ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Как сделать водородный генератор для дома своими руками: практические советы по изготовлению и монтажу. Водородная горелка своими руками Водородная вода своими руками

Когда я был маленький, я всё время хотел что-либо делать сам, своими рукам. Вот только родители (и другие родственники) обычно этого не разрешали. А я не видел тогда (и до сих пор не вижу) ничего плохого, когда маленькие дети хотят учиться 🙂

Конечно, я написал эту статейку не для того, чтобы вспомнить детские переживания в попытках начать самообразование. Просто совершенно случайно, когда я бродил на otvet.mail.ru я наткнулся на вопрос подобного рода. Какой-то маленький мальчик-подрывник спрашивал, как в домашних условиях произвести электролиз. Ему я, правда, не стал отвечать, т. к. уж больно подозрительные смеси хотел электролизировать этот мальчик 😉 Решил, что от греха подальше не скажу, пусть сам в книгах ищет. Но вот недавно, опять же бродя по форумам, увидел подобный вопрос от школьного учителя химии. Судя по описанию его школа настолько бедная, что не может (не хочет) приобрести электролизёр рублей за 300. Учитель (вот беда!) не смог найти выход из сложившейся ситуации. Вот ему я помог. Для тех, кому любопытны такого рода самоделки я выкладываю эту статью на сайт.

Собственно, процесс изготовления и применения нашего самопала крайне примитивный. Но о технике безопасности я расскажу в первую очередь, а про изготовление — уже во вторую. Дело в том, что речь пойдёт о показательном электролизёре, а не о промышленной установке. Поэтому для безопасности лучше будет запитать его не от сети, а от пальчиковых батареек или от аккумулятора. Естественно, чем больше будет напряжение, тем шустрей пойдёт сам процесс электролиза. Но для визуального наблюдения пузырьков газа вполне хватит 6 В , а вот 220 — это уже слишком. С таким напряжением вода, например, скорее всего будет бурлить, а это не совсем безопасно… Ну, с напряжением думаю разобрались?

Теперь поговорим о том, где и на каких условиях мы будем проводить эксперимент.
Во-первых , это должно быть либо открытое пространство, либо хорошо проветриваемое помещение. Хотя я всё делал в квартире с закрытыми окнами и вроде ничего 🙂
Во-вторых , эксперимент лучше проводить на хорошем столе. Под словом «хороший» подразумевается то, что стол должен быть устойчивым, а лучше массивным, жёстким и прикреплённым к полу. При этом покрытие стола должно быть устойчивым к агрессивным веществам. Кстати, для этого хорошо подходит кафельная плитка (хотя и не любая, к сожалению). Такой стол пригодится вам не только для этого опыта. Впрочем, я всё сделал на обычной табуретке 🙂
В-третьих , в ходе эксперимента вам не потребуется перемещать источник питания (в моём случае — батарейки). Поэтому для надёжности их лучше сразу положить на стол и закрепить, чтобы они не сдвигались с места. Поверьте, это удобней, чем придерживать их постоянно руками. Свои батарейки я просто примотал изолентой к первому попавшемуся жёсткому предмету.
В-четвёртых , посуда, в которой будем проводить эксперимент пусть будет небольшой. Обычный стакан подойдёт или рюмка. Кстати, это самый лучший способ использования рюмок дома, в отличие от разлития в них спиртного с последующим употреблением…

Ну а сейчас перейдём непосредственно к прибору. Он представлен на рисунке, а я пока объясню коротко что и с чем.

Нам нужно взять простой карандаш и удалить с него дерево при помощи обычного ножа и достать из карандаша целый грифель. Можно, правда, взять грифель от механического карандаша. Но тут есть сразу две сложности. Первая — банальная. Грифель от механического карандаша очень тонкий, нам такой просто не подойдёт для наглядного эксперимента. Вторая сложность — это какой-то странный состав нынешних грифелей. Такое ощущение, что их делают не из графита, а из чего-то иного. В общем, с таким «грифелем» у меня опыт не получился вообще даже при напряжении 24 В. Поэтому мне пришлось расковырять старый добрый деревянный простой карандаш. Полученный графитовый стержень будет служить нам электродом. Как вы понимаете, электродов нам нужно два. Поэтому идём ковырять второй карандаш, либо просто сломаем имеющийся стержень пополам. Я сделал именно так.

Любым попавшимся под руку проводом обматываем первый грифель-электрод (одним концом провода), и этот же провод подключаем к минусу источника питания (другим концом). После этого берём второй грифель и проделываем с ним тоже самое. Для этого нам, соответственно, нужен второй провод. Но на этот раз подсоединяем этот провод к плюсу источника питания. Если у вас возникнут проблемы в процессе прикрепления хрупкого графитового стержня к проводу, можете воспользоваться подручными средствами: изолентой или скотчем. Если не получилось обмотать кончик графита самим проводом, а скотч или изолента не обеспечили плотного контакта, то попробуйте приклеить грифель токопроводящим клеем. Если такого у вас нет, то хотя бы привяжите грифель к проводу при помощи нитки. Не бойтесь, нитка не сгорит от такого напряжения 🙂

Для тех кто ничего не знает о батарейках и элементарных правил их соединения я немного поясню. Пальчиковая батарейка выдаёт напряжение 1,5 В. На рисунке у меня две таких батарейки. Причём соединены они последовательно — одна за другой, а не параллельно. При таком (последовательном) соединении итоговое напряжение будет суммироваться из напряжения каждой батарейки, т. е. у меня это 1,5 + 1,5 = 3,0 В. Это меньше заявленных ранее шести вольт. Но мне было лень сходить купить ещё несколько батареек. Принцип вам и так понятен должен быть 🙂

Приступим к эксперименту. Для примера ограничимся электролизом воды. Во-первых, она очень доступна (я надеюсь, что читающий эту статью не живёт в Сахаре), а во-вторых — безопасна. Кроме того, я покажу, как одним и тем же прибором (электролизёром) с одним и тем же веществом (водой) сделать два разных опыта. Думаю, что у вас фантазии хватит, чтобы напридумывать ещё кучу подобных опытов с другими веществами 🙂 В общем, для нас подойдёт вода из крана. Но я советую вам ещё немного её и посолить. Немного — это значит очень маленькую щепотку, а не целую десертную ложку!!! Это очень важно! Хорошо размешайте соль, чтобы она растворилась. Так вода, являясь в чистом состоянии диэлектриком, станет хорошо проводить электричество. Перед началом эксперимента протрите стол от возможной влаги, а затем поставьте на него источник питания и стакан с водой.

Опускаем оба электрода, находящихся под напряжением, в воду. При этом следите, чтобы в воду был опущен только графит, а сам провод не должен касаться воды. Начало эксперимента может затянуться. Время зависит от многих параметров: от состава воды, качества проводов, качества графита и, естественно, напряжения источника питания. У меня начало реакции затянулось на несколько секунд. На том электроде, который был подключён к плюсу батареек начинает выделяться кислород. На электроде, подключённом к минусу будет выделяться водород. При этом заметьте, что пузырьков водорода больше. Мелкие пузырьки облепляют ту часть графита, которая погружена в воду. Затем некоторые из пузырьков начинают всплывать.

Электрод перед началом опыта. Пузырьков газа пока нет. Пузырьки водорода, появившиеся на электроде, подсоединённому к отрицательному полюсу батареек

Какие опыты могут быть ещё? Если с водородом и кислородом вы уже наигрались, можно приступать ко второму опыту. Он более интересен, особенно для домашних экспериментаторов. Интересен тем, что его можно не только увидеть, но и унюхать. В прошлом опыте мы получали кислород и водород, которые, как я считаю, не слишком зрелищны. А во втором опыте мы получим два вещества (полезных в хозяйстве, между прочим). Перед началом эксперимента следует прекратить предыдущий эксперимент и просушить электроды. Теперь берите поваренную соль (которой вы обычно используете на кухне) и растворяйте её в воде. На этот раз в большом количестве. Собственно, большое количество соли — это единственное, чем второй опыт отличается от первого. После растворения соли можно сразу повторить эксперимент. Теперь происходит другая реакция. На положительном электроде теперь выделяется не кислород, а хлор. А на отрицательном всё так же выделяется водород. Что же касается стакана, в котором находится раствор соли, то в нём после продолжительного электролиза останется гидроксид натрия. Это всем знакомый едкий натр, щёлочь.

Хлор вы сможете учуять по запаху. Но для большего эффекта я советую взять напряжение хотя бы 12 В. Иначе запах можно не почувствовать. Наличие щёлочи (после очень продолжительного электролиза) в стакане можно проверить несколькими способами. Самый простой и жестокий — опустить руку в стакан. Народная примета гласит, что если начнётся жжение — в стакане есть щёлочь. Более гуманный и наглядный способ — это лакмусовая бумажка. Если же у вас настолько бедная школа, что не может даже лакмус купить, вас выручат подручные индикаторы. Одним из таких, как говорят, может послужить капелька свекольного сока 🙂 Но можно просто капнуть в раствор немного жира. Насколько мне известно, должно произойти омыление.

Для особо любознательных я опишу, что же именно происходило во время опытов. В первом опыте под действием электрического тока происходила такая реакция:
2 H 2 O >>> 2 H 2 + O 2
Оба газа, естественно, всплывают из воды на поверхность. Кстати, всплывающие газы можно уловить ловушками. Сами сделать сможете?

Во втором опыте реакция была уже совсем другой. Она тоже была инициирована электрическим током, но теперь в качестве реагентов выступила не только вода, но и соль:
4H 2 O + 4NaCl >>> 4NaOH + 2H 2 + 2Cl 2
Учтите, что реакция должна идти в избытке воды. Чтобы определить, какое же количество соли является максимальным, можно высчитать его из вышеприведённой реакции. Можете ещё подумать, как усовершенствовать прибор или какие ещё опыты можно провести. Вполне возможно, что электролизом можно получить гипохлорит натрия. В лабораторных условиях его обычно получают пропусканием газообразного хлора через раствор гидроксида натрия.

Еще средневековый ученый Парацельс во время одного из своих экспериментов заметил, что при контакте серной кислоты с феррумом образуются воздушные пузырьки. В действительности то был водород (но не воздух, как считал ученый) – легкий бесцветный газ, не имеющий запаха, который при определенных условиях становится взрывоопасным.

В нынешнее время отопление водородом своими руками – вещь весьма распространенная. Действительно, водород можно получать практически в неограниченном количестве, главное, чтобы были вода и электроэнергия.

Такой способ отопления был разработан одной из итальянских компаний. Водородный котел работает, не образуя никаких вредных отходов, из-за чего считается самым экологическим и бесшумным способом обогрева дома. Инновация разработки в том, что ученым удалось добиться сжигания водорода при относительно низкой температуре (порядка 300ᵒС), а это позволило изготавливать подобные отопительные котлы из традиционных материалов.

При работе котел выделяет только безвредный пар, и единственное, что требует затрат – это электроэнергия. А если совместить такое с солнечными панелями (гелиосистемой), то эти расходы можно и вовсе свести к нулю.

Обратите внимание! Зачастую котлы на водороде используются для нагрева систем «теплого пола», которые можно легко смонтировать своими руками.

Как же все происходит? Кислород вступает в реакцию с водородом и, как мы помним из уроков химии в средних классах, образует молекулы воды. Реакция провоцируется катализаторами, в результате выделяется тепловая энергия, нагревающая воду примерно до 40ᵒС – идеальной температуры для «теплого пола».

Регулировка мощности котла позволяет добиться определенного температурного показателя, необходимого для отопления помещения с той или иной площадью. Также стоит отметить, что такие котлы считаются модульными, т. к. состоят из нескольких независимых друг от друга каналов. В каждом из каналов имеется упомянутый выше катализатор, в результате в теплообменник поступает теплоноситель, уже достигший необходимого показателя в 40ᵒС.

Обратите внимание! Особенностью такого оборудования является то, что каждый из каналов способен вырабатывать разную температуру. Таким образом, один из них можно провести к «теплому полу», второй к соседнему помещению, третий к потолку и т. д.

Основные достоинства отопления на водороде

Данный способ обогрева дома имеет несколько существенных преимуществ, которыми обусловлена возрастающая популярность системы.

  1. Впечатляющий КПД, который нередко достигает 96%.
  2. Экологичность. Единственный побочный продукт, выделяющийся в атмосферу – это водяной пар, который не способен навредить окружающей среде в принципе.
  3. Водородное отопление постепенно заменяет традиционные системы, освобождая людей от необходимости в добыче природных ресурсов – нефти, газа, угля.
  4. Водород действует без огня, тепловая энергия образуется путем каталитической реакции.

Можно ли самостоятельно сделать водородное отопление?

В принципе, это возможно. Главный элемент системы – котел – можно создать на основе ННО генератора, то есть, обычного электролизера. Все мы помним школьные опыты, когда засовывали в емкость с водой оголенные провода, подключенные к розетке путем выпрямителя. Так вот, для сооружения котла вам потребуется повторить этот опыт, но уже в более крупных масштабах.

Обратите внимание! Водородный котел используется с «теплым полом», о чем мы уже говорили. Но обустройство такой системы – это тема уже другой статьи, поэтому мы будем опираться на то, что «теплый пол» уже устроен и готов к использованию.

Постройка водородной горелки

Приступаем к созданию водной горелки. Традиционно, начинать будем с приготовления необходимых инструментов и материалов.

Что потребуется в работе

  1. Лист «нержавейки».
  2. Обратный клапан.
  3. Два болта 6х150, гайки и шайбы к ним.
  4. Фильтр проточной очистки (от стиральной машины).
  5. Прозрачная трубка. Для этого идеально подходит водяной уровень – в магазинах стройматериалов он продается по 350 рублей за 10 м.
  6. Пластиковый герметичный контейнер для пищи емкостью 1,5 л. Примерная стоимость – 150 рублей.
  7. Штуцеры с «елочкой» ø8 мм (такие отлично подойдут для шланга).
  8. Болгарка для распиливания металла.

А теперь разберемся, какую именно нержавеющую сталь нужно использовать. В идеале для этого следует взять сталь 03Х16Н1. Но купить целый лист «нержавейки» порой весьма накладно, ведь изделие толщиной 2 мм стоит более 5500 рублей, к тому же его нужно как-то привезти. Поэтому, если где-то завалялся небольшой кусок такой стали (хватит и 0,5х0,5 м), то можно обойтись и им.

Мы будем использовать нержавеющую сталь, потому что обычная, как известно, в воде начинает ржаветь. Более того, в нашей конструкции мы намерены применять щелочь вместо воды, то есть среду более чем агрессивную, да и под действием электротока обычная сталь долго не прослужит.

Видео — Генератор газа Брауна простая модель ячейки из 16 пластин нержавеющей стали

Инструкция по изготовлению

Первый этап. Для начала берем лист стали и размещаем его на ровной поверхности. Из листа указанных выше размеров (0,5х0,5 м) должно получиться 16 прямоугольников для будущей горелки на водороде, вырезаем их болгаркой.

Обратите внимание! Один из четырех углов каждой пластины мы спиливаем. Это необходимо, чтобы в будущем соединить пластины.

Второй этап. С обратной стороны пластин просверливаем отверстия для болта. Если бы мы планировали сделать «сухой» электролизер, то просверлили отверстия и снизу, но в данном случае этого делать не надо. Дело в том, что «сухая» конструкция порядком сложнее, да и полезная площадь пластин в ней использовалась бы не на 100%. Мы же сделаем «мокрый» электролизер – пластины полностью погрузятся в электролит, а в реакции будет участвовать вся их площадь.

Третий этап. Принцип работы описываемой горелки основывается на следующем: электроток, проходя через погруженные в электролит пластины, приведет к тому, что вода (она должна входить в состав электролита) разложится на кислород (О) и водород (Н). Следовательно, мы должны располагать одновременно двумя пластинами – катодом и анодом.

С увеличением площади этих пластин увеличивается объем газа, поэтому в данном случае используем по восемь штук на катод и анод, соответственно.

Обратите внимание! Рассматриваемая нами горелка – это конструкция с параллельным включением, которая, честно говоря, является не самой эффективной. Но она более простая в выполнении.

Четвертый этап. Далее нам предстоит установить пластины в пластиковый контейнер так, чтобы они чередовались: плюс, минус, плюс, минус и т. д. Для изоляции пластин используем куски прозрачной трубки (мы купили ее целых 10 м, поэтому запас есть).

Нарезаем из трубки небольшие кольца, разрезаем их и получаем полоски толщиной примерно 1 мм. Это идеальное расстояние, чтобы водород в конструкции эффективно генерировался.

Пятый этап. Пластины крепим друг к другу с помощью шайб. Делаем это следующим образом: надеваем шайбу на болт, затем пластину, после нее три шайбы, еще одну пластину, опять три шайбы и т. д. Восемь штук вешаем на катод, восемь – на анод.

Обратите внимание! Это нужно делать зеркально, то есть, анод мы разворачиваем на 180ᵒ. Так «плюса» зайдут в зазоры между пластинами «минуса».

Шестой этап. Смотрим, куда именно в контейнере упираются болты, просверливаем в том месте отверстия. Если вдруг болты не помещаются в контейнер, то мы спиливаем их до требуемой длины. Затем вставляем болты в отверстия, надеваем на них шайбы и зажимаем гайками – для лучшей герметичности.

Далее проделываем дыру в крышке для штуцера, вкручиваем сам штуцер (желательно намазав место соединения силиконовым герметиком). Дуем в штуцер, чтобы проверить герметичность крышки. Если воздух все же выходит из-под нее, то промазываем и это соединение герметиком.

Седьмой этап. По окончании сборки тестируем готовый генератор. Для этого подключаем к нему любой источник, заполняем контейнер водой и закрываем крышку. Далее на штуцер надеваем шланг, который опускаем в емкость с водой (чтобы увидеть пузырьки воздуха). Если источник недостаточно мощный, то их в емкости не будет, но вот в электролизере они появятся обязательно.

Далее нам нужно повысить интенсивность выхода газа посредством увеличения напряжения в электролите. Здесь стоит отметить, что вода в чистом виде не является проводником – ток проходит через нее благодаря имеющимся в ней примесям и соли. Мы же разбавим в воде немного щелочи (к примеру, гидроксид натрия отлично подходит – в магазинах он продается в виде чистящего средства «Крот»).

Обратите внимание! На этом этапе мы должны адекватно оценить возможности источника питания, поэтому перед вливанием щелочи мы подключаем к электролизеру амперметр – так мы сможем проследить увеличение тока.

Видео — Отопление водородом. Аккумуляторы на водородном элементе

Далее поговорим о других составляющих водородной горелки – фильтре для стиралки и клапане. Оба предназначаются для защиты. Клапан не позволит загоревшемуся водороду проникнуть обратно в конструкцию и взорвать скопившийся под крышкой электролизера газ (пусть его там и немного). Если не установим клапан, то контейнер повредится и щелочь вытечет наружу.

Фильтр же потребуется для изготовления водяного затвора, который будет играть роль барьера, предотвращающего взрыв. Народные умельцы, не понаслышке знакомые с конструкцией самодельной горелки на водороде, называют этот затвор «бульбулятором». И правда, он по сути лишь создает пузырьки воздуха в воде. Для самой горелки используем все тот же прозрачный шланг. Все, водородная горелка готова!

Остается лишь подсоединить ее к входу системы «теплый пол», герметизировать соединение и начать непосредственно эксплуатацию.

В качестве заключения. Альтернатива

Альтернативой, пускай и весьма спорной, является газ Брауна – химическое соединение, которое состоит из одного атома кислорода и двух водорода. Горение такого газа сопровождается образованием тепловой энергии (притом в четыре раза мощнее, чем в описанной выше конструкции).

Для отопления дома газом Брауна тоже используются электролизеры, ведь этот способ получения тепла также основан на электролизе. Создаются специальные котлы, в которых под действием переменного тока молекулы химических элементов разъединяются, образуя заветный газ Брауна.

Видео – Обогащенный газ Брауна

Вполне возможно, что инновационные энергоносители, резерв которых практически безграничен, вскоре вытеснят невозобновляемые природные ресурсы, освободив нас от необходимости в перманентной добычи ископаемых. Такой ход событий позитивно скажется не только на окружающей среде, но и на экологии планеты в целом.

Также читайте на нашем статью — паровое отопление своими руками.

Видео – Отопление водородом

Водород практически идеальный вид топлива, но проблема заключается в том, что он на нашей планете встречается только в виде соединений с другими химическими элементами. Доля «чистого» вещества в атмосфере составляет не более 0,00005%. Учитывая такие реалии, становится актуальным вопрос о водородном генераторе. Рассмотрим принцип работы такого устройства, его конструктивные особенности, сферу применения и возможность самостоятельного изготовления.

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H 2 O→2NaOH + Cl 2 + H 2 . В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н 2 О + С ⇔ СО + H 2 .
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН 4 + Н 2 О ⇔ СО + 3Н 2 . Второй вариант – окисление метана: 2СН 4 + О 2 ⇔ 2СО + 4Н 2 .
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.

Конструктивные особенности и устройство генератора водорода

Если с получением водорода проблем сейчас практически нет, то его транспортировка и хранение до сих пор остается актуальной задачей. Молекулы этого вещества настолько малы, что могут проникать даже сквозь металл, что несет определенную угрозу безопасности. Хранение в абсорбированном виде пока не отличается высокой рентабельностью. Поэтому наиболее оптимальный вариант – генерация водорода непосредственно перед его использованием в производственном цикле.

Для этой цели изготавливаются промышленные установки для генерации водорода. Как правило, это электролизеры мембранного типа. Упрощенная конструкция такого устройства и принцип работы приведен ниже.


Обозначения:

  • А – трубка для отвода хлора (Cl 2).
  • B – отвод водорода (Н 2).
  • С – анод, на котором происходит следующая реакция: 2CL – →CL 2 + 2е – .
  • D – катод, реакцию на нем можно описать следующим уравнением: 2Н 2 О + 2е – →Н 2 + ОН – .
  • Е – раствор воды и хлористого натрия (Н 2 О & NaCl).
  • F – мембрана;
  • G – насыщенный раствор хлористого натрия и образование каустической соды (NaОН).
  • H – отвод рассола и разбавленной каустической соды.
  • I – ввод насыщенного рассола.
  • J – крышка.

Конструкция бытовых генераторов значительно проще, поскольку в большинстве своем они не вырабатывают чистый водород, а производят газ Брауна. Так принято называть смесь кислорода и водорода. Этот вариант наиболее практичен, не требуется разделять водород и кислород, то можно значительно упростить конструкцию, а значит и сделать ее дешевле. Помимо этого полученный газ сжигается по мере его выработки. Хранить и накапливать его в домашних условиях не только проблематично, но и небезопасно.


Обозначения:

  • а – трубка для отвода газа Брауна;
  • b – впускной коллектор подачи воды;
  • с – герметичный корпус;
  • d – блок пластин электродов (анодов и катодов), с установленными между ними изоляторами;
  • e – вода;
  • f – датчик уровня воды (подключается к блоку управления);
  • g – фильтр водоотделения;
  • h – подвод питания, подаваемого на электроды;
  • i – датчик давления (подает сигнал блоку управления при достижении порогового уровня);
  • j – предохранительный клапан;
  • k – отвод газа с предохранительного клапана.

Характерная особенность таких устройств – использование блоков электродов, поскольку не требуется сепарирование водорода и кислорода. Это позволяет сделать генераторы довольно компактными.


Сферы применения водородного генератора

Ввиду проблем, связанных с транспортировкой и хранением водорода, такие устройства востребованы в производствах, где наличие этого газа требует технологический цикл. Перечислим основные направления:

  1. Производства, связанные с синтезом хлороводорода.
  2. Изготовление топлива для ракетных двигателей.
  3. Создание удобрений.
  4. Производство нитрида водорода (аммиака).
  5. Синтез азотной кислоты.
  6. В пищевой промышленности (для получения твердых жиров из растительных масел).
  7. Обработка металла (сварка и резка).
  8. Восстановление металлов.
  9. Синтез метилового спирта
  10. Изготовление соляной кислоты.

Несмотря на то, что производство водорода в процессе переработки нефти дешевле, чем его получение путем электролиза, как уже указывалось выше, возникают сложности с транспортировкой газа. Строить опасные химические производства, непосредственно, рядом с перерабатывающими нефть заводами не всегда позволяет экологическая обстановка. Помимо этого водород, полученный путем электролиза, значительно чище, чем при крекинге нефти. В связи с этим на промышленные водородные генераторы всегда высокий спрос.

Бытовое применение

В быту также есть применение водороду. В первую очередь это автономные отопительные системы. Но здесь некоторые особенности. Установки по производству чистого водорода стоят значительно дороже, чем генераторы газа Брауна, последние даже можно собрать самостоятельно. Но при организации отопления дома необходимо учитывать, что температура горения газа Брауна значительно выше, чем у метана, поэтому потребуется специальный котел, который несколько дороже обычного.


В интернете можно встретить немало статей, в которых написано, что для гремучего газа можно использовать обычные котлы, это делать категорически нельзя. В лучшем случае они быстро выйдут из строя, а в худшем могут стать причиной печальных или даже трагических последствий. Для смеси Брауна предусмотрены специальные конструкции с более термостойким соплом.

Необходимо заметить, что рентабельность отопительных систем на основе водородных генераторов вызывает большое сомнение ввиду низкого КПД. В таких системах имеются двойные потери, во-первых, в процессе генерации газа, во-вторых, при нагреве воды в котле. Дешевле для отопления сразу нагревать воду в электрическом бойлере.

Не менее спорная реализация для бытового использования, при которой газом Брауна обогащают бензин в топливной системе двигателя автомобиля с целью экономии.


Обозначения:

  • а – генератор ННО (принятое обозначение для газа Брауна);
  • b – отвод газа в камеру сушки;
  • с – отсек для удаления водяных паров;
  • d – возвращение конденсата в генератор;
  • е – подача осушенного газа в воздушный фильтр топливной системы;
  • f – автомобильный двигатель;
  • g – подключение к аккумулятору и электрогенератору.

Нужно заметить, что в некоторых случаях такая система даже работает (если ее собрать правильно). Но точные параметры, коэффициент прироста мощности, процент экономии вы не найдете. Эти данные сильно размыты, и достоверность их вызывает сомнения. Опять же не ясен вопрос, насколько уменьшится ресурс двигателя.

Но спрос порождает предложения, в интернетах можно найти подробные чертежи таких приспособлений и инструкцию по их подключению. Есть и готовые модели, сделанные в стране Восходящего Солнца.

Делаем простейший генератор водорода своими руками пошагово

Расскажем, как можно сделать самодельный генератор для получения смеси водорода и кислорода (ННО). Его мощности на отопления дома не хватит, но для газовой горелки для резки металла количество полученного газа будет достаточным.


Рис. 8. Схема газовой горелки

Обозначения:

  • а – сопло горелки;
  • b – трубки;
  • c – водные затворы;
  • d – вода;
  • е – электроды;
  • f – герметичный корпус.

В первую очередь делаем электролизер, для этого нам понадобится герметичная емкость и электроды. В качестве последних используем стальные пластины (их размер выбираем произвольно, в зависимости от желаемой производительности), прикрепленные к диэлектрическому основанию. Соединяем между собой все пластины каждого из электродов.

Когда электроды готовы их надо укрепить в емкости таким образом, чтобы места подключения проводов питания были выше предполагаемого уровня воды. Провода от электродов идут к блоку питания на 12 вольт или автомобильному аккумулятору.

В крышке емкости делаем отверстие под трубку для выхода газа. В качестве водных затворов можно использовать обычные стеклянные банки емкостью 1 литр. Заполняем их на 2/3 водой и подключаем к электролизеру и горелке, как показано на рисунке 8.

Горелку лучше взять готовую, поскольку не каждый материал может выдержать температуру горения газа Брауна. Подключаем ее к выходу последнего водного затвора.

Наполняем электролизер водой, в которую добавлена обычная кухонная соль.

Подаем напряжение на электроды и проверяем работу устройства.

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

Общая схема электролизера выглядит так.

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось.

Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов.

К электродам прикрепляются провода. Провода должны быть тщательно изолированы.

Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов.

Все тщательно промазывается герметиком.

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок.

Их необходимо соединить вместе и оплавить шов.

Гайки делаются из бутылочных крышек.

В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.

Под диодный мост необходимо подложить несколько слоев картона.

В крышке распаячной коробки делаются необходимые отверстия.

Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.

Многие владельцы машин ищут способы экономии топлива. Кардинально решить этот вопрос позволит водородный генератор для автомобиля. Отзывы тех, кто установил себе это устройство, позволяют говорить о существенном снижении затрат при эксплуатации транспорта. Так что тема достаточно интересная. Ниже пойдёт речь о том, как сделать водородный генератор собственными силами.

ДВС на водородном топливе

На протяжении нескольких десятилетий идут поиски возможности приспособить двигатели внутреннего сгорания для полной или гибридной работы на водородном топливе. В Великобритании ещё в 1841 году был запатентован двигатель, работающий на воздушно-водородной смеси. Концерн «Цеппелин» в начале ХХ века в качестве движущей установки своих знаменитых дирижаблей использовал двигатели внутреннего сгорания, работающие на водороде.

Развитию водородной энергетики способствовал и мировой энергетический кризис, разразившийся в 70 годах прошлого века. Однако с его окончанием водородные генераторы быстро были забыты. И это несмотря на массу преимуществ по сравнению с обычным топливом:

  • идеальная воспламеняемость топливной смеси на основе воздуха и водорода, что даёт возможность лёгкого пуска двигателя при любой температуре окружающей среды;
  • большое выделение тепла при сгорании газа;
  • абсолютная экологическая безопасность - отработавшие газы превращаются в воду;
  • выше в 4 раза скорость сгорания по сравнению с бензиновой смесью;
  • способность смеси работать без детонации при высокой степени сжатия.

Основной технической причиной, являющейся непреодолимой преградой в использовании водорода в качестве топлива автомобилей стала невозможность уместить достаточное количество газа на транспортном средстве. Размер топливного бака для водорода будет сравним с параметрами самого автомобиля. Большая взрывоопасность газа должна исключать возможность малейшей утечки. В жидком виде необходима криогенная установка. Этот способ также мало осуществим на автомобиле.

Газ Брауна

Сегодня водородные генераторы у автолюбителей приобретают популярность. Однако это не совсем то, о чем шла речь выше. Путём электролиза вода превращается в так называемый газ Брауна, который и добавляют к топливной смеси. Основная задача, которую решает этот газ, - полное сгорание топлива. Это и служит увеличением мощности и снижением расхода топлива на приличный процент. Некоторым механикам удалось добиться экономии на 40 %.

Решающее значение в количественном выходе газа имеет площадь поверхности электродов. Под действием электрического тока молекула воды начинает разлагаться на два атома водорода и один кислорода. Такая газовая смесь при сгорании выделяет почти в 4 раза больше энергии, чем при сгорании молекулярного водорода. Поэтому использование этого газа в двигателях внутреннего сгорания приводит к более эффективному сгоранию топливной смеси, уменьшает количество вредных выбросов в атмосферу, увеличивает мощность и уменьшает величину затраченного топлива.

Универсальная схема водородного генератора

Тем, у кого нет способностей к конструированию, водородный генератор для автомобиля можно купить у народных умельцев, поставивших на поток сборку и установку таких систем. Сегодня есть множество таких предложений. Стоимость агрегата и установки составляет порядка 40 тысяч рублей.

Но можно собрать такую систему и самостоятельно - сложного в ней нет ничего. Состоит она из нескольких простых элементов, соединённых в одно целое:

  1. Установки для электролиза воды.
  2. Накопительного резервуара.
  3. Улавливателя влаги из газа.
  4. Электронного блока управления (модулятора тока).

Ниже приведена схема, по которой можно легко собрать водородный генератор своими руками. Чертежи главной установки, производящей газ Брауна, достаточно просты и понятны.

Схема не представляет какой-либо инженерной сложности, повторить её может каждый, кто умеет работать с инструментом. Для автомобилей с инжекторной системой подачи топлива необходимо еще установить контроллер, регулирующий уровень подачи газа в топливную смесь и связанный с бортовым компьютером автомобиля.

Реактор

От площади электродов и их материала зависит количество получаемого объёма газа Брауна. Если в качестве электродов брать медные или железные пластины, то реактор не сможет работать продолжительное время по причине быстрого разрушения пластин.

Идеальным выглядит применение титановых листов. Однако их использование повышает затраты на сборку агрегата в несколько раз. Оптимальным считается применение пластин из высоколегированной нержавеющей стали. Металл этот доступен, его не составит труда приобрести. Также можно использовать отработавший своё бак от стиральной машины. Сложность составит только вырезание пластин нужного размера.

Типы установок

На сегодняшний день водородный генератор для автомобиля может быть укомплектован тремя различными по типу, характеру работы и производительности электролизёрами:


Первый тип конструкции вполне достаточен для множества карбюраторных двигателей. Отсутствует необходимость в установке сложной электронной схемы регулятора производительности газа, да и сама сборка такого электролизёра не представляет сложности.

Для более мощных автомобилей предпочтительна сборка второго типа реактора. А для двигателей, работающих на дизельном топливе, и большегрузных машин используют третий тип реактора.

Необходимая производительность

Для того чтобы можно было действительно экономить топливо, водородный генератор для автомобиля должен ежеминутно вырабатывать газ из расчёта 1 литр на 1000 рабочего объёма двигателя. Исходя из этих требований подбирается количество пластин для реактора.

Для увеличения поверхности электродов необходимо провести обработку поверхности наждачной бумагой в перпендикулярном направлении. Такая обработка крайне важна - она увеличит рабочую площадь и позволит избежать «прилипания» пузырьков газа к поверхности.

Последнее приводит к изоляции электрода от жидкости и препятствует нормальному электролизу. Не стоит также забывать, что для нормальной работы электролизёра вода должна быть щелочной. Катализатором может служить обычная сода.

Регулятор тока

Водородный генератор на авто в процессе работы увеличивает свою производительность. Это связано с выделением тепла при реакции электролиза. Рабочая жидкость реактора испытывает нагрев, и процесс протекает гораздо интенсивнее. Для контроля над течением реакции используют регулятор тока.

Если не понижать его, может произойти просто закипание воды, и реактор перестанет выдавать газ Брауна. Специальный контролер, регулирующий работу реактора, позволяет изменять производительность с увеличением оборотов.

Карбюраторные модели оборудуют контроллером с обычным переключателем двух режимов работы: "Трасса" и "Город".

Безопасность установки

Многие умельцы размещают пластины в пластиковых ёмкостях. Не стоит экономить на этом. Нужен бак из нержавеющего металла. Если его нет, можно использовать конструкцию с пластинами открытого типа. В последнем случае необходимо применять качественный изолятор тока и воды для надёжной работы реактора.

Известно, что температура горения водорода составляет 2800. Это самый взрывоопасный газ в природе. Газ Брауна - не что иное, как «гремучая» смесь водорода. Поэтому водородные генераторы на автомобильном транспорте требуют качественной сборки всех узлов системы и наличия датчиков для слежения за течением процесса.

Датчик температуры рабочей жидкости, давления и амперметр не будут лишними в конструкции установки. Особое внимание стоит уделить гидрозатвору на выходе из реактора. Он жизненно необходим. Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор.

Водородный генератор для отопления жилых и производственных помещений, работающий на тех же принципах, отличается в несколько раз большей производительностью реактора. В таких установках отсутствие гидрозатвора представляет смертельную опасность. Водородные генераторы на автомобилях в целях обеспечения безопасной и надёжной работы системы также рекомендуется оборудовать таким обратным клапаном.

Пока без обычного топлива не обойтись

В мире есть несколько экспериментальных моделей, которые полностью работают на газе Брауна. Однако технические решения пока ещё не достигли своего совершенства. Простым жителям планеты такие системы недоступны. Поэтому пока автолюбителям остаётся довольствоваться «кустарными» разработками, которые дают возможность сократить затраты на топливо.

Немного о доверчивости и наивности

Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.