ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Провода и тросы воздушных линий электропередачи. Воздушные линии электропередачи. Опорные конструкции

Пример моделирования в программе ELCUT. Транспозиция проводов воздушной линии электропередачи.
Страница примера на сайте поддержки пользователей программы:
http://elcut.ru/advanced/transposition_r.htm. На этой странице даны файлы задачи и подробные результаты анализа данного примера.
Сайт www.elcut.ru содержит материалы для изучения программы и лёгкого старта в инженерных расчётах, Вы можете бесплатно скачать ELCUT Студенческий для решения простых задач.
Условия приобретения лицензии – для предприятий и льготные - для ВУЗов.
Техническая помощь по адресу [email protected]. Обращайтесь, будем рады помочь освоить программу.


Участок воздушной линии электропередачи класса 110 кВ, длиной 120 километров.
Тип задачи: Плоская задача магнитного поля переменных токов.
Геометрия: Опора ЛЭП. Все размеры в метрах. Схема транспозиции. Длина линии l = 120 км
Исходные данные: Номинальное напряжение линии (действующее) Uл = 110 кВ
Rнагр = 100 Ом, Lнагр = 0.23 Гн.
Задание: Определить индуктивность фазы линии электропередачи.

Решение:
Согласно ПУЭ, на ВЛ 110-500 кВ длиной более 100 км для ограничения несимметрии токов и напряжений должен выполняться один полный цикл транспозиции. Шаг транспозиции по условию влияний на линии связи не нормируется. При этом транспозиция должна осуществляться так, чтобы суммарные длины участков ВЛ с различным чередованием фаз были примерно равны.
Длина нашей линии составляет 120 км, и на протяжении всего участка электропередачи происходит полный цикл транспозиции проводов линии. Расстояние между точками транспозиции (транспозиционными опорами) составляет 40 км.
Для учета различного расположения отрезков линии они все были добавлены в модель. Участки были изолированы по магнитному полю, и не создавали помех друг другу, но были связаны в цепи. Таким образом в единой задаче удалось учесть различное распределение проводников.
Полное сопротивление линии складывается из сопротивлений отдельных участков и может быть найдено как падение напряжения на отдельный участках, деленное на ток:
Zл = (U1 + U2 + U3) / I.
Cопротивление линии может быть представлено, как сумма активного сопротивления (R) и индуктивного сопротивления (Xл):
Zл = Rл + j Xл.
Для определения индуктивности линии воспользуемся законом Ома и соотношением между индуктивным сопротивлением и индуктивностью:
L = Xл / 2 π f,
где Xл - индуктивное сопротивление фазы линии;
f - частота тока.

Результаты расчета: Таблица измеренных токов и напряжений для фазы А.

Загрузить файлы задачи: http://elcut.ru/examples/transposition.zip Сопротивление ZC, Ом
Посмотреть подробно геометрию и результаты: http://elcut.ru/advanced/transposition_r.htm
Транспозиция проводов воздушной линии электропередачи

Видео Транспозиция проводов воздушной линии электропередачи. Пример моделирования в ELCUT канала elcut2010

Расположение проводов на опорахТранспозиция проводов

Количество проводов на ВЛ

Опоры одноцепных ВЛ напряжением
свыше 1 кВ рассчитаны на подвеску трёх
фазных проводов, то есть одной цепи.
Опоры двухцепных ВЛ напряжением свыше
1 кВ рассчитаны на подвеску 6 проводов, то
есть двух цепей.

Расположение проводов на опорах ВЛ (ГТ – грозозащитный трос)

а), б) – подвес треугольником, Линии от 35 кВ снабжают
в) – горизонтально, г) – елкой, грозозащитными тросами,
д) – бочкообразно
которые размещают над
проводами,.

Транспозиция трехфазной линии

При всех способах расположения, кроме треугольника провода
каждой цепи располагаются несимметрично один по
отношению к другому это приводит к индуктивному
сопротивлению фаз и емкостей между ними. Для устранения
этого влияния на линиях ВЛ 35 кВ и выше применяют
транспозицию проводов, то есть изменяют взаимное
расположение фаз на опорах.

Пример транспозиции на опорах, ее полный цикл

Выполнение транспозиции проводов с полевой стороны

Узел транспозиции

Схема проводов и опор при транспозиции

1,2,3 – опоры;
l – длина пролета;
А,В,С – фазы проводов

Основные правила транспозиции

1.Пролет транспозиции уменьшают на 25-30 %
2.Крепление проводов должно быть двойным
3.Схлестывание проводов не допускается
4.Расстояние между транспозициями проводов
ВЛ должно быть не более 3 км
5.Цикл транспозиции равен 9 км

Опоры и фундаменты на воздушные линии электропередач напряжением 35-110 кВ имеют значительный удельный вес как в части материалоёмкости, так и в стоимостном отношении. Достаточно сказать, что стоимость смонтированных опорных конструкций на этих воздушных линиях составляет, как правило, 60-70 % полной стоимости сооружения воздушных линий электропередач. Для линий, расположенных на промышленных предприятиях и непосредственно прилегающих к ним территориях, этот процент может быть ещё выше.

Опоры воздушной линии предназначены для поддержания проводов линий на определённом расстоянии от земли, обеспечивающем безопасность людей и надёжную работу линии.

Опоры воздушных линий электропередач делятся на анкерные и промежуточные. Опоры этих двух групп различаются способом подвески проводов.

Анкерные опоры полностью воспринимают тяжение проводов и тросов в смежных с опорой пролётах, т.е. служат для натяжения проводов. На этих опорах провода подвешиваются с помощью подвесных гирлянд. Опоры анкерного типа могут быть нормальной и облегчённой конструкции. Анкерные опоры значительно сложнее и дороже промежуточных и поэтому число их на каждой линии должно быть минимальным.

Промежуточные опоры не воспринимают тяжение проводов или воспринимают его частично. На промежуточных опорах провода подвешиваются с помощью поддерживающих гирлянд изоляторов, рис. 1.

Рис. 1. Схема анкерного пролёта воздушной линии и пролёта пересечения с железной дорогой

На базе анкерных опор могут выполняться концевые и транспозиционные опоры. Промежуточные и анкерные опоры могут быть прямыми и угловыми .

Концевые анкерные опоры, устанавливаемые при выходе линии с электростанции или на подходах к подстанции, находятся в наихудших условиях. Эти опоры испытывают одностороннее тяжение всех проводов со стороны линии, так как тяжение со стороны портала подстанции незначительно.

Промежуточные прямые опоры устанавливаются на прямых участках воздушных линий электропередач для поддержания проводов. Промежуточная опора дешевле и проще в изготовлении, чем анкерная, так как в нормальном режиме не испытывает усилий вдоль линии. Промежуточные опоры составляют не менее 80-90 % общего числа опор воздушных линий.

Угловые опоры устанавливаются в точках поворота линии. При углах поворота линии до 20 о применяют угловые опоры анкерного типа. При углах поворота линии электропередачи более 20 о – промежуточные угловые опоры.

На воздушных линиях электропередач применяются специальные опоры следующих типов: транспозиционные – для изменения порядка расположения проводов на опорах; ответвительные – для выполнения ответвлений от основной линии; переходные – для пересечения рек, ущелий и т.д.

Транспозицию применяют на линиях напряжением 110 кВ и выше протяжённостью более 100 км для того, чтобы сделать ёмкость и индуктивность всех трёх фаз цепи воздушных линий электропередач одинаковыми. При этом последовательно меняют на опорах взаимное расположение проводов по отношению друг к другу. Однако такое тройное перемещение проводов называют циклом транспозиции. Линия делится на три участка (шага), на которых каждый из трёх проводов занимает все три возможных положения, рис. 2.




Рис. 2.

В зависимости от количества подвешиваемых на опорах цепей опоры могут быть одноцепные и двухцепные . Провода располагаются на одноцепных линиях горизонтально или треугольником, на двухцепных опорах – обратной ёлкой или шестиугольником. Наиболее часто встречающиеся расположения проводов на опорах схематически изображены на рис. 3.




Рис. 3. :

а – расположение по вершинам треугольника; б - горизонтальное расположение; в – расположение обратной ёлкой

Там же указано и возможное расположение грозозащитных тросов. Расположение проводов по вершинам треугольника (рис. 3,а) широко распространено на линиях до 20-35 кВ и на линиях с металлическими и железобетонными опорами напряжением 35-330 кВ.

Горизонтальное расположение проводов применяют на линиях 35 кВ и 110 кВ на деревянных опорах и на линиях более высокого напряжения на других опорах. Для двухцепных опор более удобно с точки зрения монтажа расположение проводов по типу «обратная ёлка», но увеличивает массу опор и требует подвески двух защитных тросов.

Деревянные опоры широко применялись на воздушных линиях электропередач до 110 кВ включительно. Наиболее распространены сосновые опоры и несколько меньше опоры из лиственницы. Достоинства этих опор – малая стоимость (при наличии местной древесины) и простота изготовления. Основной недостаток – гниение древесины, особенно интенсивное в месте соприкосновения опоры с почвой.

Выполняются из стали специальных марок для линий 35 кВ и выше, требуют большого количества металла. Отдельные элементы соединяют сваркой или болтами. Для предотвращения окисления и коррозии поверхность металлических опор оцинковывают или периодически окрашивают специальными красками. Однако они обладают высокой механической прочностью и большим сроком службы. Устанавливают металлические опоры на железобетонных фундаментах. Эти опоры по конструктивному решению тела опоры могут быть отнесены к двум основным схемам – башенным или одностоечным , рис. 4, и портальным , рис. 5.а, по способу закрепления на фундаментах – к свободностоящим опорам, рис. 4 и 6, и опорам на оттяжках , рис. 5.а, б, в.

На металлических опорах высотой 50 м и более должны быть установлены лестницы с ограждениями, доходящими по вершины опоры. При этом на каждой секции опор должны быть выполнены площадки с ограждениями.



Рис. 4. :

1 – провода; 2 – изоляторы; 3 – грозозащитный трос; 4 – тросостойка; 5 – траверсы опоры; 6 – стойка опоры; 7 – фундамент опоры



Рис. 5. :

а) – промежуточная одноцепная на оттяжках 500 кВ; б) – промежуточная V -образная 1150 кВ; в) – промежуточная опора ВЛ постоянного тока 1500 кВ; г) – элементы пространственных решетчатых конструкций




Рис. 6. :

а) – промежуточная 220 кВ; б) – анкерная угловая 110 кВ

Железобетонные опоры выполняются для линий всех напряжений до 500 кВ. Для обеспечения необходимой плотности бетона применяют виброуплотнение и центрифугирование. Виброуплотнение производится различными вибраторами. Центрифугирование обеспечивает очень хорошее уплотнение бетона и требует специальных машин – цинтрифуг. На воздушных линиях электропередач 110 кВ и выше стойки опор и траверсы портальных опор – центрифугированные трубы, конические или цилиндрические. Железобетонные опоры долговечнее деревянных, отсутствует коррозия деталей, просты в эксплуатации и поэтому получили широкое распространение. Они имеют меньшую стоимость, но обладают большей массой и относительной хрупкостью поверхности бетона, рис. 7.



Рис. 7.

опоры : а) – со штыревыми изоляторами 6-10 кВ; б) – 35 кВ;

в) – 110 кВ; г) – 220 кВ

Траверсы одностоечных железобетонных опор – металлические оцинкованные.

Срок службы железобетонных и металлических оцинкованных или периодически окрашиваемых опор велик и достигает 50 лет и более.

Иногда виток состоит не из одного, а из нескольких параллельных проводов. При этом провода должны иметь равную длину и одинаковое сцепление с полем рассеяния, иначе будут значительные дополнительные потери. Поэтому параллельные провода, образующие виток, если они расположены перпендикулярно потоку рассеяния, должны соответственно транспонироваться, т. е. меняться местами.

Транспозиция параллельных проводов в непрерывной обмотке

В непрерывной обмотке параллельные провода меняют местами в переходах из одной катушки в другую, причем число переходов получается равным числу параллельных проводов в витке. Как видно, параллельные провода при переходе из первой катушки во вторую меняются местами, т. е. верхние провода становятся нижними, а нижние - верхними. Чтобы это осуществить, переходы проводов смещают один по отношению к другому. Смещение производят обычно на один пролет между рейками. В результате виток, состоящий из двух параллельных проводов, занимает своими переходами два пролета, из трех - три пролета, из четырех - четыре.
Практикой изготовления многопараллельных непрерывных обмоток выработано правило, согласно которому началом и концом катушки, виток которой состоит из нечетного числа параллельных проводов, считают средний провод, а при четном числе параллельных проводов - последний провод первой половины всех проводов. Так, при двухпроводном витке это будет первый верхний провод, при трехпроводном витке - второй средний провод, а при четырехпроводном витке - второй провод, считая сверху, и т. д.
Место изгиба каждого из параллельных проводов для перехода из катушки в катушку, как уже указывалось, предварительно изолируют электрокартоном. При изгибе для наружного перехода накладывают полоску на провод снизу, а для внутреннего - коробочку на провод сверху.
Места переходов, а соответственно и изгибов проводов, размечают в соответствии с чертежом обмотки в развернутом виде, где показаны и пронумерованы все рейки и пролеты и изображены все переходы и транспозиции. На чертеже наружные переходы показывают оплошными линиями, а внутренние - пунктирными.
При выполнении наружных переходов из неперекладной катушки в перекладную сначала изгибают верхний провод, а затем, идя последовательно сверху вниз, остальные. При этом смещают место изгиба для каждого последующего провода на одну рейку. Переходы всех проводов укладывают так, чтобы верхние провода переходили соответственно в нижние, а нижние - в верхние.
Для намотки перекладной катушки необходимо плавно спустить переходы с верха постоянной катушки вниз, на рейки к основанию временной катушки. Для этого применяют технологический клин, который набирают ступеньками из электрокартонных полос шириной, равной примерно ширине провода вместе с изоляцией. Длину клина в зависимости от числа параллельных проводов в витке берут равной 1/3-1/2 витка.
Клин должен иметь наибольшую высоту, равную радиальному размеру катушки минус один виток. Эта высота должна постепенно уменьшаться: под вторым переходом - на толщину одного провода, под третьим переходом - еще на толщину одного провода и т. д., а за пределами всех переходов равномерно и постепенно сойти на нет. После того как клин скомплектован его бандажируют вразгон по всей длине киперной лентой. Изготовленный таким образом клин подкладывают под переходы и плавно спускают их на рейки. Затем наматывают перекладную катушку.
При намотке первого витка перекладной катушки провода укладываются на рейки по небольшой спирали, причем начало витка несколько приподнято по сравнению с концом. Поэтому под конец первого витка также подкладывают на некоторой длине технологический клин, набранный из электрокартонных полос. При наличии этого клина второй виток ложится без усилий и равномерно на первый виток и все временные витки устойчиво лежат один на другом. После намотки временной катушки размечают места изгибов для внутренних переходов в следующую постоянную неперекладную катушку и выгибают все параллельные провода. Предварительно место изгиба каждого провода изолируют электрокартонной коробочкой, которую накладывают на провод сверху и закрепляют лентой.
При выполнении внутренних переходов из перекладной катушки в неперекладную сначала выгибают нижний провод, а затем, идя последовательно снизу вверх, все остальные. При этом смещают место изгиба для каждого последующего провода на одну рейку. Переходы всех проводов укладывают так, чтобы нижние провода переходили соответственно в верхние, а верхние-в нижние.
Между параллельными проводами, идущими с барабанов, наблюдаются небольшие линейные смещения вследствие разности в диаметрах этих проводов при намотке. Чтобы смещения в процессе перекладывания витков не увеличивались, провода зажимают ручными тисками или рукой. Затем производят перекладку витков,
наблюдая за тем, чтобы провода не смещались один относительно другого. Перекладывание витков из нескольких параллельных проходов производят так же, как и витков из одного провода.
Намотку непрерывных катушек производят двое рабочих; один находится по одну сторону станка, а второй - по другую.

Воздушными называются линии, предназначенные для передачи и рас-пределения ЭЭ по проводам, расположенным на открытом воздухе и под-держиваемым с помощью опор и изоляторов. Воздушные ЛЭП сооружаются и эксплуатируются в самых разнообразных климатических условиях и гео-графических районах, подвержены атмосферному воздействию (ветер, голо-лед, дождь, изменение температуры).

В связи с этим ВЛ должны сооружаться с учетом атмосферных явлений, загрязнения воздуха, условий прокладки (слабозаселенная местность, территория города, предприятия) и др. Из ана-лиза условий ВЛ следует, что материалы и конструкции линий должны удовлетворять ряду требований: экономически приемлемой стоимостью, хо-рошей электропроводностью и достаточной механической прочностью мате-риалов проводов и тросов, стойкостью их к коррозии, химическим воздействиям; линии должны быть электрически и экологически безопасны, занимать минимальную территорию.

Конструктивное исполнение воздушных линий. Основными конст-руктивными элементами ВЛ являются опоры, провода, грозозащитные тро-сы, изоляторы и линейная арматура .

По конструктивному исполнению опор наиболее распространены одно-и двухцепные ВЛ. На трассе линии могут сооружаться до четырех цепей. Трасса линии - полоса земли, на которой сооружается линия. Одна цепь вы-соковольтной ВЛ объединяет три провода (комплекта проводов) трехфазной линии, в низковольтной - от трех до пяти проводов. В целом конструктивная часть ВЛ (рис. 3.1) характеризуется типом опор, длинами пролетов, габарит-ными размерами, конструкцией фаз, количеством изоляторов.

Длины пролетов ВЛ l выбирают по экономическим соображениям, т. к. с увеличением длины пролета возрастает провис проводов, необходимо уве-личить высоту опор H, чтобы не нарушить допустимый габарит линии h (рис. 3.1, б), при этом уменьшится количество опор и изоляторов на линии. Габарит линии - наименьшее расстояние от нижней точки провода до земли (воды, полотна дороги) должно быть таким, чтобы обеспечить безопасность движения людей и транспорта под линией.

Это расстояние зависит от номи-нального напряжения линии и условий местности (населенная, ненаселен-ная). Расстояние между соседними фазами линии зависит главным образом от ее номинального напряжения. Конструкция фазы ВЛ в основном опреде-ляется количеством проводов в фазе. Если фаза выполнена несколькими про-водами, она называется расщепленной. Расщепленными выполняют фазы ВЛ высокого и сверхвысокого напряжения. При этом в одной фазе используют два провода при 330 (220) кВ, три - при 500 кВ, четыре-пять - при 750 кВ, восемь, одиннадцать - при 1150 кВ.


Опоры воздушных линий. Опоры ВЛ - конструкции, предназначен-ные для поддерживания проводов на необходимой высоте над землей, водой, или каким-то инженерным сооружением. Кроме того, на опорах в необходимых случаях подвешивают стальные заземленные тросы для защиты прово-дов от прямых ударов молнии и связанных с этим перенапряжений.

Типы и конструкции опор разнообразны. В зависимости от назначения и размещения на трассе ВЛ они подразделяются на промежуточные и анкер-ные. Отличаются опоры материалом, исполнением и способом крепления, подвязки проводов. В зависимости от материала они бывают деревянные, железобетонные и металлические.

Промежуточные опоры наиболее простые, служат для поддерживания проводов на прямых участках линии. Они встречаются наиболее часто; доля их в среднем составляет 80-90 % общего числа опор ВЛ. Провода к ним кре-пят с помощью поддерживающих (подвесных) гирлянд изоляторов или шты-ревых изоляторов. Промежуточные опоры в нормальном режиме испытыва-ют нагрузку в основном от собственного веса проводов, тросов и изоляторов, подвесные гирлянды изоляторов свисают вертикально.

Анкерные опоры устанавливают в местах жесткого крепления прово-дов; они делятся на концевые, угловые, промежуточные и специальные. Ан-керные опоры, рассчитанные на продольные и поперечные составляющие тяжения проводов (натяжные гирлянды изоляторов расположены горизон-тально), испытывают наибольшие нагрузки, поэтому они значительно слож-нее и дороже промежуточных; число их на каждой линии должно быть ми-нимальным.

В частности, концевые и угловые опоры, устанавливаемые в конце или на повороте линии, испытывают постоянное тяжение проводов и тросов: одно-стороннее или по равнодействующей угла поворота; промежуточные анкер-ные, устанавливаемые на протяженных прямых участках, также рассчитыва-ются на одностороннее тяжение, которое может возникнуть при обрыве час-ти проводов в примыкающем к опоре пролете.

Специальные опоры бывают следующих типов: переходные - для больших пролетов пересечения рек, ущелий; ответвительные - для выполне-ния ответвлений от основной линии; транспозиционные - для изменения по-рядка расположения проводов на опоре.

Наряду с назначением (типом) конструкция опоры определяется коли-чеством цепей ВЛ и взаимным расположением проводов (фаз). Опоры (и ли-нии) выполняются в одно- или двухцепном варианте, при этом провода на опорах могут размещаться треугольником, горизонтально, обратной «елкой» и шестиугольником или «бочкой» (рис. 3.2 ).

Несимметричное расположение фазных проводов по отношению друг к другу (рис. 3.2) обусловливает неодинаковость индуктивностей и емкостей разных фаз. Для обеспечения симметрии трехфазной системы и выравнива-ния по фазам реактивных параметров на длинных линиях (более 100 км) на-пряжением 110 кВ и выше осуществляют перестановку (транспозицию) про-водов в цепи с помощью соответствующих опор.

При полном цикле транспозиции каждый провод (фаза) равномерно по длине линии занимает последовательно положение всех трех фаз на опоре (рис. 3.3).

Деревянные опоры (рис. 3.4 ) изготавливают из сосны или лиственницы и применяют на линиях напряжением до 110 кВ в лесных районах, в настоящее время все меньше. Основными элементами опор являются пасынки (пристав-ки) 1, стойки 2, траверсы 3, раскосы 4, подтраверсные брусья 6 и ригели 5. Опоры просты в изготовлении, дешевы, удобны в транспортировке. Основ-ной их недостаток - недолговечность из-за гниения древесины, несмотря на ее обработку антисептиком. Применение железобетонных пасынков (приста-вок) увеличивает срок службы опор до 20-25 лет.

Железобетонные опоры (рис. 3.5) наиболее широко применяются на линиях напряжением до 750 кВ. Они могут быть свободностоящие (проме-жуточные) и с оттяжками (анкерные). Железобетонные опоры долговечнее деревянных, просты в эксплуатации, дешевле металлических.

Металлические (стальные) опоры (рис. 3.6 ) применяют на линиях на-пряжением 35 кВ и выше. К основным элементам относятся стойки 1, тра-версы 2, тросостойки 3, оттяжки 4 и фундамент 5. Они прочны и надежны, но достаточно металлоемкие, занимают большую площадь, требуют для уста-новки сооружения специальных железобетонных фундаментов и в процессе эксплуатации должны окрашиваться для предохранения от коррозии .


Металлические опоры используются в тех случаях, когда технически сложно и неэкономично сооружать ВЛ на деревянных и железобетонных опорах (переходы через реки, ущелья, выполнение отпаек от ВЛ и т. п.).

В России разработали унифицированные металлические и железобе-тонные опоры различных типов для ВЛ всех напряжений, что позволяет се-рийно их производить, ускорять и удешевлять сооружение линий.

Провода воздушных линий .

Провода предназначены для передачи электроэнергии. Наряду с хорошей электропроводностью (возможно мень-шим электрическим сопротивлением), достаточной механической прочно-стью и устойчивостью против коррозии должны удовлетворять условиям экономичности. С этой целью применяют провода из наиболее дешевых ме-таллов - алюминия, стали, специальных сплавов алюминия. Хотя медь об-ладает наибольшей проводимостью, медные провода из-за значительной стоимости и потребности для других целей в новых линиях не используют-ся.

Их использование допускается в контактных сетях, в сетях горных предприятий.

На ВЛ применяются преимущественно неизолированные (голые) про-вода. По конструктивному исполнению провода могут быть одно- и много-проволочными, полыми (рис. 3.7 ). Однопроволочные, преимущественно стальные провода, используются ограниченно в низковольтных сетях. Для придания гибкости и большей механической прочности провода изготавли-вают многопроволочными из одного металла (алюминия или стали) и из двух металлов (комбинированные) - алюминия и стали. Сталь в проводе увеличи-вает механическую прочность.

Исходя из условий механической прочности, алюминиевые провода марок А и АКП (рис. 3.7) применяют на ВЛ напряжением до 35 кВ. Воздушные линии 6-35 кВ могут также выполняться сталеалюминиевыми проводами, а выше 35 кВ линии монтируются исключительно сталеалюминиевыми проводами.

Сталеалюминиевые провода имеют вокруг стального сердечника повивы из алюминиевых проволок. Площадь сечения стальной части обычно в 4-8 раз меньше алюминиевой, но сталь воспринимает около 30-40 % всей механической нагрузки; такие провода используются на линиях с длинными пролетами и на территориях с более тяжелыми климатическими условиями (с большей толщиной стенки гололеда).

В марке сталеалюминиевых прово-дов указывается сечение алюминиевой и стальной части, например, АС 70/11, а также данные об антикоррозийной защите, например, АСКС, АСКП - такие же провода, как и АС, но с заполнителем сердечника (С) или всего провода (П) антикоррозийной смазкой; АСК - такой же провод, как и АС, но с сердечником, покрытым полиэтиленовой плёнкой. Провода с антикорро-зийной защитой применяются в районах, где воздух загрязнен примесями, действующими разрушающе на алюминий и сталь. Площади сечения прово-дов нормированы Государственным стандартом.

Повышение диаметров проводов при неизменности расходования про-водникового материала может осуществляться применением проводов с на-полнителем из диэлектрика и полых проводов (рис. 3.7, г, д). Такое использо-вание снижает потери на коронирование (см. п. 2.2). Полые провода исполь-зуются главным образом для ошиновки распределительных устройств 220 кВ и выше.

Провода из сплавов алюминия (АН - нетермообработанные, АЖ - термообработанные) имеют большую по сравнению с алюминиевыми меха-ническую прочность и практически такую же электрическую проводимость. Они используются на ВЛ напряжением выше 1 кВ в районах с толщиной стенки гололеда до 20 мм.

Всё большее применение находят ВЛ с самонесущими изолированны-ми проводами напряжением 0,38-10 кВ. В линиях напряжением 380/220 В провода состоят из несущего неизолированного провода, являющегося нуле-вым, трёх изолированных фазных проводов, одного изолированного провода (любой фазы) наружного освещения. Фазные изолированные провода навиты вокруг несущего нулевого провода (рис. 3.8).

Несущий провод является сталеалюминиевым, а фазные - алюминие-выми. Последние покрыты светостойким термостабилизированным (сшитым) полиэтиленом (провод типа АПВ). К преимуществам ВЛ с изолированными проводами перед линиями с голыми проводами можно отнести отсутствие изоляторов на опорах, максимальное использование высоты опоры для под-вески проводов; нет необходимости в обрезке деревьев в зоне прохождения линии.

Грозозащитные тросы наряду с искровыми промежутками, разрядни-ками, ограничителями напряжений и устройствами заземления служат для защиты линии от атмосферных перенапряжений (грозовых разрядов). Тросы подвешивают над фазными проводами (рис. 3.5 ) на ВЛ напряжением 35 кВ и выше в зависимости от района по грозовой деятельности и материала опор, что регламентируется Правилами устройств электроустановок (ПУЭ).

В каче-стве грозозащитных проводов обычно применяют стальные оцинкованные канаты марок С 35, С 50 и С 70, а при использовании тросов для высокочас-тотной связи - сталеалюминевые провода. Крепление тросов на всех опорах ВЛ напряжением 220-750 кВ должно быть выполнено при помощи изолято-ра, шунтированного искровым промежутком. На линиях 35-110 кВ крепле-ние тросов к металлическим и железобетонным промежуточным опорам осуществляется без изоляции троса.

Изоляторы воздушных линий. Изоляторы предназначены для изоля-ции и крепления проводов. Изготавливаются они из фарфора и закаленного стекла - материалов, обладающих высокой механической и электрической прочностью и стойкостью к атмосферным воздействиям. Существенным дос-тоинством стеклянных изоляторов является то, что при повреждении зака-ленное стекло рассыпается. Это облегчает нахождение поврежденных изоля-торов на линии.

По конструкции, способу закрепления на опоре изоляторы разделяют на штыревые и подвесные. Штыревые изоляторы (рис. 3.9, а, б ) применяются для линий напряжением до 10 кВ и редко (для малых сечений) 35 кВ. Они крепятся к опорам при помощи крюков или штырей. Подвесные изоляторы (рис. 3.9, в) используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части 1, шапки из ковкого чугуна 2, металлического стержня 3 и цементной связки 4.

Изоляторы собираются в гирлянды (рис. 3.9, г): поддерживающие на промежуточных опорах и натяж-ные - на анкерных. Количество изоляторов в гирлянде зависит от напряже-ния, типа и материала опор, загрязнённости атмосферы. Например, в линии 35 кВ - 3-4 изолятора, 220 кВ - 12-14; на линиях с деревянными опорами, обладающих повышенной грозоупорностью, количество изоляторов в гир-лянде на один меньше, чем на линиях с металлическими опорами; в натяж-ных гирляндах, работающих в наиболее тяжелых условиях, устанавливают на 1-2 изолятора больше, чем в поддерживающих.

Разработаны и проходят опытную промышленную проверку изоляторы с использованием полимерных материалов. Они представляют собой стерж-невой элемент из стеклопластика, защищённый покрытием с ребрами из фто-ропласта или кремнийорганической резины. Стержневые изоляторы по срав-нению с подвесными имеют меньший вес и стоимость, более высокую меха-ническую прочность, чем из закалённого стекла. Основная проблема - обес-печить возможность их длительной (более 30 лет) работы.

Линейная арматура предназначена для закрепления проводов к изоля-торам и тросов к опорам и содержит следующие основные элементы: зажи-мы, соединители, дистанционные распорки и др. (рис. 3.10).

Поддерживающие зажимы применяют для подвески и закрепления проводов ВЛ на промежуточных опорах с ограниченной жёсткостью заделки (рис. 3.10, а). На анкерных опорах для жёсткого крепления проводов исполь-зуют натяжные гирлянды и натяжные зажимы - натяжные и клиновые (рис. 3.10, б, в). Сцепная арматура (серьги, ушки, скобы, коромысла) предна-значена для подвески гирлянд на опорах. Поддерживающая гирлянда (рис. 3.10, г) закрепляется на траверсе промежуточной опоры с помощью серьги 1, вставляемой другой стороной в шапку верхнего подвесного изоля-тора 2. Ушко 3 используется для прикрепления к нижнему изолятору гирлян-ды поддерживающего зажима 4.

Дистанционные распорки (рис. 3.10, д), устанавливаемые в пролётах линий 330 кВ и выше с расщепленными фазами, предотвращают схлестывание, соударения и закручивание отдельных проводов фаз. Соединители при-меняются для соединения отдельных участков провода с помощью овальных или прессующих соединителей (рис. 3.10, е, ж ). В овальных соединителях провода либо скручиваются, либо обжимаются; в прессуемых соединителях, применяемых для соединения сталеалюминиевых проводов больших сече-ний, стальная и алюминиевые части опрессовываются отдельно.

Результатом развития техники передачи ЭЭ на дальние расстояния яв-ляются различные варианты компактных ЛЭП, характеризующиеся меньшим расстоянием между фазами и, как следствие, меньшими индуктивными со-противлениями и шириной трассы линии (рис. 3.11). При использовании опор «охватывающего типа» (рис. 3.11, а) уменьшение расстояния достигает-ся за счет расположения всех фазных расщепленных конструкций внутри «охватывающего портала», или по одну сторону от стойки опор (рис. 3.11, б). Сближение фаз обеспечивается с помощью междуфазных изоляционных рас-порок. Предложены различные варианты компактных линий с нетрадицион-ными схемами расположения проводов расщепленных фаз (рис. 3.11, в-и).

Кроме уменьшения ширины трассы на единицу передаваемой мощно-сти, компактные линии могут быть созданы для передачи повышенных мощ-ностей (до 8-10 ГВт); такие линии вызывают меньшую напряженность элек-трического поля на уровне земли и обладают рядом других технических дос-тоинств.

К компактным линиям относятся также управляемые самокомпенсирующиеся линии и управляемые линии с нетрадиционной конфигурацией расщепленных фаз. Они представляют собой двухцепные линии, в которых попарно сдвинуты одноименные фазы разных цепей. При этом к цепям под-водятся напряжения, сдвинутые на определенный угол. За счет режимного изменения с помощью специальных устройств угла фазового сдвига осуще-ствляется управление параметрами линий.