ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Современные проблемы науки и образования. Стропильная система: мауэрлат, лежень, стойки, прогоны и стропила

Лежень лежит, а счастье растёт

Перед вами очень простой рецепт блюда из картофеля и квашеной капусты с салом да тмином. Простой и сытный. Выглядит при этом отлично, вкусный – сами смотрите и приготовить постарайтесь.

Блюда во время поста

Рецепт картофельного пирога с кислой капустой вполне подходит для людей постящихся. Необходимо убрать сало и сливочное масло и заменить его на растительное – оливковое или подсолнечное. Золотистой корочки легко добиться, смазав изделие не желтком, как это сделала я, а маслом. Удобно иметь для таких целей специальный пульверизатор – салат оживит, мясо в духовке сбрызнуть легко, выпечку. Начинку овощную можно варьировать от грибов лесных с луком до жареной капусты со сладким перцем, рисом и шампиньонами.

Не знаю, задумывались ли вы когда-либо, почему лежень называется лежнем? Оттого что один большой на всю семью, похожий то ли на камень с диковинным орнаментом, то ли на бревно? Или потому что не сдвинуть не подвинуть у хозяйки золотистый картофельный пирог не получится?

Лениво лежит перед вами лежень на блюде, узором покрыт, румяный-горячий, пыхтит. Внутри капустка ароматная, грибочки с луком да сальцом поджарены. Каждому кусок лежня картофельного с начинкой, тмином приправленной, достанется, со сметаной и зеленью…

Лежит лежень до вечера, а поесть нечего

Предки наши, древние славяне, совершали свои языческие ритуалы на специально отведённых для этого местах священных – капищах . Капища состояли из огромного валуна, священного дерева, алтаря с огнём . Огромные одинокие валуны – лежни – считались святыми. На поверхность такого камня мастера наносили узоры плетеные, выбивали орнаменты.

У камней человек просил здоровья, женщина молила о детишках здоровеньких и счастливых, девки о замужестве да о любви сильной грезили, хлопцы смелости да отваги набирались. Каждый камню нес дары – рушники узорами обережными расшитые-вышитые. На деревья повязывали яркие тряпицы, ленты шелковые. Деревья вековые берегли, были они наделены силою волшебной. По нескольку десятков поколений плакалось-молилось тем деревьям. Исполинам поклонялись, просили помощи, защиты, благословения, дары подносили жертвенные. На огнищах горел огонь, зажжённый от самого Ярилы-Солнца.

Берегли сильные духом капища от разрушения, несли веру свою после принятия христианства на Руси. Церковники боролись: деревья уничтожали, камни забирали да огонь тушили. Места проклинали, язычников изгоняли. Да будет ли счастье на несчастье? Капища в некоторых местах хранили до начала ХХ века и службы проводили, но потом не совладали с ордою. В местах некоторых до нашего времени сохранились и деревья, и камни. В Украине, Беларуси, России…

Лежень на свадьбу

Говорят, была еще традиция у славян. На второй день после свадьбы, после первой ночи брачной, молодым преподносили лежень в прямо в постель – продолговатый пирог из сдобного теста. Некоторые настаивают, что пирогов таких пекли два – для молодого и молодой. После церемоний свадебных, один лежень доставался свекрови, второй тёще. Так ли это?

Лежень это бревно, брус в горизонтальном, лежачем положении в разных сооружениях, устройствах.

Каркас традиционного начинается с лежня. Это первый элемент каркаса, который крепится к фундаменту. Довольно часто бывает что фундамент, изготовленный своими руками, имеет размеры, отличающиеся от исходных, указанных на чертежах. Либо разнятся диагонали основного прямоугольника плана дома, либо высота фундамента в углах гуляет, либо наблюдается и то и другое. Типовая ошибка неопытных строителей заключается в том, что они пытаются возводить на таком основании коробку дома, не догадываясь, к чему это может привести - к перекошенности здания, кривой крыше, перерасходу материалов, времени и в итоге - денег в попытке исправить положение.

Установка и монтаж лежней при устройстве нижней обвязки дома поможет компенсировать погрешности изготовления фундамента и значительно облетит монтаж каркаса постройки. Первая задача в этой работе - определить, прямоуголен ли фундамент.

ПРОВЕРКА ПРЯМОУГОЛЬНОСТИ ФУНДАМЕНТА

Пока очищают поверхность фундамента и проверяет вертикальность установки анкерных болтов, я разбираюсь с чертежами фундамента и определяю расположение самого большого прямоугольника. Он будет служить базой для формирования основания выступающих частей здания как наружу, так и внутрь большого прямоугольника под прямым углом к основной стене дома. А если большой прямоугольник выделить нельзя, то для разметки прямых углов на фундаменте приходится строить большой треугольник со сторонами 3:4:5.

Выделив прямые углы и пометив их, двое работников отбивают меловую линию для построения большого прямоугольника и разметки всех ниш или выступов. За нами идёт третий член бригады и раскладывает на фундаменте обработанные антисептиком доски-лежни сечением 50×150 мм (иногда приходится использовать доски сечением 50×300 мм). На этом этапе важна слаженная работа бригады. Мы начинаем с переднего угла и укладываем доски вдоль меловой линии от одного угла до другого, а затем то же самое делаем на задней стороне фундамента. Боковыми стенками занимаемся в последнюю очередь.

По мере обхода фундамента мы отмечаем положение анкерных болтов на досках-лежнях, стоящих на ребре.

Если надо состыковать два лежня, мы отпиливаем первую доску на расстоянии 300 мм от анкера и добавляем болт с разрезной втулкой для крепления второго лежня. (Согласно местным строительным нормам требуется устанавливать анкерный болт на отрезке длиной 300 мм от конца лежней или любых стыков.)

Следующая операция - разметка центров отверстий под болты на лежне. Для этого надо положить доску на фундамент сбоку от меловой линии, измерить расстояние от неё до оси болта и перенести его на верхнюю плоскость лежня. На этом этапе между фундаментом и лежнем мы укладываем изоляцию (а также, если требуется, и герметик).

Также читайте:

ПРОКЛАДКИ ПОМОГАЮТ УСТАНОВИТЬ ЛЕЖЕНЬ ГОРИЗОНТАЛЬНО

Просверлив отверстия для болтов, вдвоём надевают лежень на болты, а идущий следом третий член бригады добавляет гайки и шайбы. Он немного затягивает гайки, чтобы проверить явно высокие или низкие места. Затем у стыков лежней мы добавляем анкеры с распорной втулкой и на лежень набиваем вторую доску сечением 50×100 мм, которая немного увеличит высоту потолка в подвале.

Потом мы нивелиром замеряем высоту углов и осматриваем все высокие места. После сравнения результатов измерений выставляем углы с помощью прокладок на одном уровне с самой высокой точкой фундамента с точностью 1 -2 мм. Затем от угла до угла натягиваем шнуры и выставляем горизонтально все лежни между ними.

Если стальные прокладки необходимы, согласно местным строительным нормам их надо устанавливать под лагами, балками и пр., то есть в местах точечных нагрузок. Поэтому я помечаю их расположение на лежне. Установив прокладки между фундаментом и лежнем, мы затягиваем гайки на анкерах и в последний раз проверяем высоту. Допуск должен составлять ±1,5 мм.

Обычно (хотя и неправильно) нивелир называют теодолитом. Но нивелир вращается только в горизонтальной плоскости, а теодолит - как в горизонтальной, так и в вертикальной. Посмотрев в нивелир, как в прицеле винтовки, вы увидите поперечную риску. При правильной установке нивелира она показывает горизонт, а оптика обеспечивает увеличение, позволяющее считать показания на рулетке или на измерительной рейке на расстоянии более 30 м. Нивелир выставляют в горизонтальной плоскости по встроенным пузырьковым уровням тремя или четырьмя винтами с накаткой. Сравнив измерения уровней, сделанные в разных местах, вы можете определить превышение одной точки относительно другой.

Я много лет укладывал лежень с помощью обычного нивелира. Пробовал работать и с лазерными устройствами, но результаты были не очень впечатляющими.

Установка лежня

До установки лежня надо убедиться в прямоугольности фундамента, поскольку иногда последний может иметь отклонения от требуемых размеров. Чтобы получить хорошую исходную базу для каркаса, для лежней нужно отбить ряд линий разметки, которые в углах фундамента должны быть перпендикулярны друг другу. Расположение и отбивка линий на фундаменте самого большого прямоугольника создаёт основу для разметки остальных зон, лежащих внутри и снаружи большого прямоугольника. Если большой прямоугольник вычленить нельзя, для разметки используют большой треугольник со сторонами 3:4:5.

Чертеж схема 1: Устройство лежня, проверка фундамента, разметка и строительство

1. ОПРЕДЕЛЕНИЕ ПРЯМОУГОЛЬНОСТИ ФУНДАМЕНТА (рисунок 2 на чертеже).

Определите самый большой прямоугольник фундамента и отбейте вспомогательную линию на одной длинной стене на расстоянии 100 мм от её внешнего ребра. (В этом примере лежень 50×100 мм. Для лежня 50×150 мм отбейте линию на расстоянии 150 мм.)

На противоположной длинной стене отбейте параллельную линию тоже на расстоянии примерно 100 мм от внешнего ребра фундамента. Убедитесь, что две линии, полученные на противоположных сторонах фундамента, параллельны – измерьте расстояние между ними по концам. Если они не параллельны, но разница меньше 12 мм, перенесите конец одной линии так, чтобы расстояния получились одинаковыми.

Чтобы определить углы прямоугольника, отметьте точки а, Ь, с и d на расстоянии 100 мм от ребра фундамента. Убедитесь, что линия ab равна по длине линии cd.

Для проверки прямоугольности измерьте расстояния от точки а до точки d и от точки b до точки с. Обычно требуется незначительная регулировка, но, если вам повезёт и расстояния одинаковы, фундамент - прямоугольный. Отбейте остальные меловые линии большого прямоугольника.

2. ЕСЛИ ФУНДАМЕНТ НЕПРЯМОУГОЛЬНЫЙ.

Мы знаем, что линии ab и cd параллельны, поэтому проблема в других двух стенках (ас и bd). Оставьте линию ab на месте, а разметку прямоугольника скорректируйте сдвигом точек с и d на равное расстояние по направлению к углу с более короткой диагональю.

Ещё раз проверьте диагонали и повторите процедуру до тех пор, пока два замера не станут одинаковыми (в пределах 1,5 мм).

Если разница в длине диагоналей больше 25 мм, отрегулируйте всю разметку, сдвигая уже оба отрезка, но так, чтобы лежень не выступал слишком далеко. Если после этого лежень в каждом углу будет свешиваться за фундамент более чем на 16 мм, в дальнейшем возникнут большие проблемы, и придётся вызывать подрядчика, возводившего фундамент.

3. РАЗМЕТКА НИШ И ВЫСТУПОВ ПОСЛЕ ОПРЕДЕЛЕНИЯ БОЛЬШОГО ПРЯМОУГОЛЬНИКА.

Отметьте длину каждой боковой стороны измерением от основного прямоугольника. Отбейте меловые линии.

A. Найдите параллельную линию для выступающей стены измерением от большого прямоугольника (аналогично п. 1D).

B. Измерьте от ближайшего угла большого прямоугольника и отметьте точки g и h.

C. На внешней стене отметьте точки е и f на расстоянии 100 мм от ребра фундамента. Пометив углы, проверьте прямоугольность замером диагоналей между точками е и h и между точками f и д. Выполните операции, описанные в п. 1D.

D. Если у выступа нет внешней параллельной стены (это может быть в восьмиугольнике или окружности), вы можете использовать египетский треугольник со сторонами 3:4:5, чтобы найти одну из двух перпендикулярных стенок и использовать её для разметки другой.

Для большей точности измерения. Так как конец ленты на горизонтальной поверхности удержать сложно, начните измерение с отметки 300 мм. Кроме того, дополнительная длина позволяет не только плотно прижать ленту, но и более точно считать замер.

ПРОСТАЯ РАЗМЕТКА ФУНДАМЕНТНЫХ БОЛТОВ

1. Поставьте лежень на ребро и перенесите на него контур болта.

2. Просверлите отверстия в лежне насколько возможно прямо. Если отверстие просверлить под углом, лежень при установке сдвинется от меловой линии. Для анкерного болта М12 отверстия в лежне просверлите сверлом 16 мм. Чтобы не повредить сверло, под лежень подложите обрезок доски или выдвиньте доску за фундамент.

ВЫСТАВИТЬ УРОВЕНЬ ЛЕЖНЕЙ ПО ШНУРУ

1.Натянув шнур горизонтально, положите стальные прокладки между лежнем и фундаментом под все лаги, балки и точечные нагрузки.

2.Для грубой подгонки лежня к шнуру в нужных местах положите подкладки.

НИВЕЛИР ПОМОЖЕТ ВЫЯВИТЬ ВЫСОКИЕ МЕСТА

1. Срубите высокие места перфоратором. Отдельный участок фундамента может быть высоким и создавать проблему для разметки и выравнивания лежня.

2. Если такой участок не очень длинный, его довольно быстро можно срубить перфоратором.

Стропильная система — это скелет крыши. Именно она отвечает за прочность кровли, ее надежность и сопротивление нагрузкам. При самостоятельном строительстве дома необходимо знать, как правильно сделать узлы крепления стропильной системы, чтобы крыша была надежной и безопасной.

Устройство стропильной системы

Стропильная система состоит из многих элементов, каждый из которых выполняет свою задачу.

  • За распределение нагрузок на стены отвечают мауэрлаты . Эти балки принимают на себя вес всей кровли и лежат на стенах.
  • Стропильные ноги — это наклонные балки, который и создают необходимый угол наклона крыши.
  • Прогоны — это горизонтальные балки, которые скрепляют ноги между собой. Есть коньковый прогон, располагающийся вверху, и боковые, находящиеся с скатах.
  • Затяжки расположены горизонтально и не дают стропильным ногам разъехаться, образуя с ними жесткие треугольники.
  • Стойки и подкосы (подстропильные ноги) — дополнительные элементы, на которые опираются стропильные ноги. Они упираются в лежни.
  • Лежень — горизонтальная балка, находящаяся под коньком, на нее опираются стойки и подкосы. Задача лежня — перераспределить точечную нагрузку от стоек.
  • Конек — место соединения скатов кровли.
  • Обрешетка — бруски или доски, которые набивают перпендикулярно стропилам. На нее укладывают кровельный материал. Задача обрешетки — распределить его вес.
  • Свес — удлиненный край ската, защищающий стены от осадков. Если длины стропильных ног недостаточно для создания свеса, используются дополнительные элементы — кобылки.

Устройство стропильной системы показано на рисунке.

Также в устройстве крыши выделяют стропильные фермы. Это сплошной узел, состоящий из стропильных ног, растяжек, стоек и подкосов (раскосов, укосин). Ферма может быть не только треугольной, но и трапециевидной, сегментной или многоугольной. То, какой тип фермы выбрать, зависит от размеров дома. Если расстояние между стенами составляет 9-18 м, то подойдет треугольная ферма. Для домов шириной от 12 до 24 м используют трапециевидные или сегментные фермы. Если ширина здания больше (до 36 м), то используют многоугольные фермы.

Основными узлами крепления стропильной систему кровли являются это балочный, коньковый и мауэрлатный.

Виды стропильных систем

Стропила могут быть висячими и наслонными .

Висячие опираются на стены и создают распор. Чтобы уменьшить его, в основании стропил делают затяжки, которые соединяют стропила и образуют с ними треугольники. Висячие системы различных типов используются для домов шириной не более 17 м. В зависимости от ширины строения, устраивают их по-разному.

Если ширина дома не больше 9 м, то стропила поддерживаются вертикальным брусом — так называемой бабкой . Она находится под коньком.

Если ширина дома от 9 до 13 м, дополнительно устанавливают подкосы, которые одним концом упираются в стропильные ноги, а другим — в бабку.

При ширине дома 13-17 м используются две вертикальные стойки, соединяющиеся в верхней ригелем (подгоном), как на рисунке.

Наслонные стропила опираются на несущую стену или колонны внутри здания. При таком способе стропило имеет три или больше точек опоры. Наслонный тип стропильной системы создает меньшую нагрузку на стены здания и более прочен, его используют для зданий большей ширины. Такие крыши могут быть устроены по-разному, в зависимости от расположения внутренних стен, они могут быть симметричными или асимметричными.

Как соединяют части стропильной системы

Для соединения деревянных элементов между собой используются гвозди, болты, шпильки, а также металлические пластины и уголки для укрепления узлов. Дополнительно применяются деревянные бруски или пластины.

Методы крепления:

  • зубья в шип,
  • зубья в упор,
  • упор в конец перекладины.

Использование металлического крепежа не уменьшает несущую способность, так как не требуется их врезка, в отличие от крепления, например, методом зубья в шип.

Стропила могут быть не только деревянными, но и металлическими. Для крепления металлических стропил применяют различные уголки, кронштейны, монтажную перфорированную ленту, пластины, болты с гайками или саморезы.

Крепление к мауэрлату

Если стена бетонная, то в ее верхней части делают армированный пояс жесткости, в котором предусматривают шпильки. К ним и будет крепиться мауэрлат.

Стропила к мауэрлату можно крепить двумя способами: жестким и скользящим.

Первый способ более популярен. Для крепления используют специальные уголки с опорным бруском. Есть несколько способов крепления стропилины к мауэрлату.

  • Прибивают каждое стропило тремя гвоздями: два их них должны быть перекрещены, а третий расположен вертикально.
  • Крепление с помощью скобы: один ее конец забивается примерно в середину опорного бруса, а другой поворачивают на 90 градусов и забивают в стропило.
  • Крепление проволокой-катанкой: из сложенной в 4 ряда проволоки делают хомут, которым прикручивают стропило к брусу. Вместо проволоки используют также специальную перфорированную ленту. Иногда такой способ используют в дополнение к другим методам крепления.
  • С помощью уголков: уголок прикручивают шурупами к мауэрлату и стропильной ноге. Лучше применять уголки с двумя рядами отверстий и ребром жесткости.

Недостаток жесткого способа — при оседании здания возможно повреждение стен. Поэтому жесткое крепление применяют в кирпичных зданиях.

Скользящий способ подразумевает, что стропила соединены с мауэрлатом такими крепежными элементами, которые не препятствуют их движению в некоторых пределах. Этот способ используют в деревянных зданиях, которые могут оседать. С помощью особых способов крепления можно достичь того, что стропило будет иметь одну, две или три степени свободы. В последнем случае применяется специальный шарнир.

Одна степень свободы подразумевает, что стропило может поворачиваться по кругу. В этом случае они крепится одним гвоздем или шурупом. Две степени свободы — это поворот по кругу и смещение по горизонтали. Для этого стропила к мауэрлату крепятся металлическими скобами. Используются также специальные уголки-салазки.

При скользящем соединении в небольших зданиях с не очень тяжелой кровлей крепление делается без запилов. Если здание большое, рекомендуется этот узел делать с запилом на стропильной ноге.

Важно! Запил вырезают именно на стропиле, а не на мауэрлате, чтобы не повредить и не ослабить балку.

При этом фиксация может быть как жесткой (с упором в балку), так и подвижной (с зубом на внешней стороне). Иногда вместо выпиливания зуба применяют дополнительный брусок.

Коньковое соединение

После того, как стропильная нога укреплена на мауэрлате, переходят к коньковому узлу крепления. Это соединение можно сделать тремя способами: встык, к коньковому прогону и внахлест.

Для крепления встык стропила спиливают в верхней части под углом, равным наклону крыши, и соединяют гвоздями (150 мм), вбивая их в верхние плоскости стропил, так, чтобы гвозди вошли в торец противоположного стропила. Для прочности прикрепляют металлическую пластину или деревянную накладку, которую также прибивают гвоздями или прикрепляют с помощью болтов..

При креплении к коньковому прогону между стропилами дополнительно укладывается коньковая балка (прогон), этот способ более трудоемкий.

При креплении внахест стропила, находящиеся с противоположных сторон, заходят друг на друга и соприкасаются боковыми поверхностями. Их соединяют болтами, гвоздями или шпильками.

Балочный узел

К балкам стропила прикрепляются следующим образом. Главная задача крепления — не допустить скольжения стропила по балке, поэтому используются различные приемы.

  1. В пятке стропила необходимо вырезать зуб и шип, в балке вырезают соответствующего размера упор.
  2. От свисающего края балки место крепления должно отстоять на 25-40 см.
  3. Гнездо для крепления должно быть глубиной 1/4 — 1/3 толщины балки.
  4. Вместе с зубом вырезают шип, который не дает стропилу сдвинуться вбок. Такое соединение называют «зубом с шипом и упором».

Если крыша более пологая (угол ее наклона меньше 35 градусов), то стропила крепят таким образом, чтобы площадь их соприкосновения с балкой увеличилась. Тогда используют следующие способы:


При создании стропильной системы для крыши важно помнить следующее.

  • Все деревянные элементы перед установкой обрабатывают антисептиком и огнеупорным составом.
  • Толщина любой деревянной части не должна быть меньше 5 см.
  • Стропила без стоек и подкосов не делают длиннее 4,5 м.
  • Мауэрлат должен располагаться строго горизонтально.
  • Стойки и подкосы рекомендуется делать максимально симметрично.
  • Нельзя добавлять элементы в рассчитанную стропильную систему — это может привести к появлению нагрузок там, где они не нужны.
  • В местах стыка дерева с каменной (кирпичной) кладкой нужна гидроизоляция.

Правильно сделанная стропильная система — это залог надежности кровли. Именно стропила принимают на себя весь вес материалов кровли и противостоят ветровым нагрузкам. Поэтому очень важно построить стропильную систему с соблюдением технологии.

При возведении строений любого назначения особое внимание специалисты уделяют устройству кровли как одной из основных частей объекта, особенно данный пункт касается малоэтажного и дачного строительства. крыши – это жесткий каркас, на который, собственно, и монтируется кровельный материал. Выделяют несколько типов стропильных систем, их применяют в зависимости от этажности, площади и назначения здания. Сегодня мы подробно разберем монтаж и установку наслонных конструкций.

Шаг №1: подготовительные работы

С чего же начать монтаж? Первый шаг любых строительных работ – подготовительный! Вначале нужно привести в порядок стены и перекрытия дома. Не секрет, что материал, из которого возводятся перекрытия, имеет, как правило, небольшие расхождения в размере, с каждым венцом или рядом «разница» только накапливается, визуально это можно и не заметить, а вот отвес или уровень мигом найдет дефект (с помощью этих инструментов можно выяснить, что высота стен разнится на пару сантиметров или что углы дома совсем непрямые – все эти огрехи нужно устранить).

Если ваша постройка из кирпича или пеноблоков, сделайте цементно-песчаную выравнивающую стяжку, если же дом деревянный, то неровности сгладьте прокладками из древесины. Все эти манипуляции позволят произвести по шаблону (любая готовая схема вам подойдет), что облегчит процесс. Кроме того, нагрузка на каждый узел считается из расчета, что поверхность горизонтальна, а углы прямые, если же это не так, гарантировать надежность всей конструкции вам не сможет никто.

Небольшой расход средств – большая польза: мауэрлат

После того как все работы по выравниванию поверхностей будут завершены, приступайте к настилу гидроизоляции по и лишь потом к укладке мауэрлата и лежня (это делается при необходимости). Зачем вообще нужен мауэрлат? С помощью него можно исправить непрямые углы помещения.

Чтобы правильно установить элемент, нужно помнить о следующем: толщину бревен, которые будут использоваться в качестве мауэрлата, необходимо подбирать такую, чтобы кобылки для карнизного свеса проходили через обрез стен; если этой рекомендацией пренебречь, после придется делать врубку или монтировать прокладки. Если при укладке мауэрлата под карнизный бортик вы вдруг заметили, что неправильно определили толщину продукта, то ни в коем случае не поднимайте его вровень с верхней кромкой. Чтобы исправить ситуацию, разберите часть внешней кладки, а после поднимите парапет для того, чтобы выпустить кобылки за стену.

Шаг №2: как установить мауэрлат

Рассмотрим самые распространенные варианты:

  1. Крепление на бетон шпильками. Данный способ годен лишь для крыши с большой площадью (250 и более кв.м.). Вариант подразумевает заливание бетонной стяжки, в армопояс которой вмуровываются вертикально шпильки.
  2. Монтаж при помощи шпилек, вмурованных в кладку стенки. Аналогичный способ, только элементы вмуровываются в стену еще в процессе кладки. Такое крепление, стоит отметить, подходит только для крыши, площадь которой меньше 250 кв.м.
  3. Крепление мауэрлата толстой проволокой – это самый простой вариант. Смысл такой: между рядами кирпичей необходимо укладывать толстую проволоку так, чтобы ее длины хватило обвязать сверху мауэрлат.
  4. Монтаж гвоздями. Если Ваша постройка деревянная (сруб, брус, каркас), то вполне возможно использование обыкновенных гвоздей, шурупов или саморезов вкупе с металлическими перфорированными соединителями для деревянных систем.

Шаг №3: установка лежня

Следующий шаг – установка лежня, его черед настает сразу после мауэрлата. Вначале определите расположение срединной оси, именно на ней лежень и будет находиться. Если вы возводите крышу с четырьмя скатами, то проследите, чтобы концы лежня находились от фронтонного и бокового мауэрлатов на равном расстоянии, это позволит углы вальмы и наклона основных скатов сделать одинаковыми. В случае если ваш проект не подразумевает равные углы, следуйте рекомендациям готовой схемы. Стоит отметить, что гидроизоляцию под лежнем нужно сделать двойной.

Крепить лежень необходимо к внутренним стенам скобами или проволочными скрутками. Если ваша постройка выполнена из легких материалов (например, из пенобетонных блоков), то предварительно сделайте армирующий пояс, выпустите анкеры, к которым впоследствии лежень и будет крепиться. Даже если под лежень вы планируете монтировать кирпичные столбики, крепления по-прежнему должны быть повернуты к внутренним стенам.

Как правильно установить стойки и прогоны

Следующий шаг в работе – установка прогонов и стойки. Ваша кровля может быть сконструирована с дополнительными боковыми прогонами (возможен вариант, в котором их не будет вовсе) или одним коньковым, однако без стоек, поддерживающих стропильные ноги, не обойтись. Стойки делаются одинаковой длины, это при условии, что вы провели предварительную работу по выравниванию поверхности. Установив части, проверьте вертикальность. Крепятся стойки к предварительно установленным лесам досками, после на них укладываются прогоны. Вальмовые крыши, кстати, делаются с прогонами, которые выходят за стойки.

После всех описанных действий вновь выполните проверку прогонов и стоек, первые должны иметь строго горизонтальное положение, а вторые – вертикальное. Внесите, если это требуется, поправки, закрепите все узлы так, как требует ваш проект. Разбирать временные конструкции, подпирающие стойки, пока не надо. Следующий шаг – изготовление стропильной системы

Стропила - основа крыши

Стропила представляют собой наклонные балки (в большинстве случаев это деревянные бруски с сечением 7×15 см). Располагаются они друг от друга на расстоянии 60 – 100 см (промежуток между стропильными ногами – 1 м). Элементы стропильной системы к стене дома можно крепить двумя методами на выбор (их больше, но эти самые популярные):

  1. Крепление стропил без мауэрлата. На стену установите балку так, чтобы она находилась со стропилом в одной плоскости. Нагрузка при этом распределяется по стене неравномерно (монтаж мауэрлата обеспечивает однородное распределение), поэтому данный способ подходит лишь для легких небольших крыш.
  2. Крепление стропил к мауэрлату. На этом этапе работ допускается больше всего ошибок, будьте внимательней! производится вырезом (зарезом) на мауэрлат (стропила как бы нанизываются на мауэрлат). Если пренебречь зарезом, элемент постепенно соскользнет вниз, даже если потом выполнить качественное крепление. Нельзя делать прорези в мауэрлате: прочности соединения вы не добьетесь точно, а вот сам элемент кровельной системы ослабите наверняка. Установив стропила на мауэрлат, забейте гвозди (по два – на каждую сторону) наискосок: благодаря этой манипуляции дерево не сместится. Окончательно скрепит части гвоздь, забитый перпендикулярно плоскости.

Теперь рассмотрим три основных способа крепежа стропил в коньковой части:

  1. Крепление встык. Обрежьте верхний край стропила под углом так, чтобы он был такой же, как , обоприте готовый элемент в обрезанное под углом стропило, находящееся с противоположной стороны. Крепление стропила под коньком производится с помощью двух гвоздей (размер 150 и больше), вбиваются они под углом (гвоздь должен войти в срез другого стропила). Дополнительно укрепить систему можно, наложив деревянную накладку или металлическую пластину (они притягиваются гвоздями или болтами).
  2. Коньковый прогон. Этот вариант схож с первым. Отличие лишь одно: между стропилами помещается коньковая балка. Стоит отметить, что способ довольно-таки трудоемкий и при возведении крыши в наше время практически не используется.
  3. Монтаж внахлест. Также похож на первый способ, только соединение, как вы уже поняли, осуществляется внахлест. Здесь важно обратить внимание на следующие моменты: стропила должны соприкасаться своими боковыми плоскостями, а не торцами; стягивать их лучше болтом или шпилькой (хотя можно и гвоздями). Данный вариант считается самым простым, именно его выбирает большинство специалистов.

Еще пара моментов! Хорошо было бы сделать шаблон и уже по нему выверять все стропила, лучше всего сделать свой чертеж для каждой стороны крыши. Устройство стропильной системы подразумевает следующие моменты:

  1. Оптимальная (свободно висящего) – 4˜–5 м.
  2. Если для крыши используется продукт длиннее (до 6 метров), то и должно быть больше.
  3. Если длина стропильной ноги составляет шесть метров, то установить прогоны нужно обязательно, без дополнительных опор не обойтись.
  4. Стропильная система производится, как правило, на заводах; самостоятельно правильно ее сделать очень сложно – лучше не рисковать.
  1. Для стропильных ног: 50×150, 100×150, 75×125;
  2. Для мауэрлата –100×100 и 150×150;
  3. Для прогонов –100×100 и 100×200;
  4. Для затяжек – 50×150;
  5. Для ригелей – 100×150;
  6. Для стоек – 100×100;
  7. Для кобылки – 50×150 мм.

Древесина – это один из основных строительных материалов, применяемых для возведения стропильных конструкций для домов малой этажности. Как правило, в этом деле применяют дерево хвойных пород с влажностью до 20 %. имеет массу достоинств: она относительно легкая, имеет приемлемую стоимость, монтаж можно осуществить своими руками.

1

Проведен анализ несущей способности применяемых конструкций кранового пути. Выявлено, что основным их недостатком является чрезмерность трудозатрат по устройству и содержанию. Предложена конструкция на основе деревянного «лежня» с необходимым прочностным расчётом. Расчёт выполнен на основе составленной методики, с учётом технических параметров элементов, составляющих конструкцию в целом, но только для неуплотнённых грунтов в подстилающем слое. По полученным данным, представленным в графической форме, показана возможность применения кранового пути с деревянным продольным «лежнем», даже для подстилающего слоя из неуплотнённого грунта. Очевидно, что запас прочноcти конструкции обеспечивается отношением коэффициентов постели, уплотнённых и неуплотнённых грунтов в подстилающем слое.

крановый путь

коэффициент постели

подстилающий слой.

1. ГОСТ Р 51248-99. Пути наземные рельсовые.

2. Инструкция по устройству и эксплуатации, перебазированию рельсовых строительных башенных кранов. СН 78-79. Госстрой СССР. М.: Стройиздат, 1980.

3. Инструкция по устройству и содержанию рельсовых путей козловых кранов на предприятиях ТПО «Свердлеспром». Свердловск, 1988. 49 с.

4. Разработка методики расчета рельсовых крановых путей на блочном железобетонном основании. Отчет по научно-исследовательской теме 26/83.Гос.рег.№01.83.0029692. Свердловск, 1984.

5. Тагильцев Н. Д. Расчет жестких колейных покрытий лесовозных автомобильных дорог Урала и Сибири // Межвузовский сборник. Вып. 2. Свердловск, 1979.

На предприятиях, эксплуатирующих грузоподъемные механизмы с рельсовыми направляющими, применяют обычно крановые пути нескольких конструкций:

  • деревянные полушпалы типа: 1А, 1Б по ГОСТ78-89;
  • железобетонные полушпалы, типа: ПШН1-13-325-1 и ПШН4-13-325-1;
  • железобетонные балки типа: БРП-62.8.3 и БРК-6.24-04;
  • железобетонная плита.

Также известна конструкция кранового пути на балках УЛТИ-6,25.

Все варианты конструкций известных крановых путей имеют, каждая в отдельности, свои преимущества и недостатки.

Анализ несущей способности кранового пути всех конструкций показывает, что основным их недостатком является чрезмерность трудозатрат по их устройству и содержанию. Из чего можно выделить ряд необходимых исследований по повышению прочностных характеристик и созданию универсальности конструкций кранового пути:

  • исследование и разработка более современной и прочной конструкции кранового пути на основе «нано лежня»;
  • исследование прочностных характеристик направляющих (рельса) с целью облегчения конструкции, либо замены направляющих на более современные безрельсовые.

Существующие крановые пути имеют ряд существенных недостатков. Во-первых, сравнительно большой расход древесины, которая необходима для изготовления полушпал, во-вторых, возникают трудности при рихтовке шпал. При той конструкции крановых путей, которая в настоящее время применяется, довольно сложно добиться того, чтобы требуемые нормы эксплуатации крановых путей выполнялись. Одним из главных недостатков является неравномерная просадка крановых путей, возникающая в ходе эксплуатации крана.

В настоящее время широко стали применяться рельсовые пути с железобетонными опорными элементами. Имеется опыт и в лесной промышленности. В Нижне-Сергинском ЛПХ около 4 лет эксплуатировался участок на балках УЛТИ-6,25 под краном ЛТ-62. Всё это время подъемка и рихтовка пути не осуществлялась, а крановый путь, в частности его параметры, не претерпели каких-либо значительных изменений.

Ещё в 1986 году для условий нижнего склада Тугулымского ЛПХ была предложена новая конструкция верхнего строения кранового пути на деревянных продольных лежнях, которая была проверена по прочностным характеристикам материала с определением поперечного сечения лежня. Лежень - это деревянный брус размером сечения 200х200мм. Рельс в расчете приняли марки Р-65, как и в эксплуатируемых крановых путях повсеместно.

Конструкция представляет два соединенных между собой болтами бруса. Длина опорного элемента 6,24 м, сечение бруса 200х200. На концах опорного элемента имеются уширения, которые расположены под стыками рельс. Они изготавливаются из того же бруса. Опорные элементы имеют между собой жесткое соединение. Такая конструкция, по нашему мнению, позволит надежно эксплуатировать как сам кран, так и крановые пути.

Ниже приведена последовательность расчёта согласно разработанной нами методике.

Принятые обозначения, расчетные параметры.

Мi - ординаты линии влияния изгибающего момента в сечении под i -тым колесом;

Рi - ординаты линии влияния реактивного отпора и просадки рельса в сечении под i -тым колесом; b - ширина нижней постели подрельсового элемента, м;

l - длина опорного подрельсового элемента, м;

Wp ,Ip - соответственно, момент сопротивления изгибу, м3 и момент инерции сечения рельса относительно горизонтальной оси, проходящей через центр тяжести сечения, м4 (принимается по табл. 24 СН 78-79);

WБ,IБ - момент сопротивления изгибу, м3 и момент инерции сечения балки, м4;

ЕБ,ЕР - соответственно, модули деформации дерева и рельсовой стали, МПа;

с - коэффициент постели опорного элемента, МПа, который определяется по формуле 4.1 :

с = (2,25...2,55)ЕЭ; (1)

Меньшее значение коэффициента принимается для неуплотненных зернистых грунтов, а большее - для плотных. ЕЭ - эквивалентный модуль деформации основания, МПа, определяется для двухслойной конструкции основания по формуле 4.2 :

Еэ = Ео/(1-(2/П)(1-1/n3,5) arctg n(h/Д)); (2)

где Е0 - модуль деформации грунта земляного полотна, МПа, определяемый штамповыми испытаниями по ГОСТ 12374-87 при диаметре штампа Д=564мм n=(E1/Eo)0,4 ; (3)

Е1 - модуль деформации балластного слоя, МПа, принимаемый по паспортным данным карьерного материала; h - толщина балластной призмы, м;

Характеристика пути

Тип рельса - Р65;

Расстояние между осями 0,97 м;

Ширина нижней постели подрельсового опорного элемента b=0,4 м;

Расчетная длина l=6,24 м;

Вид балласта - щебень Е1 =130 МПа;

Толщина балласта h=0,2 м;

Вид грунта земляного полотна - песок мелкозернистый Е0=15 МПа.

Характеристика деревянных балок рельсового пути

Модуль деформации дерева: E=0,85.104 МПа;

Момент инерции расчетного сечения: IБ=bh3/12=0,4.0,23/12=13,34.10-5 м4; (4)

Момент сопротивления изгибу: WБ=bh2/6=0,4.0,22 =26,67.10-4 м4 ; (5)

Расчетное сопротивление изгибу: RБ =15МПа;

Жесткость балки: WБ=bh2/6=0,4.0,22 =26,67.10-4 м4 ; (6)

Несущая способность балки: МБпред =WБ.RБ =26,67.10-4.15.106 =40,0 кН.м; (7)

Характеристика Рельса Р65.

Момент сопротивления изгибу: WP=404 см3;

Момент инерции: IР=2998 см4;

Жесткость рельса: ВP=6,29 МН.м2;

Несущая способность: MPпред=121,2 кН.м.

Определение напряжений в элементах рельсового пути

Определяем приведенную длину λ балки, для этого определяем коэффициент относительной жесткости системы балка - основание по формуле 4.8 : К=(c.b/4.BC)0,25 , (8)

где: с - коэффициент постели опорного элемента, МПа/м;

b - ширина нижней постели подрельсового опорного элемента, м;

ВС =ВБ +ВР - суммарная жесткость двухслойной балки, МН.м2;

Еэ - эквивалентный модуль деформации основания, МПа; n=(130/15)0,4=2,37;

Эквивалентный модуль деформации:

Еэ=15/(1-(2/3,14)(1-1/2,373,5)arctg 2,37(0,2/0,564))=26,016 МПа;

Коэффициент постели опорного элемента: с=2,25.26,016=58,5 МПа/м;

Суммарная жесткость двухслойной балки: ВС=2,27+6,29=8,56 МН.м2;

Коэффициент относительной жесткости: К=(58,5.0,4/(4.8,56))0,25=0,908;

Приведенная длина определяется по формуле 4.9 : λ=K.l=0,908.6,24=5,67; Округляем до λ=5,5. Рассчитываемая балка относится к категории коротких, т.к. λ<7. Из таблицы 6.1 , для соответствующей λ, выписываем табличные значения ординат линий влияния реактивных давлений РТ и изгибающих моментов МТ, по которым строим соответствующие линии влияния (см. рис. 1).

Рис.1. Линии влияния МТ и РТ

Определяем значения наибольшего изгибающего момента в среднем сечении балки по формуле 4.10 : МС =P.l.∑MiT =250.6,24(0,0432-0,002)=64,27 кН.м,

где МiT - величины безразмерных ординат линий влияния изгибающего момента под действующими силами.

Изгибающие моменты в рельсе и балке будут соответственно определяться по формулам 4.11, 4.12 :

МP=МС(EP.IP/ВС)=64,27(6,29/8,56)=47,23 КН.м < MPпред=121,2 кН.м;

МБ=МС(ВБ/ВС)=64,27(2,27/8,56)=17,04 КН.м < MБпред=40,0 кН.м.

Таким образом, действующие изгибающие моменты ниже предельных значений. Определяем напряжение σБ в балласте на контакте с опорным элементом по формуле 4.14 :

σБ=(P/b.l)∑PTi=(0,25/0,4.6,24)(2,8273+1,7)=0,45 МПа

где РiT - значения безразмерных ординат линии влияния реактивных давлений под соответствующими силами.

Условие прочности по балласту удовлетворяется.

Для определения напряжения σо, на основной площадке земляного полотна, предварительно, вычисляем толщину эквивалентного слоя грунта по формуле 4.15 :

hЭ=h(E1/Eo)0,4=0,2(130/15)0,4=0,47 м;

Затем по соотношению hЭ/b находим значение коэффициента изменения давления в толщине грунта: KZ=0,586;

σ0=KZ.σБ=0,586.0,45=0,26

Условие прочности по основной площадке также удовлетворяется. Из расчетов видно, что при расположении нагрузки на середине балки, условия прочности как по балласту, так и по основной площадке удовлетворяются. Произведем расчет балки при условии, что нагрузка будет расположена на конце балки, то есть на шарнире (см. рис. 2). В этом сечении величина изгибающего момента будет равна нулю. Уширения имеются на сравнительно малом участке рассчитываемого опорного элемента, поэтому значение характеристик не изменяется, вплоть до расчета приведенной длины: λ=5,5. Из таблиц 5 и 6 выписываем табличные значения ординат линий влияния реактивных давлений PiT для λ=5 и λ=6. Методом интерполяции определяем эти значения для λ=5,5 и строим линию влияния (см. рис. 2).

Рис. 2. Линия влияния РТ табличная

Определяем напряжение σБ в балласте на контакте с опорным элементом по формуле 4.14 :σБ=(P/b.l)∑PTi=(0,25/0,8.6,24)(5,4247+1,6)=0,35МПа

Условие прочности по балласту на уширениях выполняется.

Определяем напряжение σо, на основной площадке земляного полотна. Значение величины hЭ=0,47 не изменяется. По соотношению hЭ/b находим значение коэффициента изменения в толщине грунта по таблице из : KZ=0,7675;

Напряжение на основной площадке земляного полотна определяем по формуле 4.16 :

σ0=KZ.σБ=0,7675.0,35=0,268

На рассчитываемой балке все условия прочности полностью выполняются. В результате расчета предложенного варианта кранового пути получены линии влияния МТ и РТ (рис. 1 и 2), показывающие распределение давления секции кранового пути и изгибающего момента. По выше полученным данным определены напряжения σ0 и σБ

(σ0=0,268

на основной площадке земляного полотна и в балласте на контакте с опорными элементами. Их значения ниже допускаемых значений, то есть надежность эксплуатационных свойств такого кранового пути обеспечивается. Наиболее значительным недостатком, по нашему мнению, следует считать использование тяжелого металлического рельса Р-65. Нами предпринята попытка замены рельса Р-65 на более легкие направляющую без изменения жесткости поперечного сечения и надежности верхнего строения кранового пути.

Рецензенты:

Ковалев Р. Н., д.т.н., профессор, заведующий кафедрой Уральского государственного лесотехнического университета, г. Екатеринбург.

Черемных Н. Н, д.т.н., профессор, заведующий кафедрой Уральского государственного лесотехнического университета, г. Екатеринбург.

Библиографическая ссылка

Салахутдинов Ш. А., Шабардин С. В. ОБОСНОВАНИЕ И РЕЗУЛЬТАТЫ РАСЧЕТА КРАНОВОГО ПУТИ НА ПРОДОЛЬНОМ ЛЕЖНЕ // Современные проблемы науки и образования. – 2013. – № 1.;
URL: http://science-education.ru/ru/article/view?id=8323 (дата обращения: 07.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»