ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Расчет теплообменника. Габариты и типы присоединений. Для расчета данных также понадобятся

Специалисты компании «Теплообмен» на основании предоставленных индивидуальных данных производят быстрый расчет теплообменников по заявкам клиентов.

Метод расчета теплообменника

Чтобы решить задачу теплообмена, необходимо знать значение нескольких параметров. Зная их, можно определить другие данные. Самыми важными представляются шесть параметров:

  • Количество тепла, которое должно быть передано (тепловая нагрузка или мощность).
  • Температура на входе и выходе на стороне первого и второго контура теплообменника.
  • Максимально допустимые потери напора на стороне и первого, и второго контура.
  • Максимальная рабочая температура.
  • Максимальное рабочее давление.
  • Расход среды на стороне первого и второго контура.

Если расход среды, удельная теплоемкость и разность температур на одной стороне контура известны, можно рассчитать величину тепловой нагрузки.

Температурная программа

Этот термин означает характер изменения температуры среды обоих контуров между ее значениями на входе в теплообменник и выходе из него.

T1 = Температура на входе – горячая сторона

T2 = Температура на выходе – горячая сторона

T3 = Температура на входе – холодная сторона

T4 = Температура на выходе – холодная сторона

Средний логарифмический температурный напор

Средний логарифмический температурный напор (LMTD) является эффективной движущей силой теплообмена.

Если не учитывать потери тепла в окружающее пространство, которыми можно пренебречь, правомерно утверждать, что количество тепла, отданное одной стороной пластинчатого теплообменника (тепловая нагрузка) равно количеству тепла, полученному другой его стороной.

Тепловая нагрузка (P) выражается в кВт или в ккал/ч.

P = m x c p x δt,

m = Массовый расход, кг/с

c p = Удельная теплоемкость, кДж/(кг x °C)

δt = Разность температур на входе и выходе одной стороны, °C

Термическая длина

Термическая длина канала или тета-параметр (Θ) является безразмерной величиной, которая характеризует соотношение между разностью температур δt на одной стороне теплообменника и его LMTD.

Плотность

Плотностью (ρ) является масса единицы объема среды и выражается в кг/м 3 или г/дм 3 .

Расход

Этот параметр может выражаться с использованием двух различных терминов: массы или объема. Если имеется в виду массовый расход, тогда он выражается в кг/с или в кг/ч, если объемный расход, то используются такие единицы, как м 3 /ч или л/мин. Чтобы перевести объемный расход в массовый, нужно величину объемного расхода умножить на плотность среды. Выбор теплообменника для выполнения конкретной задачи обычно определяет требуемая величина расхода среды.

Потери напора

Размер пластинчатого теплообменника непосредственно зависит от величины потери напора (∆p). Если есть возможность увеличить допустимые потери напора, то можно будет использовать более компактный и, следовательно, менее дорогой теплообменник. За ориентир для пластинчатых теплообменников для рабочих жидкостей вода/вода можно считать допустимой потери напора в диапазоне от 20 до 100 кПа.

Удельная теплоемкость

Удельная теплоемкость (с p) представляет собой количество энергии, которое необходимо для повышения температуры 1 кг какого-либо вещества на 1 °C при данной температуре. Так, удельная теплоемкость воды при температуре 20 °C равна 4,182 кДж/(кг х °C) или 1,0 ккал/(кг х °C).

Вязкость

Вязкость является мерой текучести жидкости. Чем ниже вязкость, тем выше текучесть жидкости. Вязкость выражается в сантипуазах (сП) или в сантистоксах (сСт).

Коэффициент теплопередачи

Коэффициент теплопередачи теплообменника является важнейшим параметром, от которого зависит сфера применения устройства, а также его эффективность. На данную величину влияет скорость движения рабочих сред, а также особенности конструкции агрегата.

Коэффициент теплопередачи теплообменника представляет собой совокупность следующих величин:

  • теплоотдача от греющей среды к стенкам;
  • теплопередача от стенок к нагреваемой среде;
  • теплопередача водонагревателя.

Коэффициент теплопередачи теплообменника рассчитывается по определенным формулам, состав которых также зависит от вида теплообменного агрегата, его габаритов, а также от характеристик веществ, с которыми работает система. Кроме того, необходимо учитывать внешние условия эксплуатации аппаратуры – влажность, температуру и т.д.

Коэффициент теплопередачи (k) является мерой сопротивления тепловому потоку, вызываемого такими факторами, как материал пластин, количество отложений на ее поверхности, свойства жидкостей и тип используемого теплообменника. Коэффициент теплопередачи выражается в Вт/(м 2 x °C) или в ккал/(ч x м 2 x °C).

Выбор теплообменника

Каждый параметр в этих формулах может повлиять на выбор теплообменника. Выбор материалов же обычно не влияет на эффективность теплообменника, от них зависит только его прочность и стойкость к коррозии.

Применяя пластинчатый теплообменник , мы получаем преимущества в виде небольших разностей температур и малой толщины пластин, которая обычно равна от 0,3 до 0,6 мм.

Коэффициенты теплоотдачи (α1 и α2) и коэффициент загрязнения (Rf), как правило, очень малы, что объясняется высокой степенью турбулентности течения среды в обоих контурах теплообменника. Этим же обстоятельством можно объяснить и высокое значение расчетного коэффициента теплопередачи (k), которое при благоприятных условиях может достигать величины 8 000 Вт/(м 2 х °C).

В случае применения обычных кожухотрубных теплообменников величина коэффициента теплопередачи (k) не превысит значение 2 500 Вт/(м 2 х °C).

Важными факторами минимизации стоимости теплообменника являются два параметра:

1. Потери напора. Чем выше допустимая величина потерь напора, тем меньше размеры теплообменника.

2. LMTD. Чем выше разность температур жидкостей в первом и втором контуре, тем меньше размеры теплообменника.

Ограничения по давлению и температуре

Стоимость пластинчатого теплообменника зависит от максимально допустимых значений давления и температуры. Основное правило можно сформулировать следующим образом: чем ниже максимально допустимые значения рабочих температуры и давления, тем меньше стоимость теплообменника.

Загрязнение и коэффициенты

Допустимое загрязнение может быть учтено в вычислении через расчетный запас (M), то есть, за счет дополнительного процента поверхности теплообмена или введения коэффициента загрязнения (Rf), выражаемого в таких единицах, как (м 2 х °C)/Вт или (м 2 х ч х °C)/ккал.

Коэффициент загрязнения при расчете пластинчатого теплообменника должен браться значительно меньшим, чем при расчете кожухотрубного теплообменника. Для этого есть две причины.

Более высокая турбулентность потока (k) означает меньший коэффициент загрязнения.

Конструкция пластинчатых теплообменников обеспечивает гораздо более высокую степень турбулентности и, следовательно, более высокий тепловой коэффициент полезного действия (кпд), чем это имеет место в традиционных кожухотрубных теплообменниках. Обычно коэффициент теплопередачи (k) пластинчатого теплообменника (вода/вода) может составлять от 6 000 до 7 500 Вт/(м 2 х °C), в то время как традиционные кожухотрубные теплообменники при одинаковом применении обеспечивают коэффициент теплопередачи порядка лишь 2 000–2 500 Вт/(м 2 х °C). Типичное значение Rf, обычно используемое в расчетах кожухотрубных теплообменников, равно 1 х 10-4 (м 2 х °C)/Вт. В этом случае использование значения k от 2 000 до 2 500 Вт/(м 2 х °C) дает расчетный запас (M = kc х Rf) порядка 20–25 %. Чтобы получить такое же значение асчетного запаса (M) в пластинчатом теплообменнике с коэффициентом теплопередачи порядка 6 000–7 500 Вт/(м 2 х °C), надо взять коэффициент загрязнения, равный всего лишь 0,33 х 10-4 (м 2 х °C)/Вт.

Различие в добавлении расчетного запаса

При расчете кожухотрубных теплообменников расчетный запас добавляется путем увеличения длины труб при сохранении расхода среды через каждую трубу. При расчете пластинчатого теплообменника такой же расчетный запас обеспечивается за счет добавления параллельных каналов или посредством уменьшения расхода в каждом канале. Это приводит к снижению степени турбулентности течения среды, уменьшению эффективности теплообмена и увеличению опасности загрязнения каналов теплообменника. Использование слишком большого коэффициента загрязнения может привести к повышенной интенсивности образования отложений.Для пластинчатого теплообменника, работающего в режиме вода/вода, значение расчетного запаса от 0 до 15 % (в зависимости от качества воды) можно считать вполне достаточным.

Прежде чем купить теплообменник заказчики сравнивают предложения разных поставщиков и производителей, рассылая им исходные данные. Компания «Астера», опытный , представляет шесть характеристик, которые влияют на конечную стоимость товара и на которые нужно обратить внимание в первую очередь, чтобы желание сэкономить не обернулось двойными тратами.

Стоимость теплообменников складывается из инженерных расходов и коммерческой составляющей. Данная статья раскрывает первый аспект.

  • Толщина теплообменных пластин и материал их изготовления

Толщина пластины – это первое, на что обращаешь внимание при выборе теплообменника. Чем она толще, тем выше стоимость оборудования. Связано это с двумя факторами:

  • Больше масса металла для выпуска пластин;
  • Больше пластин для качественной теплопередачи через толщу стенки и достижения требуемой мощности.

Средняя толщина пластины – 0,5 мм. Теплообменники большого типоразмера с ДУ от 150 и требующие высокого рабочего давления оснащаются пластинами 0,6 мм. При давлении 10 кгс/см² и ДУ до 150 допустима толщина 0,4 мм. Чем тоньше пластины, тем меньше ресурс теплообменного оборудования.

В качестве материала для пластины чаще используется нержавеющая сталь марки AISI316. Тем не менее некоторые производители заменяют его сортом AISI304. Он стоит дешевле, в нем меньше никеля и молибдена, значит, материал больше подвержен коррозии. Если теплообменник эксплуатируется в идеальных с точки зрения среды условиях, то это допустимо. Но когда дело касается системы горячего водоснабжения (а там используется хлор), то есть риск, что оборудование прослужит недолго. Чтобы не попасть впросак, рекомендуется внимательно изучить и посмотреть, из какой стали выполнены пластины.

  • Рабочее давление

От рабочего давления зависят тип, габариты и цена на теплообменник. Чем оно ниже, тем дешевле оборудование. Поэтому нужно заранее определиться, какой параметр требуется. Минимальное рабочее давление составляет 6 кгс/см². Соответственно такой аппарат наиболее доступный по цене, потому что в нем использованы тонкие плиты и пластины.

  • Коэффициент передачи тепловой энергии

Для расчета коэффициента теплопередачи используется несколько данных:

  • Мощность теплообменника;
  • Температурная дельта;
  • Величины запаса поверхности и расхода энергии;
  • Диаметр присоединения;
  • Скорость перемещения жидкости и т.д.

Этот показатель рассчитывается по формуле. Чем он выше, тем лучше производительность теплообменника. При увеличении скорости перемещения жидкости в каналах повышается теплообмен. Скорость можно увеличить, сократив количество каналов, то есть пластин.

Минусом высокой скорости течения жидкости является более быстрое отложение накипи на стенках. Поэтому тепловое оборудование будет стоить дешевле, но возрастет стоимость эксплуатации за счет забивания каналов солями магния и кальция. Время от времени будет требоваться разборная чистка.

Эффективен, но его коэффициент теплопередачи в реальности не превышает 7000 Вт/м.кв 2 К. Поэтому если производитель предлагает оборудование с коэффициентом 10000 Вт/м.кв 2 К, то это должно насторожить.

  • Запас поверхности для теплообмена

Хороший теплообменник должен иметь 10-15% запаса теплообменной поверхности. Если производитель поставил себе цель удешевить продукцию, то данный параметр будет приближаться к нулю. По мнению экспертов в области теплообменного оборудования, нулевое значение является обманом покупателя, потому что при погрешности таких показателей, как расчет нагрузки, недогрев до оптимальной температуры теплоносителя, аппарат может просто-напросто не работать. Даже загрязнение поверхности будет отрицательно сказываться на его работоспособности.

  • Потеря давления

Δ р представляет собой величину потери давления, или напора. Она измеряется в м.в.с. либо в Па. Заказчик указывает необходимый показатель в опросном листе.

Если процесс эксплуатации требует минимального снижения или потери давления в процессе работы, то теплообменник должен быть оснащен большим количеством пластин. Если изменение напора не имеет большого значения, то можно ограничиться более компактным, значит, более дешевым теплообменным оборудованием.

Как влияет количество пластин на потерю давления? Этому есть довольно простое объяснение. Чем больше пластин, тем больше каналов между пластинами. Для прохождения определенному объему жидкости оказывается меньше сопротивления, поэтому и потеря давления незначительна.

При покупке оборудования нужно быть внимательным и сравнивать показатель потери давления с данными, указанными в опросном листе. В противном случае некоторые недобросовестные производители могут указать немного завышенные значения и удешевить для покупателя оборудование. Но обычно высокая потеря давления весьма нежелательна.

  • Условный диаметр

Этот показатель иногда называют диаметром присоединения. Его нужно определить по формуле. Он зависит от того, какие параметры заданы потенциальным заказчиком. Методом расчета выявляется, требуется ли однозначный показатель ДУ или в качестве варианта есть возможность использовать и второй размер, который отличается условным диаметром. В последнем случае если допустимо меньшее сечение, на нем и останавливаются. Так, теплообменник с ДУ65 дешевле оборудования с ДУ100. Это связано с тем, что чем больше сечение, тем больше и пластина теплового оборудования.

Нужно учитывать следующий момент: когда сужается сечение в трубах, увеличивается скорость течения жидкости. В результате будет дополнительно падать давление. Если предстоит долгая эксплуатация теплового оборудования, то пластина, примыкающая к проходному сечению, может разрушаться.

Вывод

Для грамотного сравнения предлагаемых вариантов от заводов по выпуску теплообменников рекомендуем всегда иметь в виду соответствие оборудования поставленным перед ним целям. А именно:

  • Сталь и толщина пластины: лучше сталь сорта AISI316 с толщиной не меньше полумиллиметра.
  • Давление в пластинах должно отвечать требуемым характеристикам.
  • Чем ближе коэффициент теплопередачи к показателю 7000 Вт/м.кв 2 К, тем лучше.
  • Оптимальный запас поверхности – 10-15%.
  • Параметр потери давления зависит от условий эксплуатации и определяется заказчиком.
  • Диаметр присоединения зависит от поставленных задач, но нужно иметь в виду, что чем меньше ДУ, тем больше будет теряться давление и раньше будут изнашиваться пластины.

Компания «Астера» надеется, что статья будет вам полезной и на основании указанных шести характеристик вы сделаете верный выбор теплообменного оборудования.

Рассчитываем коэффициент  1 со стороны греющего пара для случая конденсации на пучке n вертикальных труб высотой Н:


= 2,04
= 2,04
= 6765 Вт/(м 2 К), (10)

здесь , , , r физические параметры конденсата при температуре пленки конденсата t к, Н – высота нагревательных труб, м; t – перепад температур между греющим паром и стенками труб (принимаем в пределах 3…8 0 С).

Значения функции А t для воды при температуре конденсации пара

Температура конденсации пара t к, 0 С

О правильности расчетов судят, сопоставляя полученное значение  1 и его предельные величины, которые приведены в п. 1.

Рассчитаем коэффициент теплоотдачи α 2 от стенок труб к воде.

Для этого необходимо выбрать уравнение подобия вида

Nu = ARe m Pr n (11)

В зависимости от величины числа Re определяют режим течения жидкости и выбирают уравнение подобия.

(12)

Здесь n– число труб на 1 ход;

d вн = 0,025 - 20,002 = 0,021 м – внутренний диаметр трубы;

При Re > 10 4 имеем устойчивый турбулентный режим движения воды. Тогда:

Nu = 0,023  Re 0,8  Pr 0,43 (13)

Число Прандтля характеризует соотношение физических параметров теплоносителя:

=
= 3,28. (14)

, , , с – плотность, динамическая вязкость, теплопроводность и теплоемкость воды при t ср.

Nu = 0,023 26581 0,8  3,28 0,43 = 132,8

Число Нуссельта характеризует теплоотдачу и связано с коэффициентом  2 выражением:

Nu =
,  2 = =
= 4130 Вт/(м 2 К) (15)

С учетом значений  1 ,  2 , толщины стенки трубы  = 0,002 м и ее теплопроводности  ст, определяем коэффициент К по формуле (2):

=
= 2309 Вт/(м 2 К)

Сопоставляем полученное значение К с пределами для коэффициента теплопередачи, которые были указаны в п 1.

Определяем площадь поверхности теплообмена из основного уравнения теплопередачи по формуле (3):

=
= 29 м 2 .

Вновь по таблице 4 выбираем стандартный теплообменник:

площадь поверхности теплообмена F = 31 м 2 ,

диаметр кожуха D = 400 мм,

диаметр труб d = 25×2 мм,

число ходов z = 2,

общее число труб N = 100,

длина (высота) труб H = 4 м.

Запас площади

(запас площади должен быть в пределах 5…25%).

4. Механический расчет теплообменника

При расчете на внутреннее давление толщина стенки корпуса  к проверяется по формуле:

 к =
+ С, (16)

где р – давление пара 4·0,098 = 0,39 Н/мм 2 ;

D н – наружный диаметр кожуха, мм;

 = 0,9 коэффициент прочности сварного шва;

 доп = 87…93 Н/мм 2 – допускаемое напряжение для стали;

С = 2…8 мм – прибавка на коррозию.

 к =
+ 5 = 6 мм.

Принимаем нормализованную толщину стенки 8 мм.

Трубные решетки изготавливаются из листовой стали. Толщина стальных трубных решеток берется в пределах 15…35 мм. Она выбирается в зависимости от диаметра развальцованных труб d н и шага труб .

Расстояние между осями труб (шаг труб) τ выбирают в зависимости от наружного диаметра труб d н:

τ = (1,2…1,4)·d н, но не менее чем τ = d н + 6 мм.

Нормализованный шаг для труб d н = 25 мм равен τ = 32 мм.

 р =
.

При заданном шаге 32 мм толщина решетки должна быть не менее

 р =
= 17,1 мм.

Окончательно принимаем  р = 25 мм.

При расчете фланцевых соединений задаются размером стягивающего болта. Принимаем во фланцевом соединении для аппаратов с диаметром D в = 400…2000 мм стальной болт М16.

Определим допустимую нагрузку на 1 болт при затяжке:

q б = (d 1 – c 1) 2 , (17)

где d 1 = 14 мм – внутренний диаметр резьбы болта;

с 1 = 2 мм – конструктивная прибавка для болтов из углеродистой стали;

 = 90 Н/мм 2 – допустимое напряжение на растяжение.

q б = (14 – 2) 2  90 = 10174 Н.

Купленов Н.И. к.т.н., Мотовицкий С.В. аспирант
Тульский государственный университет

Благодаря своим достоинствам разборные пластинчатые водонагреватели (ПВН) активно вытесняют из отечественных систем теплоснабжения традиционные трубчатые теплообменники. Обеспечивая в несколько раз более высокий начальный коэффициент теплопередачи по сравнению с трубчатыми, эти теплообменники, однако гораздо «чувствительнее» к влиянию отложений накипи, термическое сопротивление которой более резко уменьшает теплопередачу .

При высоком содержании накипеобразующих солей и продуктов коррозии в воде, характерном для большинства регионов РФ, расчетный режим работы ПВН быстро нарушается, уменьшение коэффициента теплопередачи компенсируется повышением температуры греющего теплоносителя или его расхода. На практике это не всегда возможно, поэтому в подавляющем большинстве случаев необходима промывка.

Для компенсации постепенного уменьшения коэффициента теплопередачи необходим запас поверхности теплообмена ∆F.

Отечественная практика заказов ПВН по опросным листам заимствована из зарубежной без учета собственного опыта т.е. запас теплообменной поверхности или отсутствует или составляет 2-10% от расчетной чистой поверхности F 0 .

Из опыта эксплуатации скоростных водонагревателей известно, что вследствие низкого качества противонакипной обработки водопроводной воды коэффициент теплопередачи уменьшается достаточно быстро. Так, по данным при среднем качестве воды в ЦТП г. Москвы за 4 месяца эксплуатации он уменьшился на 45-50%. Из этого следует, что при неизменных начальных температурах теплоносителей требуемая температура нагрева воды может быть обеспечена лишь при 100% - ном запасе по сравнению с расчетной величиной теплообменной поверхности.

Недостаточная величина запаса ∆F обусловит короткий межпромывочный период и необходимость частой промывки водонагревателя; завышенная величина ∆F уменьшит количество промывок, но одновременно возрастут первоначальные затраты на ПВН.

Известно, что стоимость пластинчатых водонагревателей составляет основную долю затрат на оборудование теплового пункта, в то же время и затраты на химическую промывку, как показывает опыт , тоже значительны. Поэтому экономически оправдано определение поверхности теплообмена с учетом фактической интенсивности накипеобразования и необходимости ее регулярной промывки.

Основа методики такого определения заключается в обеспечении минимума годовых затрат на амортизацию запаса поверхности теплообмена ∆F и затрат на регулярную промывку водонагревателя; это условие выполняется равенством затрат

где - коэффициент амортизации ПВН, %/100; , - стоимость 1м 2 теплообменной поверхности и затрат на промывку, руб./м 2 ; - расчетная поверхность теплообмена при отсутствии накипи, м 2 ; , - продолжительность межпромывочного периода и годовой эксплуатации ПВН, сут.

При заданных начальных температурах и расходах теплоносителей, требуемый коэффициент эффективности нагрева воды при уменьшении коэффициента теплопередачи от образующейся накипи будет обеспечиваться выполнением условия

(2)

где , - коэффициенты теплопередачи при отсутствии накипи и при ее появлении.

Термическое сопротивление теплопередаче

(3)

где , - термическое сопротивление теплопередачи при чистой поверхности и термическое сопротивление слоя накипи.

После подстановки (3) в уравнение (2) получим

(5)

Подстановкой (5) в уравнение (1а) получим

Интенсивность накипеобразования определяется качеством воды, температурным и гидравлическим режимами работы ПВН. В конце межпромывочного периода сопротивление слоя накипи толщиной в соответствии с принятой математической моделью может быть рассчитано по уравнению:

где , - скорости образования и смыва накипи; - коэффициент теплопроводности накипи.

По литературным данным и выполненным исследованиям

где , - экспериментальные константы, - концентрация накипеобразующих солей в воде, кг/м 3 ; - касательное напряжение на поверхности накипи, Па; - температура воды, ˚С.

Термическое сопротивление удобно выразить в виде

где - соотношение скоростей нагреваемого «холодного» и греющего теплоносителей; - скорость холодного теплоносителя; - комплекс величин, характеризующих теплофизические характеристики теплоносителя и конструктивные особенности пластины ПВН; - термическое сопротивление стенки пластины.

Уравнение (6) после подстановки в него (7) и (10) в своей правой и левой части содержит одну неизвестную величину - продолжительность межпромывочного периода - и позволяет при заданных исходных данных определить ее целесообразное значение.

Основными экономическими факторами, определяющими величину , является стоимость 1м 2 теплообменной поверхности , и затраты на промывку , руб./м 2 .

На рис.1 приведены результаты расчетов экономически целесообразной продолжительности межпромывочного периода при скорости нагреваемого теплоносителя ω х = 0,4 м/с в зависимости от определяющих величин.

Рис.1 Зависимость экономически целесообразных относительной величины запаса теплообменной поверхности ∆F/F 0 и продолжительности межпромывочного периода τ мпр пластинчатого водонагревателя для горячего водоснабжения

Примечание:

1)Расчет производился при ω х = 0,4 м/с для пластин типа М10-BFG.

2)Исходные данные:

С=0,00357 кг/м 3 ; а м =0,19; λ н =1,05 Вт/(м·˚С); =12,7·10 -10 ; А=13374.

С повышением удельной стоимости промывки теплообменной поверхности экономически целесообразный межпромывочный период увеличивается, и приведенные зависимости позволяют получить количественную оценку продолжительности этого периода.

С другой стороны, при высокой стоимости теплообменника, что имеет место при уменьшении площади единичной пластины, величина экономически целесообразного запаса теплообменной поверхности уменьшается, конкретные величины определяющих факторов и зависимых от них величин приведены на графиках. Из этих данных следует, в частности, что для обеспечения требуемого температурного режима горячего водоснабжения даже при умеренной жесткости водопроводной воды и ежемесячной промывке запас теплообменной поверхности должен быть не менее 60% по сравнению с ее величиной при безнакипном режиме работы.

Заметим, что сопутствующее образованию накипи возрастание гидравлического сопротивления ПВН при экономически целесообразных продолжительностях межпромывочного периода несущественно, поскольку в среднем проходное сечение межпластинчатых каналов уменьшается на 4-8%.

Литература

1. Жаднов О.В. "Пластинчатые теплообменники - дело тонкое"// "Новости теплоснабжения" -2005.,-N 3.-c.39-53.

2. Чернышев Д.В. "Прогнозирование накипеобразования в пластинчатых водонагревателях для повышения надежности их работы" Дисс. к.т.н.05.23.03.- Тула, 2002. - 199с.

3. Бажан П.И., Каневец Г.Е., Селиверстов В.М. Справочник по теплообменным аппаратам. -М.: Машиностроение, 1989.

4. Чистяков Н.Н. и др. Повышение эффективности работы систем горячего водоснабжения. М., Стройиздат, 1988.