ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Определение расчетной тепловой мощности системы отопления. Расчет тепловой мощности

Уют и комфорт жилья начинаются не с выбора мебели, отделки и внешнего вида в целом. Они начинаются с тепла, которое обеспечивает отопление. И просто приобрести для этого дорогой нагревательный котел и качественные радиаторы недостаточно – сначала необходимо спроектировать систему, которая будет поддерживать в доме оптимальную температуру. Но чтобы получить хороший результат, нужно понимать, что и как следует делать, какие существуют нюансы и как они влияют на процесс. В этой статье вы ознакомитесь с базовыми знаниями о данном деле – что такое тепловой расчет системы отопления, как он проводится и какие факторы на него влияют.

Для чего необходим тепловой расчет

Некоторые владельцы частных домов или те, кто только собираются их возводить, интересуются тем, есть ли какой-то смысл в тепловом расчете системы отопления? Ведь речь идет о простом загородном коттедже, а не о многоквартирном доме или промышленном предприятии. Достаточно, казалось бы, только купить котел, поставить радиаторы и провести к ним трубы. С одной стороны, они частично правы – для частных домовладений расчет отопительной системы не является настолько критичным вопросом, как для производственных помещений или многоквартирных жилых комплексов. С другой стороны, существует три причины, из-за которых подобное мероприятие стоит провести.

  1. Тепловой расчет существенно упрощает бюрократические процессы, связанные с газификацией частного дома.
  2. Определение мощности, требуемой для отопления жилья, позволяет выбрать нагревательный котел с оптимальными характеристиками. Вы не переплатите за избыточные характеристики изделия и не будет испытывать неудобств из-за того, что котел недостаточно мощен для вашего дома.
  3. Тепловой расчет позволяет более точно подобрать , трубы, запорную арматуру и прочее оборудование для отопительной системы частного дома. И в итоге все эти довольно дорогостоящие изделия проработают столько времени, сколько заложено в их конструкции и характеристиках.


Исходные данные для теплового расчета системы отопления

Прежде чем приступать к подсчетам и работе с данными, их необходимо получить. Здесь для тех владельцев загородных домов, которые прежде не занимались проектной деятельностью, возникает первая проблема – на какие характеристики стоит обратить свое внимание. Для вашего удобства они сведены в небольшой список, представленный ниже.

  1. Площадь постройки, высота до потолков и внутренний объем.
  2. Тип здания, наличие примыкающих к нему строений.
  3. Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
  4. Количество окон и дверей, как они обустроены, насколько качественно утеплены.
  5. Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
  6. Продолжительность отопительного сезона, средний минимум температуры в этот период.
  7. «Роза ветров», наличие неподалеку других строений.
  8. Местность, где уже построен или только еще будет возводиться дом.
  9. Предпочтительная для жильцов температура тех или иных помещений.
  10. Расположение точек для подключения к водопроводу, газу и электросети.



Расчет мощности системы отопления по площади жилья

Одним из наиболее быстрых и простых для понимания способов определения мощности отопительной системы является расчет по площади помещения. Подобный метод широко применяется продавцами нагревательных котлов и радиаторов. Расчет мощности системы отопления по площади происходит в несколько простых шагов.

Шаг 1. По плану или уже возведенному зданию определяется внутренняя площадь постройки в квадратных метрах.

Шаг 2. Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м 2 жилья.

Шаг 3. Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.

Шаг 4. Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м 2 потребуется примерно 15 000 Вт.

Совет! В некоторых случаях владельцы коттеджей разделяют внутреннюю площадь жилья на ту часть, которой требуется серьезный обогрев, и ту, для которой подобное излишне. Соответственно, для них применяются разные коэффициенты – к примеру, для жилых комнат это 100, а для технических помещений – 50-75.

Шаг 5. По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.



Следует понимать, что единственным преимуществом подобного способа теплового расчета отопительной системы является скорость и простота. При этом метод обладает множеством недостатков.

  1. Отсутствие учета климата в той местности, где возводиться жилье – для Краснодара система отопления с мощностью 100 Вт на каждый квадратный метр будет явно избыточной. А для Крайнего Севера она может оказаться недостаточной.
  2. Отсутствие учета высоты помещений, типа стен и полов, из которых они возведены – все эти характеристики серьезно влияют на уровень возможных тепловых потерь и, следовательно, на необходимую мощность отопительной системы для дома.
  3. Сам способ расчета системы отопления по мощности изначально был разработан для больших производственных помещений и многоквартирных домов. Следовательно, для отдельного коттеджа он не является корректным.
  4. Отсутствие учета количества окон и дверей, выходящих на улицу, а ведь каждый из подобных объектов является своеобразным «мостиком холода».

Так имеет ли смысл применять расчет системы отопления по площади? Да, но только в качестве предварительных прикидок, позволяющих получить хоть какое-то представление о вопросе. Для достижения лучших и более точных результатов следует обратиться к более сложным методикам.

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи. Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м 2 , комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так.

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м 3 .

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.


Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 + 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 + 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому.

Калькулятор — расчет объема системы отопления

Укажите запрашиваемые данные и нажмите
«РАССЧИТАТЬ ОБЪЕМ ТЕПЛОНОСИТЕЛЯ»

КОТЁЛ

Объем теплообменника котла, литров (паспортная величина)

РАСШИРИТЕЛЬНЫЙ БАК

Объем расширительного бака, литров

ПРИБОРЫ ИЛИ СИСТЕМЫ ТЕПЛООБМЕНА

Разборные, секционные радиаторы

Тип радиатора:

Общее количество секций

Неразборные радиаторы и конвекторы

Объем прибора по паспорту

Количество приборов

Теплый пол

Тип и диаметр трубы

Общая длина контуров

ТРУБЫ КОНТУРА ОТОПЛЕНИЯ (подача + обратка)

Стальные трубы ВГП

Ø ½ ", метров

Ø ¾ ", метров

Ø 1 ", метров

Ø 1¼ ", метров

Ø 1½ ", метров

Ø 2 ", метров

Армированные полипропиленовые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

Ø 50 мм, метров

Металлопластиковые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

ДОПОЛНИТЕЛЬНЫЕ ПРИБОРЫ И УСТРОЙСТВА СИСТЕМЫ ОТОПЛЕНИЯ (теплоаккумулятор, гидрострелка, коллектор, теплобоменник и другие)

Наличие дополнительных приборов и устройств:

Суммарный объем дополнительных элементов системы

Видео — Расчет тепловой мощности систем отопления

Тепловой расчет системы отопления – пошаговая инструкция

Перейдем от быстрых и простых способов расчета к более сложному и точному методу, учитывающему различные факторы и характеристики жилья, для которого проектируется система отопления. Используемая формула похожа по своему принципу на ту, что использовалась для расчета по площади, но дополнена огромным количеством корректирующих коэффициентов, каждый из которых отображает тот или иной фактор или характеристику здания.

Q=1,2*100*S*К 1 *К 2 *К 3 *К 4 *К 5 *К 6 *К 7

Теперь разберем составляющие этой формулы по отдельности. Q – конечный результат вычислений, необходимая мощность отопительной системы. В данном случае представлен в ваттах, при желании вы можете перевести его в КВт*ч.

А 1,2 – это коэффициент резерва по мощности. Желательно учитывать его в ходе расчетов – тогда вы точно можете быть уверены в том, что нагревательный котел обеспечит вам комфортную температуру в доме даже в самые сильные морозы за окном.


Цифру 100 вы могли видеть ранее – это количество ватт, необходимых для обогрева одного квадратного метра жилой комнаты. Если речь идет о нежилом помещении, кладовке и т. д. – его можно изменить в меньшую сторону. Также данная цифра нередко корректируется, исходя из личных предпочтений хозяина дома – кому-то комфортно в «натопленной» и очень теплой комнате, кому-то больше по душе прохлада.

S – площадь комнаты. Высчитывается на основе плана постройки или уже по готовым помещениям.

Теперь перейдем непосредственно к корректирующим коэффициентам. К 1 учитывает конструкцию окон, применяющихся в той или иной комнате. Чем больше значение – тем выше потери тепла. Для самого простого одинарного стекла К 1 равен 1,27, для двойного и тройного стеклопакетов – 1 и 0,85 соответственно.


К 2 учитывает фактор потерь тепловой энергии через стены здания. Значение зависит от того, из какого материала они сложены, и обладают ли слоем теплоизоляции.

Некоторые из примеров данного коэффициента приведены в следующем списке:

  • кладка в два кирпича со слоем теплоизоляции 150 мм – 0,85;
  • пенобетон – 1;
  • кладка в два кирпича без теплоизоляции – 1,1;
  • кладка в полтора кирпича без теплоизоляции – 1,5;
  • стена бревенчатого сруба – 1,25;
  • стена из бетона без утепления – 1,5.


К 3 показывает соотношение площади окон к площади помещения. Очевидно, что чем больше их – тем выше теплопотери, так как каждое окно является «мостиком холода», и полностью этот фактор нельзя устранить даже для самых качественных тройных стеклопакетов с прекрасным утеплением. Значения данного коэффициента приведены в таблице ниже.

Таблица. Корректирующий коэффициент соотношения площади окон к площади помещения.

Соотношение площади окон к площади пола в помещении Значение коэффициента К3
10% 0,8
20% 1,0
30% 1,2
40% 1,4
50% 1,5

По своей сути К 4 похож на региональный коэффициент, который использовался в тепловом расчете системы отопления по объему жилья. Но в данном случае он привязан не к какой-то конкретной местности, а к среднему минимуму температуры в самый холодный месяц года (обычно для этого выбирается январь). Соответственно, чем этот коэффициент выше, тем больше энергии потребуется для отопительных нужд – прогреть помещение при -10°С намного проще, чем при -25°С.

Все значения К 4 приведены ниже:

  • до -10°С – 0,7;
  • -10°С – 0,8;
  • -15°С – 0,9;
  • -20°С – 1,0;
  • -25°С – 1,1;
  • -30°С – 1,2;
  • -35°С – 1,3;
  • ниже -35°С – 1,5.


Следующий коэффициент К 5 учитывает число стен в помещении, выходящих наружу. Если она одна – его значение равно 1, для двух – 1,2, для трех – 1,22, для четырех – 1,33.

Важно! В ситуации, когда тепловой расчет применяется для всего дома сразу, используется К 5 , равный 1,33. Но значение коэффициента может уменьшиться в том случае, когда к коттеджу пристроен отапливаемый сарай или гараж.

Перейдем к двум последним корректирующим коэффициентам. К 6 учитывает то, что находится над помещением – жилой и отапливаемый этаж (0,82), утепленный чердак (0,91) или холодный чердак (1).

К 7 корректирует результаты расчета в зависимости от высоты комнаты:

  • для помещения высотой 2,5 м – 1;
  • 3 м – 1,05;
  • 5 м – 1,1;
  • 0 м – 1,15;
  • 5 м – 1,2.

Совет! При расчетах также стоит обратить внимание на розу ветров в той местности, где будет располагаться дом. Если он будет постоянно находиться под воздействием северного ветра, то потребуется более мощная система отопления.

Результатом применения формулы, изложенной выше, станет требуемая мощность отопительного котла для частного дома. А теперь приведем пример расчета по данному способу. Исходные условия следующие.

  1. Площадь помещения – 30 м 2 . Высота – 3 м.
  2. В качестве окон используются двойные стеклопакеты, их площадь относительно таковой у комнаты – 20%.
  3. Тип стены – кладка в два кирпича без слоя теплоизоляции.
  4. Средний минимум января для местности, где стоит дом, составляет -25°С.
  5. Помещение является угловым в коттедже, следовательно, наружу выходят две стены.
  6. Над комнатой – утепленный чердак.

Формула для теплового расчета мощности отопительной системы будет выглядеть следующим образом:

Q=1,2*100*30*1*1,1*1*1,1*1,2*0,91*1,02=4852 Вт


Двухтрубная схема нижней разводки системы отопления

Важно! Существенно ускорить и упростить процесс расчета системы отопления поможет специальное программное обеспечение.


После завершения расчетов, изложенных выше, необходимо определить, сколько радиаторов и с каким числом секций понадобится для каждого отдельного помещения. Для подсчета их количества есть простой способ.

Шаг 1. Определяется материал, из которого будут изготовлены батареи отопления в доме. Это может быть сталь, чугун, алюминий или биметаллический композит.

Шаг 3. Подбираются модели радиаторов, подходящих владельцу частного дома по стоимости, материалу и некоторым другим характеристикам.

Шаг 4. На основании технической документации, ознакомиться с которой можно на сайте компании-производителя или продавца радиаторов, определяется, какую мощность выдает каждая отдельная секция батареи.

Шаг 5. Последний шаг – разделить мощность, требуемую на обогрев помещения, на мощность, вырабатываемую отдельной секцией радиатора.


На этом ознакомление с базовыми знаниями о тепловом расчете системы отопления и способах его осуществления можно считать законченным. Для получения большего объема информации желательно обратиться к специализированной литературе. Также будет не лишним ознакомиться с нормативными документами, такими как СНиП 41-01-2003.














Начало выполнения подготовки проекта отопления, как жилых загородных домов, так и производственных комплексов, следует с теплотехнического расчёта.

Что представляет собой теплотехнический расчёт?

Расчёт тепловых потерь является основополагающим документом, призванным решать такую задачу, как организация теплоснабжения сооружения. Он определяет суточное и годовое потребление тепла, минимальную потребность жилого либо промышленного объекта в тепловой энергии и тепловые потери для каждого помещения.
Решая такую задачу, как теплотехнический расчёт, следует учитывать комплекс характеристик объекта:

  1. Тип объекта (частный дом, одноэтажное либо многоэтажное здание, административное, производственное или складское).
  2. Количество проживающих в здании либо работающих в одну смену человек, количество точек подачи горячей воды.
  3. Архитектурная часть (габариты крыши, стен, полов, размеры дверных и оконных проёмов).
  4. Специальные данные, например, количество рабочих дней в году (для производств), продолжительность отопительного сезона (для объектов любого типа).
  5. Температурные режимы в каждом из помещений объекта (их определяет CHиП 2.04.05-91).
  6. Функциональное назначение (складское производственное, жилое, административное или бытовое).
  7. Конструкции крыши, наружных стен, полов (тип утепляющих прослоек и применяемых материалов, толщина перекрытий).

Зачем нужен теплотехнический расчёт?

  • Чтобы определить мощность котла.
    Предположим, Вы приняли решение снабдить загородный дом либо предприятие системой автономного отопления. Чтобы определиться с выбором оборудования, в первую очередь потребуется рассчитать мощность отопительной установки, которая понадобится для бесперебойной работы горячего водоснабжения, кондиционирования, систем вентиляции, а также эффективного обогрева здания. Определяется мощность автономной отопительной системы, как общая сумма тепловых затрат на обогрев всех помещений, а также тепловых затрат на прочие технологические нужды. Отопительная система должна обладать определённым запасом мощности, чтобы работа при пиковых нагрузках не сократила срок её службы.
  • Для выполнения согласования на газификацию объекта и получения ТУ.
    Получить разрешение на газификацию объекта необходимо в том случае, если используется природный газ в качестве топлива для котла. Для получения ТУ потребуется предоставить значения годового расхода топлива (природного газа), а также суммарные значения мощности тепловых источников (Гкал/час). Эти показатели определяются в результате проведения теплового расчёта. Согласование проекта на осуществление газификации объекта - это более дорогостоящий и продолжительный метод организации автономного отопления, по отношению к монтажу отопительных систем, функционирующих на отработанных маслах, установка которых не требует согласований и разрешений.
  • Для выбора подходящего оборудования.
    Данные теплового расчёта являются определяющим фактором при выборе приборов для отопления объектов. Следует учитывать множество параметров - ориентацию по сторонам света, габариты дверных и оконных проёмов, размеры помещений и их расположение в здании .

Как происходит теплотехнический расчёт

Можно воспользоваться упрощённой формулой , чтобы определить минимально допустимую мощность тепловых систем:

Q т (кBт/час) =V * ΔT * K /860 , где

Q т - это тепловая нагрузка на определённое помещение;
K - коэффициент теплопотерь здания;
V - объём (в м 3) отапливаемого помещения (ширина комнаты на длину и высоту);
ΔT - разница (обозначена С) между необходимой температурой воздуха внутри и температурой снаружи.

Такой показатель, как коэффициент потерь тепла (К), зависит от изоляции и типа конструкции помещения. Можно использовать упрощённые значения, рассчитанные для объектов разных типов:

  • K = от 0,6-ти до 0,9-ти (повышенная степень теплоизоляции). Небольшое количество окон, снабжённых сдвоенными рамами, стены из кирпича с двойной теплоизоляцией, крыша из высококачественного материала, массивное основание пола;
  • К = от 1-го до 1,9-ти (теплоизоляция средней степени). Двойная кирпичная кладка, крыша с обычной кровлей, небольшое количество окон;
  • K = от 2-х до 2,9 (низкая теплоизоляция). Конструкция сооружения упрощённая, кирпичная кладка одинарная.
  • K = 3-х - 4-х (отсутствие теплоизоляции). Сооружение из металлического или гофрированного листа либо упрощённая деревянная конструкция.

Определяя разницу между требуемой температурой внутри обогреваемого объёма и температурой снаружи (ΔT), следует исходить из степени комфорта, которую Вы желаете получить от тепловой установки, а также из климатических особенностей того региона, в котором находится объект. В качестве параметра по умолчанию принимаются значения, определённые CHиП 2.04.05-91:

Город Город Расчётная наружная температура, °C
Днепропетровск - 25 Каунас - 22
Екатеринбург - 35 Львов - 19
Запорожье - 22 Москва - 28
Калининград - 18 Минск - 25
Краснодар - 19 Новороссийск - 13
Казань - 32 Нижний Новгород - 30
Киев - 22 Одесса - 18
Ростов - 22 Санкт-Петербург - 26
Самара - 30 Севастополь - 11
Харьков - 23 Ялта - 6

Расчёт по упрощённой формуле не позволяет учитывать различия тепловых потерь здания в зависимости от типа ограждающих конструкций, утепления и размещения помещений. Так, например, больше тепла потребуют комнаты с большими окнами, высокими потолками и угловые помещения. В то же время минимальными тепловыми потерями отличаются помещения, которые не имеют внешних ограждений. Желательно использовать следующую формулу при расчёте такого параметра, как минимальная тепловая мощность :

Qт (kВт/час)=(100 Вт/м 2 * S (м 2) * K1 * K2 * K3 * K4 * K5 * K6 * K7)/1000 , где

S - площадь комнаты, м 2 ;
Bт/м 2 - удельная величина потерь тепла (65-80 ватт/м 2). В этот показатель входят утечки тепла через вентиляцию, поглощения стенами, окнами и прочие виды утечек;
К1 - коэффициент утечки тепла через окна:

К2 - коэффициент потерь тепла стен:

  • высокая теплоизоляция (показатель К2 = 0,854);
  • утеплитель толщиной 150 мм либо стены в два кирпича (показатель К2=1,0);
  • низкая теплоизоляция (показатель К2=1,27);

К3 - показатель, определяющий соотношение площадей (S) окон и пола:

  • 50% КЗ=1,2;
  • 40% КЗ=1,1;
  • 30% КЗ=1,0;
  • 20% КЗ=0,9;
  • 10% КЗ=0,8;

К4 - коэффициент температуры вне помещения:

  • -35°C K4=1,5;
  • -25°C K4=1,3;
  • -20°C K4=1,1;
  • -15°C K4=0,9;
  • -10°C K4=0,7;

К5 - количество выходящих наружу стен:

  • четыре стены К5=1,4;
  • три стены К5=1,3;
  • две стены К5=1,2;
  • одна стена К5=1,1;

К6 - тип теплоизоляции помещения, которое располагается над отапливаемым:

  • обогреваемое К6-0,8;
  • теплая мансарда К6=0,9;
  • не отапливаемый чердак К6=1,0;

К7 -высота потолков:

  • 4,5 метра К7=1,2;
  • 4,0 метра K7=1,15;
  • 3,5 метра К7=1,1;
  • 3,0 метра К7=1,05;
  • 2,5 метра K7=1,0.

Приведём в качестве примера расчёт минимальной мощности отопительной автономной установки (по двум формулам) для отдельно стоящего сервисного помещения СТО (высота потолка 4м, площадь 250 м 2 , объём 1000 м3, окна большие с обычным остеклением, теплоизоляция потолка и стен отсутствует, конструкция - упрощённая).

По упрощённому расчёту:

Q т (кВт/час) = V * ΔT * K/860=1000 *30*4/860=139,53 кВт, где

V - объем воздуха в отапливаемом помещении (250 *4), м 3 ;
ΔT - разница показателей между температурой воздуха извне комнаты и требуемой температурой воздуха внутри помещения (30°С);
К - коэффициент теплопотерь строения (для зданий без теплоизоляции К = 4,0);
860 - перевод в кВт/час.

Более точный расчёт:

Q т (кВт/час) = (100 Вт/м 2 * S (м 2) * K1 * K2 * K3 * K4 * K5 * K6 * K7)/1000 = 100*250*1,27*1,27*1,1*1,5*1,4*1*1,15/1000=107,12 кВт/час, где

S - площадь помещения, для которого выполняется расчёт (250 м 2);
K1 - параметр утечки тепла через окна (стандартное остекление, показатель К1 равен 1,27);
К2 - значение утечки тепла через стены (плохая теплоизоляция, показатель К2 соответствует 1,27);
К3 - параметр соотношения габаритов окон к площади пола (40%, показатель К3 равен 1,1);
K4 - значение температуры снаружи (-35 °C, показатель K4 соответствует 1,5);
K5 - количество стен, которые выходят наружу (в данном случае четыре К5 равен 1,4);
К6 - показатель, определяющий тип помещения, расположенного непосредственно над отапливаемым (чердак без утепления К6=1,0);
K7 - показатель, определяющий высоту потолков (4,0 м, параметр К7 соответствует 1,15).

Как можно видеть из произведённого расчёта, вторая формула предпочтительнее для расчёта мощности отопительных установок, поскольку она учитывает гораздо большее количество параметров (особенно если необходимо определить параметры маломощного оборудования , предназначенного для эксплуатации в небольших помещениях). К полученному результату надо приплюсовать небольшой запас по мощности для увеличения срока эксплуатации теплового оборудования.
Выполнив несложные расчёты, Вы сможете без помощи специалистов определить необходимую мощность автономной отопительной системы для оснащения объектов жилого или промышленного назначения.


Москва и другие регионы России могут выяснить стоимость доставки, обратившись в любой ближайший терминал транспортной компании, работающей с Санкт-Петербургом. Мы, со своей стороны, обеспечим оперативную доставку груза до любого выбранного Вами перевозчика.

Для оптовых заказов существует система скидок. Постоянные клиенты для нас всегда являются приоритетными, но и для новых мы всегда открыты к диалогу и взаимовыгодному сотрудничеству. Наш каталог продукции включает в себя наиболее полный перечень предлагаемых товаров, а для объективности Вашего выбора на всех страницах сайта размещены только оригинальные фотографии. Выбрать и купить интересующую продукцию по максимально выгодным ценам поможет прайс-лист , отражающий расценки в режиме реального времени. Любые Ваши отзывы, жалобы и предложения не останутся без внимания, мы их ждём на наш эл. адрес:

где - расчетные тепловые потери здания, кВт;

- коэффициент учета дополнительного теплового потока устанавливаемых отопительных приборов за счет округления сверх расчетной величины, принимаемый по табл. 1.

Таблица 1

Типоразмерный шаг, кВт

при номинальном тепловом потоке, кВт, минимального типоразмера

- коэффициент учета дополнительных потерь теплоты отопительными приборами, расположенными у наружных ограждений при отсутствии теплозащитных экранов, принимаемый по табл. 2.

Таблица 2

Отопительный прибор

Коэффициент при установке прибора

у наружной стены в зданиях

у остекления светового проема

жилых и общественных

производственных

Радиатор чугунный

Конвектор с кожухом

Конвектор без кожуха

- потери теплоты, кВт, трубопроводами, проходящими в неотапливаемых помещениях;

- тепловой поток, кВт, регулярно поступающий от освещения, оборудования и люден, который следует учитывать в целом на систему отопления здания. Для жатых домов величину следует учитывать из расчета 0.01 кВт на 1 м" обшей площади.

При расчетах тепловой мощности систем отопления производственных зданий следует дополнительно учитывать расход теплоты на нагревание материалов, оборудования и транспортных средств.

2. Расчетные тепловые потери , кВт, должны рассчитываться по формуле:


(2)

где: - тепловой поток, кВт, через ограждающие конструкции;

- потери теплоты, кВт, на нагревание вентиляционного воздуха.

Величины и рассчитываются для каждого отапливаемого помещения.

3. Тепловой поток , кВт, рассчитывается для каждого элемента ограждающей конструкции по формуле:


(3)

где А - расчетная площадь ограждающей конструкции, м 2 ;

R - сопротивление теплопередаче ограждающей конструкции. м 2 °С/Вт, которое должно определяться по СНиП II-3-79** (кроме полов на грунте) с учетом установленных нормативов минимального термического сопротивления ограждений. Для полов на грунте и стен, расположенных ниже уровня земли, сопротивление теплопередаче следует определять по зонам шириной 2 м. параллельным наружным стенам, по формуле:


(4)

где - сопротивление теплопередаче, м 2 °С/Вт, принимаемое равным 2,1 для I зоны, 4,3 - для второй, 8,6 - для третьей зоны и 14,2 для оставшейся площади пола;

- толщина утепляющего слоя, м, учитываемая при коэффициенте теплопроводности утеплителя <1,2Вт/м 2 °С;

- расчетная температура внутреннего воздуха, °С, принимаемая согласно требованиям норм проектирования зданий различного назначения с учетом повышения ее в зависимости от высоты помещения;

- расчетная температура наружного воздуха, °С, принимаемая по данным приложения 8, или температура воздуха смежного помещения, если его температура более чем на 3 °С отличается от температуры помещения, для которого рассчитываются теплопотери;

- коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху и определяемый по СНнП П-3-79**

- добавочные потери теплоты в долях от основных потерь, учитываемые:

а) для наружных вертикальных и наклонных ограждений, ориентированных на направления, откуда в январе дует ветер со скоростью, превышающей 4,5 м/с с повторяемостью не менее 15% согласно СНиП 2.01.01-82, в размере 0,05 при скорости ветра до 5 м/с и в размере 0,10 при скорости 5 м/с и более; при типовом проектировании добавочные потерн следует учитывать в размере 0,05 для всех помещений;

б) для наружных вертикальных и наклонных ограждений многоэтажных зданий в размере 0,20 для первого и второго этажей; 0,15 -для третьего; 0,10 -для четвертого этажа здании с числом этажей 16 и более; для 10-15 - этажных здании добавочные потери следует учитывать в размере 0,10 для первого и второго этажей и 0,05 -для третьего этажа.

4. Потери теплоты , кВт, рассчитываются для каждого отапливаемого помещения, имеющего одно или большее количество окон или балконных дверей в наружных стенах, исходя из необходимости обеспечения подогрева отопительными приборами наружного воздуха в объеме однократного воздухообмена в час по формуле:

где - площадь пола помещения, м 2 ;

- высота помещения от пола до потолка, м, но не более 3,5.

Помещения, из которых организована вытяжная вентиляция с объемом вытяжки, превышающим однократный воздухообмен в час должны, как правило, проектироваться с приточной вентиляцией подогретым воздухом. При обосновании допускается обеспечивать подогрев наружного воздуха отопительными приборами в отдельных помещениях при объеме вентиляционного воздуха, не превышающем двух обменов в час.

В помещениях, для которых нормами проектирования зданий установлен объем вытяжки менее однократного воздухообмена в час, величину следует рассчитывать как расход теплоты на нагревание воздуха в объеме нормируемого воздухообмена от температуры до температуры °С.

Потери теплоты кВт, на нагревание наружного воздуха, проникающего во входные вестибюли (холлы) и лестничные клетки через открывающиеся в холодное время года наружные двери при отсутствии воздушно-тепловых завес следует рассчитывать по формуле:

где

- высота здания, м:

Р - количество людей, находящихся в здании;

В – коэффициент, учитывающий количество входных тамбуров. При одном тамбуре (две двери) в - 1,0; при двух тамбурах (три двери) в = 0,6.

Расчет теплоты на нагревание наружного воздуха, проникающего через двери отапливаемых незадымляемых лестничных клеток с поэтажными выходами на лоджии следует вести по формуле (6) при

, принимая для каждого этажа значение

, разное расстоянию, м. от середины двери рассчитываемого этажа до перекрытия лестничной клетки.

При расчете теплопотерь входных вестибюлей, лестничных клеток и цехов с воздушно-тепловыми завесами: помещений, оборудованных действующей постоянно в течение рабочего времени приточной вентиляцией с подпором воздуха, а также при расчете потерь теплоты через летние и запасные наружные двери и ворота величину учитывать не следует.

Потери теплоты , кВт, на нагревание воздуха, врывающегося через наружные ворота, не оборудованные воздушно-тепловыми завесами, следует рассчитывать с учетом скорости ветра, принимаемой по обязательному приложению 8, и времени открытия ворот.

Расчет потери теплеть: на нагревание инфильтрующегося через неплотности ограждающих конструкций воздуха выполнять не требуется.

5. Потери теплоты , кВт, трубопроводами, проходящими в неотапливаемых помещениях, следует определять по формуле:


(7)

где: - длины участков тепле изолированных трубопроводов различных диаметров, прокладываемых в неотапливаемых помещениях;

- нормированная линейная плотность теплового потока теплоизолированного трубопровода, принимаемая по п. 3.23. При этом толщина теплоизоляционного слоя , м трубопроводов должна. рассчитывается по формулам:


(8)

где - наружный размер трубопровода, м;

- теплопроводность теплоизоляционного слоя, Вт/(м °С);


- средняя за отопительный сезон разность температур теплоносителя и окружающего воздуха.

6. Величину расчетного годового теплопотребления системой отопления здания

, ГДж. следует рассчитывать по формуле:

где - количество градусо-суток отопительного периода, принимаемое по приложению 8;

а - коэффициент, равный 0,8. который необходимо учитывать, если система отопления оборудована приборами автоматического уменьшения тепловой мощности в нерабочее время;

- коэффициент, разный 0,9, который необходимо учитывать, если более 75% отопительных приборов оборудованы автоматическими терморегуляторами;

с - коэффициент, разный 0,95, который необходимо учитывать, если на абонентском вводе системы отопления установлены приборы автоматического пофасадного регулирования.

7. Определенные расчетом величины тепловой мощности и максимального годового теплопотребления

, отнесенные к 1 м 2 общей (для жилых домов) или полезной (для общественных здании) площади, не должны превышать нормативных контрольных значений, приведенных в обязательном приложении 25.

8. Расход теплоносителя ,.кг/ч. а системе отопления следует определять по формуле:


(11)

где с - удельная теплоемкость воды, принимаемая равной 4,2 кДж/(кг 0 С);


- разность температур. °С, теплоносителя на входе в систему и на выходе из нее;

- тепловая мощность системы, кВт. определенная по формуле (1) с учетом бытовых тепловыделений .

9. Расчетную тепловую мощность

, кВт, каждого отопительного прибора следует определять по формуле:

где

следует рассчитывать в соответствии с пп. 2-4 настоящего приложения;



- потери теплоты, кВт, через внутренние стены, отделяющие помещение, для которого рассчитывается тепловая мощность отопительного прибора, от смежного помещения, в котором возможно эксплуатационное понижение температуры при регулировании. Величину

следует учитывать только при расчете тепловой мощности отопительных приборов, на подводках к которым проектируются автоматические терморегулятора. При этом для каждого помещения следует рассчитывать теплопотери

только через одну внутреннюю стену при разности температур между внутренними помещениями 8 0 С;


- тепловой поток. кВт, от неизолированных трубопроводов отопления, прокладываемых в помещении;


- тепловой поток, кВт, регулярно поступающий в помещение от электрических приборов, освещения, технологического оборудования, коммуникаций, материалов и других источников. При расчете тепловой мощности отопительных приборов жилых, общественных и административно-бытовых зданий величину

учитывать не следует.

Величина бытовых тепловыделении учитывается для всего здания в целом при расчетах тепловой мощности системы отопления и общего расхода теплоносителя.

2.3. УДЕЛЬНАЯ ТЕПЛОВАЯ ХАРАКТЕРИСТИКА

Общие теплопотери здания Q зд принято относить к 1 м 3 его наружного объема и 1°С расчетной разности температуры. Получаемый показательq 0 , Вт/(м 3 К), называют удельной тепловой характеристикой здания:


(2.11)

где V н - объем отапливаемой части здания по внешнему обмеру, м 3 ;

(t в -t н.5) - расчетная разность температур для основных помещений здания.

Удельную тепловую характеристику, вычисляемую после расчета теплопотерь, используют для теплотехнической оценки конструктивно-планировочных решений здания, сравнивая ее со средними показателями для аналогичных зданий. Для жилых и общественных зданий оценку производят по расходу теплоты, отнесенному I м 2 общей площади.

Величина удельной тепловой характеристики определяется прежде всего размерами световых проемов по отношению к общей площади наружных ограждений, так как коэффициент теплоотдачи заполнения световых проемов значительно выше коэффициента теплопередачи других ограждений. Кроме того, она зависит от объема и формы зданий. Здания малого объема обладают повышенной характеристикой, как и здания узкие, сложной конфигурации с увеличенным периметром.

Уменьшенные теплопотери и, следовательно, тепловую характеристику имеют здания, форма которых близка к кубу. Еще меньше теплопотери шарообразных сооружений того же объема в связи с сокращением площади внешней поверхности.

Удельная тепловая характеристика зависит также от района строительства здания вследствие изменения теплозащитных свойств ограждения. В северных районах при относительном уменьшении коэффициента теплопередачи ограждений этот показатель ниже, чем в южных.

Значения удельных тепловых характеристик приводятся в справочной литературе.

Применяя ее, определяют потери теплоты зданием по укрупненным показателям:

где β t - поправочный коэффициент, учитывающий изменение удельной тепловой характеристики при отклонении фактической расчетной разности температур от 48°:


(2.13)

Подобные расчеты теплопотерь позволяют установить ориентировочную потребность в тепловой энергии при перспективном планировании тепловых сетей и станций.

3.1 КЛАССИФИКАЦИЯ СИСТЕМ ОТОПЛЕНИЯ

Отопительные установки проектируют и монтируют в процессе возведения здания, увязывая их элементы со строительными конструкциями и планировкой помещений. Поэтому отопление считают отраслью строительной техники. Затем отопительные установки действуют в течение всего срока службы сооружения, являясь одним из видов инженерного оборудования зданий. К отопительным установкам предъявляют следующие требования:

1 - санитарно-гигиенические: поддерживание равномерной температуры помещений; ограничение температуры поверхности нагревательных приборов, возможность их очистки.

2 - экономические: невысокие капитальные вложения и эксплуатационные затраты, а также небольшой расход металла.

3 - архитектурно-строительные: соответствие планировке помещений, компактность, увязка со строительными конструкциями, согласование со сроками строительства зданий.

4 - производственно-монтажные: механизация изготовления деталей и узлов, минимальное число элементов, сокращение трудовых затрат и повышение производительности при монтаже.

5 - эксплуатационные: безотказность и долговечность, простота и удобство управления и ремонта, бесшумность и безопасность действия.

Каждое из указанных требований следует учитывать при выборе отопительной установки. Однако основными считаются санитарно-гигиенические и эксплуатационные требования. Установка должна обладать способностью передавать в помещение изменяющиеся в соответствии с теплопотерями количество теплоты.

Система отопления - совокупность конструктивных элементов, предназначенных для получения, переноса и передачи необходимого количества тепловой энергии во все обогреваемые помещения.

Система отопления состоит из следующих основных конструктивных элементов (рис. 3.1).


Рис. 3.1. Принципиальная схема системы отопления

1- теплообменник; 2 и 4 –подающий и обратный теплопроводы; 3- отопительный прибор.

теплообменника 1 для получения тепловой энергии при сжигании топлива или от другого источника; отопительных приборов 3 для теплопередачи в помещение; теплопроводов 2 и 4 - сети труб или каналов для теплопереноса от теплообменника к отопительным приборам. Теплоперенос осуществляется теплоносителем - жидким (вода) или газообразным (пар, воздух, газ).

1.В зависимости от вида системы делятся на:

Водяные;

Паровые;

Воздушные или газовые;

Электрические.

2. В зависимости от расположения источника теплоты и обогреваемого помещения:

Местные;

Центральные;

Централизованные.

3. По способу циркуляции:

С естественной циркуляцией;

С механической циркуляцией.

4. Водяные по параметрам теплоносителя:

Низкотемпературные TI ≤ 105°С;

Высокотемпературные Tl>l05 0 C.

5. Водяные и паровые по направлению движения теплоносителя в магистралях:

Тупиковые;

С попутным движением.

6. Водяные и паровые по схеме соединения нагревательных приборов с трубами:

Однотрубные;

Двухтрубные.

7. Водяные по месту прокладки подающих и обратных магистралей:

С верхней разводкой;

С нижней разводкой;

С опрокинутой циркуляцией.

8. Паровые по давлению пара:

Вакуум-паровые Р а <0.1 МПа;

Низкого давления P a =0.1 - 0.47 МПа;

Высокого давления P a > 0.47 МПа.

3.2. ТЕПЛОНОСИТЕЛИ

Теплоносителем для системы отопления может быть любая среда, обладающая хорошей способностью аккумулировать тепловую энергию и изменять теплотехнические свойства, подвижная, дешевая, не ухудшающая санитарные условия в помещении, позволяющая регулировать отпуск теплоты, в том числе автоматически. Кроме того, теплоноситель должен способствовать выполнению требований, предъявляемых к системам отопления.

Наиболее широко в системах отопления используют воду, водяной пар и воздух, поскольку эти теплоносители в наибольшей степени отвечают перечисленным требованиям. Рассмотрим основные физические свойства каждого из теплоносителей, которые оказывают влияние на конструкцию и действие системы отопления.

Свойства воды : высокая теплоемкость, высокая плотность, несжимаемость, расширение при нагревании с уменьшением плотности, повышение температуры кипения при повышении давления, выделение абсорбируемых газов при повышении температуры и понижении давления.

Свойства пара : малая плотность, высокая подвижность, высокая энтальпия за счет скрытой теплоты фазового превращения (табл. 3.1), повышение температуры и плотности с возрастанием давления.

Свойства воздуха : низкая теплоемкость и плотность, высокая подвижность, уменьшение плотности при нагревании.

Краткая характеристика параметров теплоносителей для системы отопления приведена в табл. 3.1.

Таблица 3.1. Параметры основных теплоносителей.

*Скрытая теплота фазового превращения.

4.1. ОСНОВНЫЕ ВИДЫ, ХАРАКТЕРИСТИКИ И ОБЛАСТЬ ПРИМЕНЕНИЯ СИСТЕМ ОТОПЛЕНИЯ

Водяное отопление благодаря ряду преимуществ перед другими системами получило в настоящее время наиболее широкое распространение. Для уяснения устройства и принципа действия системы водяного отопления рассмотрим схему системы, представленную на рис. 4.1.


Рис.4.1.Схема двухтрубной системы водяного отопления с верхней разводкой и естественной циркуляцией.

Вода, нагретая в теплогенераторе К до температуры Т1 , поступает в теплопровод - главный стояк I в подающие магистральные теплопроводы 2. По подающим магистральным теплопроводам горячая вода поступает в подающие стояки 9. Затем по подающим подводкам 13 горячая вода поступает в отопительные приборы 10 , через стенки которых теплота передается воздуху помещения. Из отопительных приборов охлажденная вода с температурой Т2 по обратным подводкам 14, обратным стоякам II и обратным магистральным теплопроводам 15 возвращается в теплогенератор К, где она снова подогревается до тем­пературы Т1 и далее циркуляция происходит по замкнутому кольцу.

Система водяного отопления гидравлически замкнута и имеет определенную вместимость отопительных приборов, теплопроводов, арматуры, т.е. постоянный объем заполняющей ее воды. При повышении температуры воды она расширяется и в замкнутой, заполненной водой системе отопления внутреннее гидравлическое давление может превысить механическую прочность ее элементов. Чтобы этого не произошло, в системе водяного отопления имеется расширительный бак 4 , предназначенный для вмещения прироста объема воды при ее нагревании, а также для удаления через него воздуха в атмосферу, как при заполнении системы водой, так и в период ее эксплуатации. Для регулирования теплоотдачи отопительных приборов на подводках к ним устанавливают регулировочные краны 12.

Перед пуском в действие каждая система заполняется водой из водопровода 17 через обратную линию до сигнальной трубы 3 в расширительный бак 4 . Когда уровень воды в системе повысится до уровня переливной трубы и вода будет вытекать в раковину, находящуюся в котельной, кран на сигнальной трубе закрывают и прекращают заполнение системы водой.

При недостаточном прогреве приборов вследствие засорения трубопроводов или арматуры, а также в случае появления утечки, вода из отдельных стояков может быть спущена без опорожнения и прекращения работы других участков системы. Для этого закрывают вентили или краны 7 на стояках. Из тройника 8 , установленного в нижней части стояка, вывертывают пробку, и к штуцеру стояка присоединяют гибкий шланг, по которому вода из теплопроводов и приборов стекает в канализацию. Чтобы вода быстрее стекала и стекла полностью, из верхнего тройника 8 вывертывают пробку. Представленные на рис. 4.1-4.3 системы отопления называются системами с естественной циркуляцией. В них движение воды осуществляется под действием разности плотностей охлажденной воды после отопительных приборов, и горячей воды, поступающей в систему отопления.

Вертикальные двухтрубные системы с верхней разводкой применяют в основном при естественной циркуляции воды в системах отопления зданий до 3-х этажей включительно. Эти системы по сравнению с системами при нижней разводке подающей магистрали (рис.4.2) имеют большее естественное циркуляционное давление, в их проще воздухоудаление из системы (через расширительный бак).


Рис. 7.14. Схема двухтрубной системы водяного отопления с нижней разводкой и естественной циркуляцией

К-котел; 1-главный стояк; 2, 3, 5-соединительная, переливная, сигнальная трубы расширительного бака; 4 - расширительный бак; 6-воздушная линия; 7 - воздухосборник; 8 - подающие подводки; 9 - регулировочные краны у отопительных приборов; 10-отопительные приборы; 11-обратные подводки; 12-обратные стояки (охлажденной воды); 13-подающие стояка (горячей воды); 14-тройник с пробкой для спуска воды; 15- краны или вентили на стояках; 16, 17-подающий и обратный магистральные теплопроводы; 18-запорные вентили или задвижки на магистральных теплопроводах для регулирования и отключения отдельных веток; 19 - воздушные краны.


Рис.4.3.Схема однотрубной системы водяного отопления с верхней разводкой и естественной циркуляцией

Двухтрубная система с нижним расположением обеих магистралей и естественной циркуляцией (рис.4.3) перед системой с верхней разводкой имеет преимущество: монтаж и пуск систем может производиться поэтажно по мере возведения здания: удобнее эксплуатация системы, т.к. вентили и краны на подающем и обратном стояках находятся внизу и в одном месте. Двухтрубные вертикальные системы с нижней разводкой применяют в малоэтажных зданиях с кранами двойной регулировки у отопительных приборов, что объясняется большой гидравлической и тепловой устойчивостью в сравнении с системами с верхней разводкой.

Удаление воздуха из этих систем осуществляется воздушными кранами 19 (рис.4.3).

Основное преимущество двухтрубных систем независимо от способа циркуляции теплоносителя - поступление воды с наивысшей температурой TI к каждому отопительному прибору, что обеспечивает максимальную разность температур TI-T2 и, следовательно, минимальную площадь поверхности приборов. Однако в двухтрубной системе, особенно с верхней разводкой, имеет место значительный расход труб и усложняется монтаж.

По сравнению с двухтрубными системами отопления вертикальные однотрубные системы с замыкающими участками (рис. 4.3, левая часть) имеют ряд преимуществ: меньшая первоначальная стоимость, более простой монтаж и меньшая длина теплопроводов, более красивый внешний вид. Если приборы, находящиеся в одном помещении, присоединены по проточной схеме к стояку с двух сторон, то у одного из них (правый стояк на рис. 4.3) устанавливают регулировочный кран. Такие системы применяют в малоэтажных производственных зданиях.

На рис. 4.5 показана схема однотрубных горизонтальных систем отопления. Горячая вода в таких системах поступает в отопительные приборы одного и того же этажа из теплопровода, проложенного горизонтально. Регулировка и включение отдельных приборов в горизонтальных системах с замыкающими участками (рис. 4.5 б) достигается также легко, как и вертикальных системах. В горизонтальных проточных системах (рис. 4.5 а, в) регулировка может быть только поэтажной, что является существенным их недостатком.

Рис. 4.5. Схема однотрубных горизонтальных систем водяного отопления

а, в- проточная; б- с замыкающими участками.


Рис. 4.6 Системы водяного отопления с искусственной циркуляцией

1 - расширительный бак; 2 - воздушная сеть; 3- насос циркуляционный; 4- теплообменник

К основным достоинствам однотрубных горизонтальных систем относятся меньший, чем в вертикальных системах, расход труб, возможность поэтажного включения системы и стандартность узлов. Кроме того, горизонтальные системы не требуют пробивки отверстий в перекрытиях, и монтаж их в сравнении с вертикальными системами гораздо проще. Они довольно широко применяются в производственных и общественных помещениях.

Общими преимуществами систем с естественной циркуляцией воды, предопределяющими в некоторых случаях их выбор, являются относительная простота устройства и эксплуатации; отсутствие насоса и потребности в электроприводе, бесшумность действия; сравнительная долговечность при правильной эксплуатации (до 30-40 лет) и обеспечение равномерной температуры воздуха в помещении в течение отопительного периода. Однако в системах водяного отопления с естественной циркуляцией естественное давление имеет очень большую величину. Поэтому при большой протяженности циркуляционных колец (>30м), а, следовательно, при значительных сопротивлениях движению воды в них, диаметры трубопроводов по расчету получаются очень большими и система отопления называется экономически невыгодной как по первоначальным затратам, так и в процессе эксплуатации.

В связи с изложенным область применения систем с естественной циркуляцией ограничена обособленными гражданскими зданиями, где недопустимы шум и вибрация, квартирным отоплением, верхними (техническими) этажами высоких зданий.

Системы отопления с искусственной циркуляцией (рис. 4.6-4.8) принципиально отличаются от систем водяного отопления с естественной циркуляцией тем, что в них в дополнение к естественному давлению, возникающему в результате охлаждения воды в приборах и трубах, значительно большее давление создается циркуляционным насосом, который устанавливается на обратном магистральном трубопроводе у котла, а расширительный бак присоединен не к подающему, а к обратному теплопроводу около всасывающего патрубка насоса. При таком присоединении расширительного бака воздух из системы через него отводиться не может, поэтому для удаления воздуха из сети теплопроводов и отопительных приборов служат воздушные линии, воздухосборники и воздушные краны.

Рассмотрим схемы вертикальных двухтрубных систем отопления с искусственной циркуляцией (рис.4,6). Слева показана система с верхним расположением подающей магистрали, а справа - система с нижним расположением обеих магистралей. Обе системы отопления относятся к так называемым тупиковым системам, в которых нередко получается большая разница в потере давления в отдельных циркуляционных кольцах, т.к. длины их разные: чем дальше расположен прибор от котла, тем большую протяженность имеет кольцо этого прибора. Поэтому в системах с искусственной циркуляцией, особенно при большой протяженности теплопроводов, целесообразно применять попутное движение воды в подающих и охлаждённых магистралях по схеме, предложенной проф. В. М. Чаплиным. По этой схеме (рис. 4.7) длина всех циркуляционных колец почти одинакова, вследствие чего легко получить равную потерю давления в них и равномерный прогрев всех приборов. СНиП рекомендует такие системы устраивать при числе стояков в ветви более 6. Недостатком этой системы по сравнению с тупиковой является несколько большая общая длина теплопроводов, и, как следствие, большая на 3-5% первоначальная стоимость системы.


Рис.4.7. Схема двухтрубной системы водяного отопления с верхней разводкой и попутным движением воды в подающей и обратной магистралях и искусственной циркуляцией

1 - теплообменник; 2, 3, 4, 5 - циркуляционная, соединительная,сигнальная, переливная трубы расширительного бака; 6 - расширительный бак; 7- подающий магистральный теплопровод; 8 - воздухосборник; 9 - отопительный прибор; 10 - кран двойной регулировки; 11 - обратный теплопровод; 12 –насос.

В последние годы широко применяют однотрубные системы отопления с нижней прокладкой магистралей горячей и охлажденной воды (рис.4.8) с искусственной циркуляцией воды.

Стояки систем по схемам б разделяются на подъемные и опускные. Стояки систем по схемам а ,в иг состоят из подъемного и опускного участков, по верхней части, обычно под полом верхнего этажа, они соединяются горизонтальным участком. Стояки прокладывают на расстоянии 150 мм от края оконного проема. Длина подводок к нагревательным приборам принимается стандартной - 350 мм; отопительные приборы смещены от оси окна в сторону стояка.


Рис 4.8.Разновидности (в, б, в, е) однотрубных систем водяного отопления с нижней разводкой

Для регулирования теплопередачи отопительных приборов устанавливают трехходовые краны типа КРТП, а при смещенных замыкающих участках - шиберные краны пониженного гидравлического сопротивления типа КРПШ.

Однотрубная система с нижней разводкой удобна для зданий с бесчердачным перекрытием, она обладает повышенной гидравлической и тепловой устойчивостью. Преимущества однотрубных систем отопления заключаются в меньшем диаметре труб, благодаря большему давлению, создаваемому насосом; большем радиусе действия; более простом монтаже, и большей возможности унификации деталей теплопроводов, приборных узлов.

К недостаткам систем относится перерасход отопительных приборов по сравнению с двухтрубными системами отопления.

Область применения однотрубных систем отопления разнообразная: жилые и общественные здания с числом этажей более трех, производственные предприятия и т.д.

4.2. ВЫБОР СИСТЕМЫ ОТОПЛЕНИЯ

Систему отопления выбирают в зависимости от назначения и режима эксплуатации здания. Учитывают требования, предъявляемые к системе. Принимают во внимание категории пожаровзрывоопасности помещений.

Главным фактором, определяющим выбор системы отопления, является тепловой режим основных помещений здания.

Учитывая экономические, заготовительно-монтажные и некоторые эксплуатационные преимущества, СНиП 2.04.05-86, п.3.13 рекомендует проектировать, как правило, однотрубные системы водяного отопления из унифицированных узлов и деталей; при обосновании допускается применение двухтрубных систем.

Тепловой режим помещений одних зданий необходимо поддерживать неизменным в течение всего отопительного сезона, других зданий -можно изменять для сокращения трудозатрат с суточной и недельной периодичностью, на время праздников, проведения наладочных, ремонтных и других работ.

Гражданские, производственные и сельскохозяйственные здания с постоянным тепловым режимом можно разделить на 4 группы:

1) здания больниц, родильных домов и тому подобных лечебно-профи-лактических учреждений круглосуточного использования (кроме психиатрических больниц), к помещениям которых предъявляются повышенные санитарно-гигиенические требования;

2) здания детских учреждений, жилые, общежития, гостиницы, дома отдыха, санатории, пансионаты, поликлиники, амбулатории, аптеки, психиатрические больницы, музеи, выставки, библиотеки, бани, книгохранилища;

3) здания плавательных бассейнов, вокзалов, аэропортов;

4) здания производственные и сельскохозяйственные при непрерывном технологическом процессе.

Например, в зданиях второй группы предусматривают водяное отопление с радиаторами и конвекторами (кроме больниц и бань). Предельную температуру теплоносителя воды принимают в двухтрубных.системах равной 95°С, в однотрубных системах зданий (кроме бань, больниц и детских учреждений) -105°С (при конвекторах с кожухом до 130°С). Для отопления лестничных клеток возможно повышение расчетной температуры до 150°С. В зданиях с круглосуточной действующей приточной вентиляцией, в первую очередь в зданиях музеев, картинных галерей, книгохранилищ, архивов (кроме больниц и детских учреждений) устраивают центральное воздушное отопление.

Системы отопления следует проектировать с насосной циркуляцией, нижней разводкой, тупиковые с открытой прокладкой стояков в первую очередь.

Остальные системы принимаются в зависимости от местных условий: архитектурно-планировочного решения, требуемого теплового режима, вида и параметров теплоносителя в наружной тепловой сети и т.д.

Давно стало привычной частью нашей жизни. Но все меняется для того, кто сменил городскую квартиру на частный дом. Сразу приобретают актуальность вопросы самостоятельного обогрева жилья, в частности, вопрос расчета отопления.

Что такое система отопления?

Как сделать расчет отопления

Отопительная система – это комплекс оборудования, предназначенного для доставки тепла посредством теплоносителя от теплогенератора до жилых помещений. Сюда входят:

  • теплогенератор – в частном доме эту функцию обычно выполняет электрический или газовый котел
  • насосное оборудование, обеспечивающее циркуляцию теплоносителя
  • трубопроводы и радиаторы
  • системы контроля и автоматики

Разработка, установка, наладка и пуск системы отопления – дело дорогостоящее и хлопотное. Для того чтобы эти затраты буквально не вылетели в трубу, необходим тщательный расчет всех элементов.

Тепловая мощность

Тепловая мощность – главный показатель системы отопления. Измеряется в киловаттах и показывает количество тепла, генерируемое отоплением. Как верно оценить необходимую тепловую мощность? Для идеально верно равенство:

Wсист=Wтп или Wсист- Wтп=0, где:
Wсист – тепловая мощность системы отопления
Wтп - мощность теплопотерь здания

То есть система отопления в идеале должна вырабатывать ровно столько тепла, сколько здание теряет.

Для правильности расчетов надо знать площадь и высоту каждой комнаты, качество теплоизоляции и уровень теплоотдачи, которыми обладают все поверхности дома. Примечательно, что большую часть тепла здание теряет вовсе не через окна, как принято считать (конечно, при условии, что окна качественные и современной конструкции). Усредненная картина распределения тепловых потерь выглядит следующим образом:

  • стены – 35%
  • крыша – 25%
  • пол – 15%
  • окна – 10%
  • входные двери – 8%
  • вентиляция и воздухообмен – 7%

Очевидно, какую ошибку мы зачастую допускаем, усиленно утепляя окна и совершенно не заботясь об утеплении стен. Однако это отдельная тема, выходящая за рамки расчета отопительной системы.

На уровень теплопотерь также влияют используемые материалы, толщина внешней стены, высота фундамента, площадь остекленной поверхности.

На практике вместо тепловой мощности отопительной системы используют другую величину – удельную мощность котла. Эта величина показывает необходимую мощность отопительного котла на единицу площади помещения.

Важно! Если речь идет о частном доме, где котел находится в самом отапливаемом помещении, тепловую мощность системы вполне можно принимать равной мощности котла.

Существуют рассчитанные заранее значения удельной мощности котла на 10 м 2 площади помещения для различных регионов России:

При расчете удельной мощности считается, что утепление здания и прокладка элементов отопительной системы произведены в соответствии с требованиями СНиП. «Вилка» значений показывает различную высоту потолка в пределах 2,2-3м.

Wкот =100/10*1,2=12 кВт

Обратите внимание! Значения удельной мощности приводятся из расчета на 10 кв.м площади, поэтому при расчете мощности котла значение площади помещения в кв.м необходимо поделить на десять.

Рассчитываем мощность радиаторов


От мощности радиатора зависит температура воздуха в комнате

Для расчета радиаторов необходимо учитывать их габариты, тип и мощность. Это очень важно, так как от этого зависит, какая температура будет в помещении. Значительно облегчает тот факт, что сейчас в продажу обычно поступают наборные радиаторы, самостоятельно собираемые из секций.

Теплоотдача отдельной секции указана в прилагаемой документации. Поделите ее на сто - результатом деления станет та площадь, которую эта единица сможет обогреть. Теперь надо посчитать, какое количество секций потребуется на весь дом.

Например, единица секции с теплоотдачей 200 Ватт может обогреть 2 кв.м жилой площади. Значит, на помещение в 16 кв.м необходимо 8 секций. В случае, если расположение комнаты угловое, или в комнате присутствует балкон, то число элементов радиатора увеличивают на 2 или 3 штуки.

Важно! Нежелательно монтировать батарею, состоящую более чем из 8-10 секций - это значительно снижает эффективность радиатора. Поэтому для крупных залов, гостиных и салонов собираем радиатор в виде нескольких батарей из 8-10 секций.

Также необходимо учитывать следующие моменты:

  1. Установка радиатора в нише снижает уровень теплоотдачи приблизительно на 10%.
  2. Если планируется закрыть отопительное оборудование декоративным коробом, то потери увеличиваются до 20%.
  3. Покраска радиатора также снижает отдачу тепла. Причем с каждым новым слоем краски теплоотдача отопительных приборов еще уменьшается.


Монтаж газовых котлов

Требования, предъявляемые к установке радиаторов:

  • Радиаторные секции монтируют только под окном. Тепло, поднимающееся от батареи, станет надежной преградой для проникновения холодного уличного воздуха.
  • Середина ряда отопительной секции должна совпадать с серединой конструкции окна.
  • Устанавливайте радиаторы по уровню. Важно соблюдать строгую вертикаль. Только в этом случае отопительное оборудование будет работать максимально эффективно и без завоздушивания.
  • При установке радиаторов учитывайте высоту над полом. Во всех помещениях оборудование должно находиться на одном горизонтальном уровне.
  • Расстояние между поверхностью пола и нижним краем оборудования оставляйте более 6 см. Так будет удобнее проводить уборку. От верхнего края радиаторов до уровня низа подоконника должно быть более 5 см. Если вдруг потребуется замена отопительного оборудования, вам не придется демонтировать подоконные доски. Также такое размещение способствует хорошей циркуляции воздуха и помогает избежать «запотевания» поверхности стены за радиатором.

Выбор котла

Выбор котла зависит от общей мощности, расчет которой был рассмотрен выше. Если помимо отопления котел предполагается использовать и для подачи горячего водоснабжения, необходимо еще приплюсовать до 25 кВт к мощности. Для таких нужд, как подогрев бассейна или установка канальной вентиляционной системы с подогревом, прямо пропорционально увеличивается мощность котла.

Кроме мощности, важной характеристикой котла является вид используемого топлива. В зависимости от этой характеристики существуют следующие типы котлов:

  1. Газовые котлы. Данные приборы отличаются высокой безопасностью и хорошим КПД. Процесс управления современных моделей полностью автоматизирован. Оборудование идеально для жилья, подключенного к газовым магистралям. Прибор очень компактен и производителен. Современные модели газовых котлов оснащены циркуляционным насосом. Они работают беспрерывно, почти бесшумно, просты и надежны.
  2. Электрические котлы. Как бы ни были хороши газовые котлы, их использование требует обязательного подключения к газовой магистрали, а использование баллонного газа мгновенно сводит на нет все преимущества газовых котлов. При этом целесообразным может стать применение электронагревательных устройств.
  3. Оборудование на жидком топливе. Для работы оборудования применяют отработанное масло или дизельное топливо. Данные приборы не соответствуют экологическим практически не применяются
  4. Твердотопливные котлы. Это оборудование традиционно имело малую популярность, связанную с тем, что в течение дня необходимо несколько раз подбрасывать топливо. По этой причине температурный режим в доме будет колебаться в диапазоне 5 градусов. Но в последнее время все большее распространение получили котлы двойного горения, или пиролизные котлы, лишенные всех этих недостатков.

Пиролизные котлы отличаются простотой регулировки процесса горения и поддержания заданной температуры. Использование стандартизированного топлива (древесных гранул – пеллет и брикетов) делает возможным автоматизацию подачи топлива.

Трубопровод отопления


Интеллектуальные отопительные системы

В завершение несколько слов о трубопроводе для отопления частного дома. Отсутствие большой этажности избавляет такую систему от необходимости поддержания высокого давления. Для циркуляции теплоносителя вполне достаточно сохранять рабочее давление на уровне 4-5 атмосфер для одного и 5-6 атмосфер для двух этажей. В этих условиях оптимальным выбором становится использование металлопластиковых труб, обладающих целым рядом преимуществ:

  • долгий срок службы
  • надежность
  • внутренняя поверхность трубы алюминиевая, значит, она не ржавеет, и на ней не откладывается осадок
  • удобный и легкий монтаж
  • низкая цена

Монтаж металлопластикового трубопровода не так уж сложно провести самостоятельно. Для этого вполне достаточно инструментов, имеющихся в наборе любого домашнего мастера. Из специального оборудования вам понадобятся:

  • ножницы для резки труб
  • плашка для торцовки трубы
  • паяльный аппарат

Заключение

Как видите, расчет отопительной системы вполне осуществим своими силами. Формулы учета просты, а материалы и оборудование доступны. Конечно, необходимы определенные навыки, но их можно приобрести непосредственно в процессе работы.

(для разницы температур улица-помещение 30°С)

Необходимая тепловая мощность, кВт

Объем отапливаемого помещения в новом здании
(хорошая теплоизоляция), м³

Объем отапливаемого помещения в старом здании
(средняя теплоизоляция), м³

5

Формула расчета тепловой мощности

Формула для расчета необходимой тепловой мощности:

V x T x K = ккал/ч

Перед выбором обогревателя воздуха необходимо рассчитать минимальную тепловую мощность, необходимую для Вашего конкретного пoмещения.

Обозначения:

  • V – объем обогреваемого помещения (ширина х длина х высота), м3
  • T – Разница между температурой воздуха вне помещения и необходимой температурой внутри помещения,.С
  • K – коэффициент рассеивания

K=3,0-4,0 Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа. Без теплоизоляции.
K=2,0-2,9 Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. Небольшая теплоизоляция.
K=1,0-1,9 Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. Средняя теплоизоляция.
K=0,6-0,9 Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала. Высокая теплоизоляция.

Пример:
V – Ширина 4 м, Длина 12 м, Высота 3 м. Объем обогреваемого помещения 144 м³
T– Температура воздуха снаружи -5ºC. Требуемая температура внутри помещения +18°C. Разница между температурами внутри и снаружи +23°C
K – Этот коэффициент зависит от типа конструкции и изоляции помещения
требуемая тепловая мощность:
144 x 23 x 4 = 13 248 ккал/ч (Vx TxK = ккал/ч)

1 кВт = 860 ккал/ч
1 ккал = 3,97 БTe
1 кВт = 3412 БTe
1 БTe = 0,252 ккал/ч