ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Температурный график системы отопления. Теплоснабжение многоквартирных жилых домов

Для транспортировки тепла к потребителям используют трубопроводы - тепловые сети, которые могут передавать тепло с помощью воды и пара, их соответственно называют водяными и паровыми. В настоящее время тепловые сети передают тепло на большие расстояния. Во избежание больших теплопотерь они должны быть теплоизолированными.

Различают транзитные, магистральные, распределительные и кольцевые трубопроводы. Тепловые сети, которые подводят тепло к промышленным предприятиям, называют промышленными, к жилым и общественным зданиям - коммунальными, к предприятиям и гражданским зданиям -- смешанными.

Схемы тепловых сетей в плане могут быть двух видов: радиальные и кольцевые. Радиальная схема теплоснабжения представляет собой тупиковые ответвления ко всем объектам. В случае аварии эти объекты оказываются отключенными. Кольцевая схема теплоснабжения более надежна и бесперебойна в работе. В ней все ветки мелких ответвлений объединены в общий контур. Тепловые сети разных районов города могут быть соединены между собой, чтобы в случае выхода из строя одного источника тепла его мог дублировать другой. Это позволяет бесперебойно снабжать теплом все районы города и одновременно устранять неисправность.

Тепловые сети делают двух- и многотрубными. Наиболее распространена двухтрубная система, при которой одна труба - подающая, другая - обратная. В этой системе вода циркулирует по замкнутому кругу: отдав свое тепло потребителю, она возвращается в котельную.

В жилых районах применяют два вида водяных систем теплоснабжения: открытую и закрытую. Разница заключается в том, что при закрытой системе теплоснабжения в трубопроводах циркулирует постоянное количество воды, а при открытой системе - часть воды непосредственно из системы разбирается на нужды горячего водоснабжения. В открытой системе теплоснабжения вода должна быть по качеству равноценна питьевой, а запас воды на источнике тепла должен постоянно пополняться.

Однотрубная система подает теплоноситель для отопления и вентиляции, а затем выпускает его в качестве горячего водоснабжения. Вариант наиболее дешевый, но трудно рассчитываемый. Трехтрубная система обеспечивает подачу тепла по двум трубам с разными параметрами теплоносителя, а возврат осуществляется по третьей трубе. В четырехтрубной системе подача тепла на отопление и горячее водоснабжение разделена по двум парам труб. Наиболее применима в настоящее время в населенных пунктах раздельная двухтрубная система теплоснабжения ввиду удобства и экономичности ее использования.

Для горячего водоснабжения используют открытый и закрытый варианты присоединения к тепловым сетям. В открытых сетях горячая вода поступает прямо из теплосети и восполняет в ней тепло из источника. Качество горячей воды невысокое. В закрытых сетях вода теплосети полностью возвращается к тепловому источнику, нагревая водопроводную воду для горячего водоснабжения в теплообменных аппаратах. В этом случае качество горячей воды высокое.

Тепловые сети прокладывают над землей и под землей. Надземная прокладка дешевле, но часто недопустима по эстетическим соображениям. Подземная прокладка наиболее распространена. Различают канальную и бесканальную прокладки трубопроводов.

Канальная прокладка трубопроводов дороже, но надежнее, так как стенки канала защищают трубы от случайных воздействий, блуждающих токов и т.д. Каналы делают кирпичными и железобетонными. По конструкции они бывают проходные (высотой 2 м), полупроходные (высотой 1,4 м) и непроходные.

Бесканальная прокладка теплопроводов - простой и дешевый способ заложения, поэтому он наиболее распространен, особенно при реконструкции и в малоэтажной застройке. Трубы укладываются прямо в грунт. Этот способ имеет, однако, большие недостатки: коррозия, трудоемкость ремонта, отсутствие периодического надзора. Частично их преодолевают, защищая трубы от внешних воздействий грунта изоляционным материалом, цементной коркой и гидроизоляцией. Применяют и армированный пенобетон, где арматуру выполняют в виде сетки, что придает значительную жесткость трубопроводам.

В настоящее время вместо ранее применявшейся армопенобе-тонной бесканальной прокладки трубопроводов очень широкое применение получили теплоизолированные пенополиуретановые (ППУ) системы трубопроводов. Принципиальной особенностью этого вида прокладки трубопроводов является практически полная герметичность конструкции, позволяющая располагать трубопроводы тепловых сетей во влажных грунтах без дополнительной гидроизоляции и попутного дренажа. Кроме того, конструкция прокладки трубопроводов может быть оборудована системой оперативного дистанционного контроля (СОДК), позволяющей систематически отслеживать и находить места увлажнения изоляции. При этом способе бесканальной прокладки используют трубы с теплоизоляцией из пенополиуретана диаметром от 57 до 1020 мм в гидроизоляционной оболочке из плотного полиэтилена.

Из этого же вида тепловой изоляции изготавливают фасонные изделия для прокладки трубопроводов: отводы, z-образные элементы для компенсации температурных удлинений, тройники, неподвижные опоры, спускники и воздушники и др. Трубы применяют только новые стальные, черные или оцинкованные марок Ст. 10, Ст. 20, Ст. 17ГС и другие в соответствии с требованиями Госгортехнадзора России.

При строительстве теплотрасс из ППУ трубопроводов особое внимание уделяют тепловой и водонепроницаемой изоляциям стыковых соединений. При этом используют специальную сварную муфту, обеспечивающую абсолютно герметичное соединение стыков. Пенополиуретановая изоляция рассчитана на длительное воздействие температуры теплоносителя до 130 “С и на кратковременное воздействие температуры до 150 °С. Все трубы и остальные элементы трубопроводов при использовании такого оборудования снабжены проводами оперативного дистанционного контроля, сигнализирующими о повреждении проводов или о наличии влаги в изоляционном слое при эксплуатации. Система основана на проводимости теплоизоляционного слоя, которая изменяется при изменении влажности. Для поиска мест неисправности (увлажнение изоляции, обрыв сигнальных проводников) используют методы и приборы, основанные на действии импульсной рефлексометрии.

СОДК включает в себя сигнальные медные проводники, заложенные во все элементы теплосети, разъемы по трассе и в местах контроля (ЦТП, котельной), переносные приборы для периодической проверки и стационарные - для непрерывного контроля.

Прокладка в непроходных каналах - наиболее удобный способ Прокладки теплопроводов, чем и объясняется его частое применение. Преимущество этого способа по сравнению с бесканаль-ной прокладкой состоит в том, что трубопровод защищен от колебания давления в грунте, так как заключен в канал, где находится на специальных подвижных и неподвижных опорах. Его недостаток заключается в отсутствии постоянного наблюдения за состоянием сетей, а в случае аварии трудно найти место повреждения. В непроходных каналах теплосети могут располагаться с неф-темазутопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа и водопроводами.

В проходных коллекторах теплосети могут размещаться совместно с водопроводами диаметром до 300 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, а в городских коллекторах - также с трубопроводами сжатого воздуха давлением до 1,6 МПа и напорной канализацией. Во внутриквартальных коллекторах допускается совместная прокладка водяных сетей диаметром не более 250 мм с газопроводами природного газа давлением до 0,005 МПа и диаметром до 150 мм. При совместной прокладке теплосети и водопровода во избежание нагревания изолируют, размещая его либо в одном ряду, либо под тепловыми сетями, учитывая при этом нормативную глубину заложения. В проходных коллекторах ведут непрерывное наблюдение и контроль за состоянием сетей. Ремонт таких сетей упрощается.

В сложных участках, например, под центральными магистралями с большим движением, при пересечении железных дорог, под зданиями, где проходные коллекторы невозможно проложить, а непроходные каналы нельзя прокладывать из-за ограниченной возможности развития на случай ремонта, применяют полупроходные каналы. Хотя в них проход очень мал (высота - до 1,4 м, ширина - 0,4…0,5 м), все же можно осмотреть и отремонтировать теплосеть.
Трассу тепловых сетей в городах прокладывают в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог и проездов вне проезжей части и полосы зеленых насаждений, но при обосновании допускается расположение теплотрассы под проезжей частью или тротуаром. Теплосети нельзя прокладывать вдоль бровок террас, оврагов или искусственных выемок при просадочных грунтах.

Уклон тепловых сетей независимо от направления движения теплоносителя и способа прокладки должен быть не менее 0,002.

В СНиП 2.04.07-86* содержатся особые условия для устройства пересечений тепловыми сетями других подземных сооружений.

Магистральные сети располагаются по главным направлениям от источника тепла и состоят из труб больших диаметров - от 400 до 1200 мм. Разводящие сети имеют диаметр трубопроводов от 100 до 300 мм, а диаметр трубопроводов, ведущих к потребителям,- 50… 150 мм.

Паровые системы Теплоснабжения делают одно- и двухтрубными, при этом конденсат возвращается по специальной трубе - кон-денсатопроводу. Под действием начального давления 0,6… 0,7 МПа, а иногда и 1,3… 1,6 МПа, пар движется со скоростью 30…40 м/с. При выборе способа прокладки теплопроводов главной задачей является обеспечение долговечности, надежности и экономичности решения.

Тепловые сети монтируют из стальных электросварных труб, расположенных на специальных опорах. На трубах устраивают запорную и регулирующую арматуры (задвижки, вентили). Опоры трубопроводов создают горизонтальное незыблемое основание. Интервал между опорами определяют при проектировании.

Опоры тепловых сетей подразделяют на неподвижные и подвижные. Неподвижные опоры фиксируют расположение конкретных мест сетей в определенной позиции, не допускают никаких смещений. Подвижные опоры допускают перемещение трубопровода по горизонтали вследствие температурных деформаций.

Между неподвижными опорами на расчетных расстояниях располагают П-образные удлинения труб, компенсирующие температурные напряжения, удлиняющие трубопровод. Компенсаторы предохраняют сети от разрушений.

Для размещения на теплотрассе отключающей арматуры, неподвижных опор устраивают камеры высотой 2 м. В них спускаются через люки.

В.Г. Семенов , генеральный директор ОАО «Объединение ВНИПИэнергопром», президент НП «Энергоэффективный город», главный редактор журнала «ЭНЕРГОСОВЕТ», г. Москва

Серьезных проблем с определением стоимости горячей воды раньше, в период отсутствия приборов учета, не существовало. Обычно применялись два норматива - удельное потребление воды на одного жителя и расход тепловой энергии на кубометр воды. Жители потребляли воду, не задумываясь об экономии, а теплоснабжающие организации устраивал норматив.

Но пришло время оприборивания, и нерешенная централизованно задача - определить, что такое горячая вода, теперь вынужденно решается в многочисленных судах, поскольку при любом нормативе какая-нибудь из сторон оказывается в проигрыше. Для понимания проблемы и создания энергоэффективной модели экономических отношений с горячей водой необходимо серьезно разобраться.

Горячая вода как товар складывается из двух товаров: исходной воды и тепловой энергии, содержащейся в воде (использованной на ее нагрев). Прибор учета горячей воды - это обыкновенный водомер, установленный на вводе в квартиру. Основная проблема водомера - он не измеряет теплосодержание. Если даже поставить тепловычислитель и датчик температуры, то этого для корректных измерений количества тепла, потраченного на нагрев, будет недостаточно, т.к. надо измерить и температуру исходной холодной воды. А это можно сделать при разных схемах подключения в разных точках: в подвале дома, на ЦТП, а то и на теплоисточнике. Поэтому массово применяется усредненная температура исходной воды - зимой +5, а летом +15 градусов, что соответствует расходу тепла 0,055 и 0,045 Гкал/куб. метр (при температуре горячей воды 60 градусов). Такое понимание горячей воды не зависит от типа системы теплоснабжения, типа теплового пункта и совпадает с пониманием жителя, которого интересует, что течет из его крана.

Но во многих домах нормально функционируют циркуляционные системы ГВС и тепловая энергия в этом случае нужна не только для обеспечения параметров горячей воды, выливающейся из крана, а и на компенсацию потерь в полотенцесушителях, стояках и быстро распространяющихся системах теплых полов, которые частенько подключают к цикуляционному контуру ГВС. Эти затраты тепловой энергии уже давно было принято также относить на горячую воду, путем введения повышенных нормативов на подогрев кубометра воды. Так в горячей воде появилась еще одна, уже третья составляющая. Право на установление нормативов было дано муниципалитетам, которые, не смотря на наличие методических указаний Минрегионразвития РФ, иногда стали устанавливать норматив даже ниже исходного, не учитывающего циркуляцию.

Ситуация еще более обострилась из-за требования Санэпидемнадзора о повышении температуры горячей воды до 60 градусов (СНиП требовал не более 55 градусов) - теплосодержание в кубометре воды повысилось, а объем реализации ее наоборот - понизился. Надо было вводить компенсационное повышение норматива, но это, в свою очередь, приводило к повышению тарифа на горячую воду, что политически не приветствовалось.

Массовая установка приборов учета и применение современных водоразборных кранов еще более усугубили ситуацию - люди снизили потребление горячей воды, а потери с циркуляцией остались неизменными, и стали составлять до половины от расхода тепла на нагрев непосредственно потребляемой горячей воды. В крупных городах разногласия стали исчисляться сотнями миллионов рублей.

Рассмотрим варианты при разных схемах присоединения.

1 вариант - индивидуальный тепловой пункт (ИТП)

Прибор учета тепловой энергии установлен, как правило, только на входе в здание до теплового пункта и не может отдельно показать количество тепловой энергии затраченной на подогрев водопроводной воды и на отопление.

В редких случаях, обычно, когда ИТП принадлежит теплоснабжающей организации, приборы учета устанавливаются и после ИТП, отдельно на отопление и на горячую воду, либо только на горячую воду, а отопление рассчитывается по разнице.

В простом случае, владельцы отдельного нежилого здания закупают:

- при открытой системе - тепловую энергию и теплоноситель. Не выделяется теплоноситель, используемый на горячее водоснабжение и на компенсацию утечек в здании.

- при закрытой системе - водопроводную воду, тепловую энергию на ее подогрев и теплоноситель для компенсации утечек в системе отопления здания. Методика распределения оплаты за тепловую энергию между лицами, использующими отдельные части здания, государством не регулируется.

В многоквартирном жилом доме (МКД) у водоканала и теплоснабжающей организации закупаются такие же товары, но проблемы возникают при распределении оплаты за них между жителями.

Ставить дополнительные приборы учета тепловой энергии отдельно на горячую воду после ИТП не имеет смысла по следующим причинам:

  • приборы эти весьма дороги;
  • погрешность их, отнесенная не к расходу циркулирующей в здании воды, а к расходу воды, выливающейся из кранов, весьма велика;
  • тепло, содержащееся в горячей воде, используется и на цели отопления здания стояками ГВС, полотенцесушителями и с помощью теплых полов.

Проще ввести универсальную для всей страны простейшую формулу норматива расхода тепловой энергии, содержащейся в воде, выливающейся из крана:

q=(Т 1 -Т 2)/1000 [Гкал/м 3 ];

где T 1 - температура горячей воды, т.е. 60 градусов, Т 2 - усредненная температура водопроводной воды.

Тариф на горячую воду будет стабильным и неоспоримым, так как все особенности переменных циркуляционных потерь тепла в конкретном здании будут рассматриваться вне этого тарифа. Отпадает необходимость введения отдельного тарифа на нагрев горячей воды, являющегося переменным и непонятным для жителя, либо, что еще хуже, переменного тарифа на кубометр горячей воды, рассчитываемого по показаниям приборов учета ежемесячно.

Расход тепла в системе ГВС здания до водоразборных кранов (на циркуляцию) лучше относить к общедомовым нуждам и распределять не по количеству жителей, а по квадратным метрам, так же как на отопление. Даже если в квартире никто не зарегистрирован, то владелец ее будет оплачивать свою долю от этого расхода, что справедливо (другим более точным вариантом, является распределение по количеству ванных комнат).

Таким образом, при наличии прибора учета тепла в ИТП, расположенном в МКД, тепло в горячей воде принимается по универсальному нормативу на кубический метр потребленной горячей воды (по водомеру после ИТП), остальное тепло относится на отопление и распределяется пропорционально площади квартир. Переменность расхода тепла на циркуляцию жители будут воспринимать спокойно, так как платежи за отопление, пересчитываемые на квадратный метр, тоже переменны.

При завышении температуры горячей воды жители регулируют ее температуру смешивая с холодной, поэтому потребление тепла с ГВС практически не увеличится, но может увеличиться расход тепла с циркуляцией из-за более горячих труб полотенцесушителей или стояков, это тепло будет учтено общедомовым счетчиком и соответственно отнесено на отопление.

При занижении температуры горячей воды автоматически снижается учитываемый теплосчетчиком расход тепла, потому недоотпуск тепловой энергии на поддержание нормативной температуры ГВС автоматически будет учтен в отопительной составляющей (затраты тепла с циркуляцией приобретают отрицательные значения) и предлагаемый подход только заметно упрощает расчеты и делает их достаточно прозрачными.

Теплоснабжающей организации без разницы, как будет распределяться тепло, потраченное на нагрев горячей воды, по жителям или по квадратным метрам. А для самих жителей есть принципиальная разница - если потребление воды они регулируют сами, то регулировкой циркуляции должна заниматься управляющая компания. При небольшом водопотреблении оплата циркуляционных потерь может превышать плату за горячую воду. Учет этого факта принципиально меняет подход к энергосбережению в части горячей воды - экономить надо не только в квартире, но и во всем доме (контроль температуры, регулировка циркуляции, утепление трубной разводки, установка перемычек и кранов на полотенцесушители).

В рассматриваемом варианте товар - горячая вода появляется непосредственно в водоразборном кране при оказании услуги по горячему водоснабжению.

Затраты на содержание и эксплуатацию теплового пункта несет собственник, если это теплоснабжающая организация, то они учитываются в тарифе на тепловую энергию.

2 вариант - центральный тепловой пункт

Приборы учета тепловой энергии установлены на вводе в здание, один по отоплению, другой по горячей воде.

При открытой схеме - конструкция принципиально не отличается от случая с ИТП. Разница в том, что теплоноситель для целей горячего водоснабжения доставляется в дом не по общей трубе, а по отдельной.

Прибор учета тепловой энергии на вводе в дом показывает расход поступившего в дом теплоносителя, но количество тепловой энергии, потраченное теплоснабжающей организацией на его нагрев, прибор показать не может, у него нет сигнала от датчика температуры исходной водопроводной или артезианской воды. Приходится вручную вводить некую усредненную температуру как минимум в двух вариантах - для отопительного и неотопительного периодов.

Зато потребление тепловой энергии на обеспечение циркуляции тот же прибор рассчитывает без проблем. Циркуляционный расход равен расходу в обратном трубопроводе, а разность температур измеряется тут же.

Напрашивается простая схема аналогичная варианту с ИТП. Теплосодержание горячей воды устанавливается фиксированным (можно с двумя вариациями - лето/зима) и рассчитывается по простейшей формуле. Расход тепла на циркуляцию относится к общедомовым нуждам и распределяется пропорционально количеству квадратных метров и в период оплаты отопления приплюсовывается к ней.

Если теплоснабжающая организация, владеющая ЦТП, завышает температуру выше согласованной, то за превышение потребитель не платит. Периоды снижения температуры ниже требований СанПиН, фиксируются в архиве теплосчетчика, и этого достаточно для предъявления штрафных санкций. Но даже без предъявления штрафов в тепловычислитель прибора учета легко можно «вшить» программу снижения расчетного расхода тепла на циркуляцию пропорционально недогреву горячей воды.

При закрытой схеме на ЦТП для целей горячего водоснабжения подогревается водопроводная вода. По конструкции закона «О теплоснабжении» ЦТП являются частью тепловой сети, а тепловые сети предназначены для передачи теплоносителя. Замена этой конструкции на другую, потребует внесения огромных, неоправданных изменений в закон.

В то же время, введение понятия «горячая вода как теплоноситель, используемый на нужды ГВС» оказалось неоправданным, так как горячая вода в доме тоже стала бы теплоносителем и нормативные документы, регламентирующие отношения с горячей водой внутри дома, транслировались на теплоснабжающие организации. Также возникла бы методологическая сложность отнесения всего объема теплоносителя в открытой системе теплоснабжения к горячей воде, так как большая часть его рано или поздно будет использована на нужды горячего теплоснабжения.

Так что же циркулирует в тепловых сетях после ЦТП, к которым по закрытой схеме присоединены системы горячего водоснабжения потребителей (тепловых сетях ГВС)? Это не вода из системы холодного водоснабжения, так как изменился ее состав (содержание бактерий, железа и т.д.) и температура. В то же время это не теплоноситель из магистральных тепловых сетей, а какой-то другой теплоноситель, соответствующий всем его функциям (передача тепловой энергии, потери в сетях, возможность непосредственного использования). Похоже, что эту развилку можно преодолеть введением понятия циркуляционная вода.

Циркуляционная вода является фактически аналогом теплоносителя в открытой схеме теплоснабжения, который может изготавливаться не только на ЦТП, но и на теплоисточнике (малые ТЭЦ или котельные) при четырехтрубных тепловых сетях. Она также циркулирует по замкнутому контуру в тепловых сетях и также используется как непосредственно на цели ГВС, так и для передачи потребителям тепла через их теплопотребляющие установки - полотенцесушители и теплые полы.

Циркуляционная вода - вид теплоносителя в закрытых системах теплоснабжения, используемый в тепловых сетях после центральных тепловых пунктов для обеспечения нагрузки горячего водоснабжения.

В этом случае система отношений с потребителем, подключенным к ЦТП, будет точно такая же, как и при открытой схеме. Для упрощения расчетов стоимость циркуляционной воды принимается равной стоимости водопроводной воды, затраты на ее изготовление учитываются в составе тарифов на тепловую энергию.

Горячая вода образуется непосредственно в доме и ее стоимость складывается из стоимости циркуляционной воды (по тарифу на холодную воду) и стоимости нормируемого количества тепла на ее подогрев (по тарифу на тепловую энергию).

Охлаждение циркуляционной воды в здании учитывается прибором учета и распределяется между жителями по квадратным метрам как потребление тепловой энергии на общедомовые нужды (по тарифу на тепловую энергию). Потери в тепловых сетях ГВС остаются за теплоснабжающей или теплосетевой организацией.

3 вариант - отсутствие в доме циркуляции горячей воды

При таком варианте потери тепла на циркуляцию отсутствуют, но это не означает, что вода в трубной разводке не остывает. Так как теплоснабжающая организация не отвечает за отсутствие циркуляционных трубопроводов, расчеты за горячую воду должны вестись по фактической ее температуре. Фиксировать количество тепла в кубометре воды невозможно, так как невозможно измерить тепловые потери в трубной разводке.

Для таких случаев особую важность имеет теплоизоляция стояков, так как это способствует не только снижению потерь, но и предотвращает массовые сливы остывшей воды.

Вариант прямого разбора теплоносителя из батарей отопления может рассматриваться как утечка на внутридомовых сетях, с разнесением измеренных прибором учета теплоносителя и тепловой энергии по квадратным метрам площади квартир.

Распространенным сегодня способом получения горячего водоснабжения (ГВС) является использование магистрали тепловой сети. Используются два типа извлечения тепла - открытый и закрытый. До конечного же потребителя нагретая вода доставляется по циркулярному и тупиковому трубопроводу.

Получить горячую воду можно от централизованного источника или индивидуального. В первом случае нагретая вода поступает в жилые дома и организации по тепловой магистрали, а во втором используются персональные водонагреватели для подъезда, частного дома или отдельной квартиры.

Источником тепла для нагрева магистральной воды являются тепловые станции, котельные. Таким способом можно прокачать большие объемы воды, поэтому централизованная магистраль применяется для снабжения многоквартирных домов и целых микрорайонов. По способу извлечения тепла от магистрали системы ГВС делятся на открытые и закрытые.

Открытая система теплоснабжения

На улицах городов можно встретить трубы большого диаметра, укутанные в теплоизолятор - это и есть теплосеть. По ним течет горячая вода, нагретая на тепловой станции. К каждому, например, жилому дому, от такой трубы через подстанцию (ЦТП) проходит ответвление. По нему вода попадает в систему центрального отопления - батареи. В открытой системе ГВС горячая вода в водопроводный смеситель на кухне или в ванной поступает из того же источника, что и в батарею. Температура в системе ГВС может колебаться от +50˚С, до +75˚С. Но в магистрали она обычно намного выше, поэтому допускается ее смешивание с холодной водой. Такая процедура технически не всегда возможна, поэтому часто, особенно холодной зимой, температура горячей воды из крана близка к критической.

Открытый способ получения ГВС считается самым простым: нет необходимости в дополнительных элементах нагрева. При этом для соблюдения санитарных норм часто приходится очищать воду от загрязнений. Их наличие хорошо заметно при первом включении пробного отопления: вода в горячий кран приходит такая же, как и пропускаемая через окисленные после летнего простоя батареи. Качество получаемой воды напрямую зависит от износа отопительного оборудования и наличия фильтрующих элементов. Несмотря на это, открытая система довольно распространена благодаря ее массовому применению в советское время.

Закрытая система теплоснабжения

Этот метод также использует тепловую магистраль, как и описанный выше. Разница состоит в способе нагрева: если в открытом вода нагревается на ТЭЦ и напрямую поступает в дом, то при закрытом она имеет отдельный, выделенный контур. В него закачивается очищенная холодная вода, которая проходит через нагревательные теплообменники. Они в свою очередь забирают тепло от магистральной воды, нагретой ТЭЦ. Той самой, которая напрямую подается при открытом способе ГВС. Возможны и иные источники тепла, но самым распространенным является конвекция, передача тепла от ГВС открытого типа.

При таком способе качество воды никак не зависит от труб центрального отопления. Для закрытого метода необходимо наличие теплообменников, дополнительных насосов, что повышает себестоимость при переходе с открытого типа на закрытый. Но возможна и последующая экономия из-за стабильности заданных температурных режимов: в открытом типе часто приходится излишне греть магистральную воду из-за ее разделения для нужд отопления и бытовых целей. Также выигрывает закрытая система по органолептическим и бактериологическим показателям. Температура воды в доме всегда стабильная и не зависит от температуры воздуха зимой, как в открытом методе получения ГВС. Однако приготовить горячую воду мало, надо ее еще без потерь доставить в дома или квартиры. Сегодня существуют два варианта подачи - циркулярный и тупиковый.

Циркулярный способ подачи

В нем нагретая жидкость постоянно циркулирует по замкнутому кругу ТЭЦ или котельная, магистраль, подстанция, водопровод и назад. Сделано это по ряду причин, среди которых большое количество абонентов, потери тепла при простое воды. На практике такой способ позволяет получить из крана горячую воду моментально. Она всегда в пути и готова к использованию. При ее остановке произойдет остывание, что чревато большими потерями. В высотных домах для этого используется разделение стояка на блоки или дополнительные насосы.

Возможны при циркулярном способе и небольшие трудности: все владельцы полотенцесушителей в ванной комнате знают о невозможности уменьшить их жар в летнее время года: нагретая вода в них циркулирует круглосуточно и круглогодично. Единственным способом корректировать температуру этого устройства будет монтаж крана-регулятора и врезка дополнительной трубы, по которой жидкость будет течь при закрытом кране на полотенцесушителе.

Тупиковый способ подачи

Здесь система горячего водоснабжения работает менее эффективно: потребитель имеет законченный, тупиковый водопровод. В нем присутствуют только подающие воду трубы, лишенные возвратного контура. Нагретая жидкость движется при открытии крана смесителя, а при его закрытии вода в трубе останавливается и постепенно остывает. На практике это означает, что при длительном, в частности ночном, бездействии смесителя из крана сначала потечет прохладная вода и только потом горячая. Тупиковый способ подачи обычно используется в частных домах, подключенных к водопроводу. В последнее время именно тупиковый метод подключения стал популярным из-за распространения индивидуальных нагревателей - бойлеров.

Локальные системы ГВС

Бойлер для горячей воды является альтернативой любой системе ГВС при ее отсутствии или запасным вариантом на случай традиционного летнего отключения. Источником тепловой энергии является газ или электричество. Также бойлеры подразделяются на проточные и накопительные. В первом случае холодная вода из крана пропускается через нагреватель и сразу выводится наружу. Второй более основательный, и в нем нагретая вода до желаемой температуры хранится в резервуаре емкостью до 200 л. Слив ее производится через обычный смеситель, который подключен через запираемый разветвитель на бойлер и магистральный горячий водопровод.

Локальные системы ГВС могут применяться и на весь многоквартирный дом в индивидуальном порядке. Такое иногда используется в новостройках, которые оборудованы автономным тепловым пунктом. По сути это один большой бойлер на весь дом. Такая независимая система позволяет экономить на транспортировке горячей воды по длинной магистрали и практически исключает традиционные летние отключения на регламентные работы.

Какая бы система горячего водоснабжения не использовалась, каждая из них обладает плюсами и минусами. На качество горячей воды могут влиять не только наличие/отсутствие тупикового водопровода, но и давление холодной воды в магистрали. При его увеличении и плохой работе смесителя порой трудно добиться идеального баланса холодной и горячей воды на выходе. Если в доме часто случаются отключения ГВС, то стоит приобрести и установить бойлер: его присутствие поможет комфортно пережить время ремонта тепловой магистрали.

Тепловая сеть - система трубупроводных коммуникаций, по которой теплоноситель (пар или горячая вода) переносит тепло от источника (теплогенератор - котёл) к потребителям и возвращается обратно: по той же системе коммуникаций-теплопроводов, называемых системой централизованного теплоснабжения. Строительство в данной сфере относится к наиболее ответственным и технически сложным работам, так как прокладка элементов трубопроводной системы в городских и загородных хозяйствах делает весьма трудозатратным их ремонт и аварийное восстановление, что вынуждает предъявлять повышенные требования к качеству капитального строительства. Высокие температуры и давление требуют не менее высокую надежность и гарантии безопасности тепловых сетей (теплотрасс).

По принципиальному типу устройства схемы магистральных тепловых сетей условно подразделяются на кольцевые и радиальные (тупиковые). Между отдалёнными магистральными сетями обычно предусматриваются соединения-перемычки: для того, чтобы при возникновении аварийной ситуации не было чрезмерных перерывов в снабжении теплом. При очень большой протяженности магистральной тепловой сети, в ней устанавливается дополнительный узел - подкачивающая насосная подстанция. С этой целью, под землёй (где обычно и проходят тепловые сети, а также находятся места ответвлений), оборудуются специальные камеры, в которых размещаются сальниковые компенсаторы и трубопроводная арматура (запорно-регулировочной конструкции).

Именно магистральные тепловые сети имеют наибольшую протяженность, так как могут быть удалены от источника тепла на несколько километров и даже более. При строительстве магистральных теплотрасс используются трубопроводы из специальных сталей (для высокотемпературных рабочих сред), диаметр таких труб может достигать 1400 мм. В ситуациях, когда теплоноситель поставляют несколько генерирующих предприятий, на магистральных трубопроводах создают т. н. закольцовки. По сути, объединяющие все эти предприятия в одну теплосеть. Такое решение позволяет серьёзно повысить уровень надёжности снабжения тепловых пунктов и, соответственно, надёжность снабжения теплом конечного потребителя.Тепловая сеть - система трубупроводных коммуникаций, по которой теплоноситель (пар или горячая вода) переносит тепло от источника (теплогенератор - котёл) к потребителям и возвращается обратно: по той же системе коммуникаций-теплопроводов, называемых системой централизованного теплоснабжения. Строительство в данной сфере относится к наиболее ответственным и технически сложным работам, так как прокладка тепловых систем в городских и загородных хозяйствах делает весьма трудозатратным их ремонт и аварийное восстановление, что вынуждает предъявлять повышенные требования к качеству капитального строительства. Высокие температуры и давление требуют не менее высокую надежность и гарантии безопасности тепловых сетей (теплотрасс).

При авариях, время от времени происходящих на магистралях и в котельных, теплоснабжением аварийного участка теплосети занимается одна из соседних котельных данной теплосети. В некоторых случаях устраивается плановое перераспределение нагрузки между теплогенерирующими предприятиями. Вода, подготовленная особым способом, с заданными показателями карбонатной жесткости, содержания кислорода и железа, используется в качестве теплоносителя для магистральных сетей. Обычная водопроводная («жёсткая») вода не должна попадать в магистральную теплосеть, поскольку её химический состав при высоких температурах приводит к ускоренному коррозионному износу трубопровода. В том числе, и для предотвращения этого в проектах тепловых сетей предусматривается такая специальная конструкция, как тепловой пункт. Такой тепловой пункт в норме должен быть удалён от потребителей не более чем на километр. И в пределах городской черты это расстояние достигает по протяженности, в среднем, около двух кварталов.

Системы горячего водоснабжения присоединяются к тепловой сети через водо-водяные теплообменники. В двухтрубных сетях при одновременном присоединении систем отопления и горячего водоснабжения применяют несколько схем включения подогревателей: предвключенную , параллельную , двухступенчатую последовательную , двухступенчатую смешанную , двухступенчатую смешанную с ограничителем расхода . В ряде случаев необходима установка баков-аккумуляторов для выравнивания нагрузки горячего водоснабжения, а также, как резерв, на случай перерыва в подаче теплоносителя. Резервные баки устанавливаются в гостиницах с ресторанами, банях, прачечных, для душевых сеток на производстве и т.д. Поэтому параллельная схема может быть без аккумулятора, с нижним баком-аккумулятором и с верхним баком-аккумулятором.

Параллельная схема включения подогревателя горячего водоснабжения

Схему применяют, когда Q max гвс /Q o ?1. Расход сетевой воды на абонентский ввод определяется суммой расходов на отопление и ГВС. Расход воды на отопление является величиной постоянной и поддерживается регулятором расхода РР. Расход сетевой воды на ГВС - величина переменная. Постоянная температура горячей воды на выходе из подогревателя поддерживается регулятором температуры РТ в зависимости от ее расхода.

Схема имеет простую коммутацию и один регулятор температуры. Подогреватель и тепловая сеть рассчитываются на максимальный расход ГВС. В этой схеме теплота сетевой воды используется недостаточно рационально. Не используется теплота обратной сетевой воды, имеющая температуру 40 - 60 о С, хотя она позволяет покрыть значительную долю нагрузки ГВС, и поэтому имеет место завышенный расход сетевой воды на абонентский ввод.

Схема с предвключенным подогревателем горячего водоснабжения

В этой схеме подогреватель включается последовательно по отношению к подающей линии тепловой сети. Схема применяется, когда Q max гвс /Q o < 0,2 и нагрузка ГВС мала.

Достоинством этой схемы является постоянный расход теплоносителя на тепловой пункт в течение всего отопительного сезона, который поддерживается регулятором расхода РР. Это делает гидравлический режим тепловой сети стабильным. Недогрев помещений в периоды максимальной нагрузки ГВС компенсируется подачей сетевой воды повышенной температуры в систему отопления в периоды минимального водоразбора или при его отсутствии в ночные часы. Использование теплоаккумулирующей способности зданий практически исключает колебания температуры воздуха в помещениях. Такая компенсация теплоты на отопление возможна в том случае, если тепловая сеть работает по повышенному температурному графику. Когда тепловая сеть регулируется по отопительному графику, возникает недогрев помещений, поэтому схему рекомендуется применять при очень маленьких нагрузках ГВС. В этой схеме также не используется теплота обратной сетевой воды.

При одноступенчатом подогреве горячей воды чаще используется параллельная схема включения подогревателей.

Двухступенчатая смешанная схема горячего водоснабжения

Расчетный расход сетевой воды на горячее водоснабжение несколько снижается по сравнению с параллельной одноступенчатой схемой. Подогреватель I ступени включается по сетевой воде последовательно в обратную линию, а II ступени - параллельно по отношению к отопительной системе.

В первой ступени водопроводная вода подогревается обратной сетевой водой после системы отопления, благодаря чему уменьшается тепловая производительность подогревателя второй ступени и снижается расход сетевой воды на покрытие нагрузки горячего водоснабжения. Общий расход сетевой воды на тепловой пункт складывается из расхода воды на систему отопления и расхода сетевой воды на вторую ступень подогревателя.

По этой схеме присоединяются общественные здания, имеющие большую вентиляционную нагрузку, составляющую более 15% отопительной нагрузки. Достоинством схемы является независимый расход теплоты на отопление от потребности теплоты на ГВС. При этом наблюдаются колебания расхода сетевой воды на абонентском вводе, связанные с неравномерным потреблением воды на горячее водоснабжение, поэтому устанавливается регулятор расхода РР, поддерживающий постоянным расход воды в системе отопления.

Двухступенчатая последовательная схема

Сетевая вода разветвляется на два потока: один проходит через регулятор расхода РР, а второй через подогреватель второй ступени, затем эти потоки смешиваются и поступают в систему отопления.

При максимальной температуре обратной воды после отопления 70?С и средней нагрузке горячего водоснабжения водопроводная вода практически догревается до нормы в первой ступени, и вторая ступень полностью разгружается, т.к. регулятор температуры РТ закрывает клапан на подогреватель, и вся сетевая вода поступает через регулятор расхода РР в систему отопления, и система отопления получает теплоты больше расчетного значения.

Если обратная вода имеет после системы отопления температуру 30-40?С , например, при плюсовой температуре наружного воздуха, то подогрева воды в первой ступени недостаточно, и она догревается во второй ступени. Другой особенностью схемы является принцип связанного регулирования. Сущность его состоит в настройке регулятора расхода на поддержание постоянного расхода сетевой воды на абонентский ввод в целом, независимо от нагрузки горячего водоснабжения и положения регулятора температуры. Если нагрузка на горячее водоснабжение возрастает, то регулятор температуры открывается и пропускает через подогреватель больше сетевой воды или всю сетевую воду, при этом уменьшается расход воды через регулятор расхода, в результате температура сетевой воды на входе в элеватор уменьшается, хотя расход теплоносителя остается постоянным. Теплота, недоданная в период большой нагрузки горячего водоснабжения, компенсируется в периоды малой нагрузки, когда в элеватор поступает поток повышенной температуры. Снижение температуры воздуха в помещениях не происходит, т.к. используется теплоаккумулирующая способность ограждающих конструкций зданий. Это и называется связанным регулированием, которое служит для выравнивания суточной неравномерности нагрузки горячего водоснабжения. В летний период, когда отопление отключено, подогреватели включаются в работу последовательно с помощью специальной перемычки. Эта схема применяется в жилых, общественных и промышленных зданиях при соотношении нагрузок Q max гвс /Q o ? 0,6. Выбор схемы зависит от графика центрального регулирования отпуска теплоты: повышенный или отопительный.

Преимуществом последовательной схемы по сравнению с двухступенчатой смешанной является выравнивание суточного графика тепловой нагрузки, лучшее использование теплоносителя, что приводит к уменьшению расхода воды в сети. Возврат сетевой воды с низкой температурой улучшает эффект теплофикации, т.к. для подогрева воды можно использовать отборы пара пониженного давления. Сокращение расхода сетевой воды по этой схеме составляет (на тепловой пункт) 40% по сравнению с параллельной и 25% - по сравнению со смешанной.

Недостаток - отсутствие возможности полного автоматического регулирования теплового пункта.

Двухступенчатая смешанная схема с ограничением максимального расхода воды на ввод

Она получила применение и позволяет также использовать теплоаккумулирующую способность зданий. В отличие от обычной смешанной схемы регулятор расхода устанавливается не перед системой отопления, а на вводе до места отбора сетевой воды на вторую ступень подогревателя.

Он поддерживает расход не выше заданного. С ростом водоразбора регулятор температуры РТ откроется, увеличив расход сетевой воды через вторую ступень подогревателя горячего водоснабжения, при этом сокращается расход сетевой воды на отопление, что делает эту схему равноценной с последовательной схемой по расчетному расходу сетевой воды. Но подогреватель второй ступени включен параллельно, поэтому поддержание постоянного расхода воды в системе отопления обеспечивается циркуляционным насосом (элеватор применять нельзя), и регулятор давления РД будет поддерживать постоянным расход смешанной воды в системе отопления.

Открытые тепловые сети

Схемы присоединения систем ГВС значительно проще. Экономичная и надежная работа систем ГВС может быть обеспечена лишь при наличии и надежной работе авторегулятора температуры воды. Отопительные установки присоединяются к тепловой сети по тем же схемам, что и в закрытых системах.

а) Схема с терморегулятором (типовая)

Вода из подающего и обратного трубопроводов смешивается в терморегуляторе. Давление за терморегулятором близко к давлению в обратном трубопроводе, поэтому циркуляционная линия ГВС присоединяется за местом отбора воды после дроссельной шайбы. Диаметр шайбы выбирается из расчета создания сопротивления, соответствующего перепаду давления в системе горячего водоснабжения. Максимальный расход воды в подающем трубопроводе, по которому определяется расчетный расход на абонентский ввод, имеет место при максимальной нагрузке ГВС и минимальной температуре воды в тепловой сети, т.е. при режиме, когда нагрузка ГВС целиком обеспечивается из подающего трубопровода.

б) Комбинированная схема с водоразбором из обратной линии

Схема предложена и реализована в Волгограде. Применяется для снижения колебаний переменного расхода воды в сети и колебаний давления. Подогреватель включается в подающую магистраль последовательно.

Вода на горячее водоснабжение берется из обратной линии и при необходимости догревается в подогревателе. При этом сводится к минимуму неблагоприятное влияние водоразбора из тепловой сети на работу систем отопления, а снижение температуры воды, поступающей в систему отопления, должно быть компенсировано повышением температуры воды в подающем трубопроводе теплосети по отношению к отопительному графику. Применяется при соотношении нагрузок? ср = Q ср гвс /Q o > 0,3

в) Комбинированная схема с отбором воды из подающей линии

При недостаточной мощности источника водоснабжения на котельной и для снижения температуры обратной воды, возвращаемой на станцию, применяют эту схему. Когда температура обратной воды после системы отопления примерно равна 70?С , водоразбора из подающей линии нет, горячее водоснабжение обеспечивается водопроводной водой. Такая схема применяется в городе Екатеринбурге. По их данным схема позволяет уменьшить объем водоподготовки на 35 - 40% и снизить расход электроэнергии на перекачку теплоносителя на 20%. Стоимость такого теплового пункта больше, чем при схеме а) , но меньше, чем для закрытой системы. При этом теряется основное преимущество открытых систем - защита систем горячего водоснабжения от внутренней коррозии.

Добавка водопроводной воды будет вызывать коррозию, поэтому циркуляционную линию системы ГВС нельзя присоединять к обратному трубопроводу тепловой сети. При значительных отборах воды из подающего трубопровода сокращается расход сетевой воды, поступающей в систему отопления, что может привести к недогревам отдельных помещений. Этого не происходит в схеме б), что и является ее преимуществом.

Присоединение двух видов нагрузки в открытых системах

Подключение двух видов нагрузки по принципу несвязанного регулирования показано на рисунке А).

В схеме несвязанного регулирования (Рис. А) установки отопления и горячего водоснабжения работают независимо друг от друга. Расход сетевой воды в системе отопления поддерживается постоянным с помощью регулятора расхода РР и не зависит от нагрузки горячего водоснабжения. Расход воды на горячее водоснабжение изменяется в весьма широком диапазоне от максимальной величины в часы наибольшего водоразбора до нуля в период отсутствия водоразбора. Регулятор температуры РТ регулирует соотношение расходов воды из подающей и обратной линий, поддерживая постоянной температуру воды на горячее водоснабжение. Суммарный расход сетевой воды на тепловой пункт равен сумме расходов воды на отопление и горячее водоснабжение. Максимальный расход сетевой воды имеет место в периоды максимального водоразбора и при минимальной температуре воды в подающей линии. В этой схеме имеет место завышенный расход воды из подающей магистрали, что приводит к увеличению диаметров тепловой сети, росту начальных затрат и удорожает транспорт теплоты. Расчетный расход можно снизить установкой аккумуляторов горячей воды, но это усложняет и удорожает оборудование абонентских вводов. В жилых домах аккумуляторы обычно не ставятся.

В схеме связанного регулирования (Рис. Б) регулятор расхода устанавливается до подключения системы горячего водоснабжения и поддерживает постоянным общий расход воды на абонентский ввод в целом. В часы максимального водоразбора снижается подача сетевой воды на отопление, а, следовательно, и расход теплоты. Чтобы не происходила гидравлическая разрегулировка отопительной системы, на перемычке элеватора включается центробежный насос, поддерживающий постоянный расход воды в системе отопления. Недоданная теплота на отопление компенсируется в часы минимального водоразбора, когда большая часть сетевой воды направляется в систему отопления. В этой схеме строительные конструкции здания используются в качестве теплового аккумулятора, выравнивающего график тепловой нагрузки.

При повышенной гидравлической нагрузке горячего водоснабжения у большинства абонентов, что характерно для новых жилых районов, часто отказываются от установки регуляторов расхода на абонентских вводах, ограничиваясь только установкой регулятора температуры в узле присоединения горячего водоснабжения. Роль регуляторов расхода выполняют постоянные гидравлические сопротивления (шайбы), устанавливаемые на тепловом пункте при начальной регулировке. Эти постоянные сопротивления рассчитываются так, чтобы получить одинаковый закон изменения расхода сетевой воды у всех абонентов при изменении нагрузки горячего водоснабжения.