смесь (ПВС) поднимаются в верхний барабан.

    2- й контур (по фронтовому экрану) - котловая вода из нижнего барабана по четырем трубам под­нимается вверх и в виде ПВС поступает в верхний барабан.

    3- й контур (по подовому, правому боковому и потолочному экрану, расположенным до перегород­ки) - котловая вода из нижнего барабана заполняет трубы и в виде ПВС поступает в верхний барабан.

    4- й контур (по кипятильным трубам солевого отсека) - котловая вода из верхнего барабана по трем опускным необогреваемым трубам идет в нижний барабан, а по кипятильным трубам, расположенным за перегородкой, образующаяся ПВС поднимается в верхний барабан.

    5- й контур (по заднему топочному экрану) - котловая вода из нижнего барабана поступает в ниж­ний коллектор экрана, распределяется по экранным трубам, а образующаяся в них ПВС поднимается в верхний коллектор. За счет расслоения потока в верхнем коллекторе пар идет в верхний барабан, а от­делившаяся из ПВС вода опускается в нижний коллектор по опускной необогреваемой трубе.

    6- й контур (по подовому, правому боковому и потолочному экрану, расположенным за перегород­кой) - котловая вода из нижнего барабана заполняет трубы и в виде ПВС поступает в верхний барабан.

    Влажно-насыщенный пар в верхнем барабане проходит паросепарационные устройства, а получен­ный сухой насыщенный пар отбирается из чистого отсека и по паропроводу идет к потребителю.