ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Управление освещением на производстве. Автоматическое управление освещением – это просто

Расход электроэнергии на цели освещения промышленного предприятия может быть заметно снижен достижением оптимальной работы осветительной установки в каждый момент времени. Добиться наиболее полного и точного учета наличия дневного света, равно как и учета присутствия людей в помещении, можно с помощью системы автоматического управления освещением (АСУО). Современные системы управления освещением сочетают в себе значительные возможности экономии электроэнергии с максимальным удобством для пользователей.

Архитектура системы АСУО

Автоматизированная Система Управления Освещением (АСУО) построена по иерархическому принципу и представляет собой трёхуровневую структуру.

«Нижний уровень» представлен несколькими группами светильников - внутреннее освещение и внешнее освещение, а также локальной автоматикой в виде датчиков промышленного исполнения, совмещающих в себе следующие функции:
. определение уровня освещённости на высотах до 5 метров от 0 до 1000 Люкс;
. определение комбинированного уровня освещённости - сочетание естественного и искусственного освещения;
. установка задержки времени срабатывания датчика на включение / выключение системы;
. интеллектуальное определение краткосрочных изменений естественного освещения;
. возможность регулирования светового потока светильников в пределах от 10 до 100%;
. инфракрасное определение движения / присутствия человека;
. включение / выключение системы освещения в автономном режиме;

«Средний уровень» представляет собой средства автоматизации, смонтированное в Шкафу Пункта Включения системы освещения:
. коммутационное оборудование;
. счётчик электроэнергии с цифровым интерфейсом;
. контроллерное оборудование.
Контроллерное оборудование состоит из свободно программируемого промышленного контроллера и модулей ввода/вывода унифицированных сигналов.

«Верхний уровень» включает в себя систему визуализации данных, которая строится на базе ПО, установленного компьютера офисного или промышленного исполнения.
Программное обеспечение «верхнего уровня» представлено SCADA/HMI системой со следующими функциями:
. архивирование рабочих / предоставляемых данных;
. предоставление оперативному персоналу удобного человеко-машинного интерфейса;
. контроль состояния и диспетчерского управления системой освещения;
. анализ накопленных архивных данных;
. обеспечения формирования отчетной документации;

В качестве каналов связи между «верхним» (АРМ диспетчера) и «средним» (контроллерным) уровнями выступает:
. основной канал - проводной канал связи предприятия (Ethernet);
. беспроводной канал (резервный) - канал связи GPRS;
. беспроводной канал (резервный) - поддерживается резервирование SIM карт сотовых операторов, т.е. возможность создания закрытой системы с индивидуальным IP адресом на каждом ШПВ;
. возможность передачи данных по локальной сети Ethernet и глобальной сети Internet;

Функции системы АСУО

Информационные функции:
Обеспечение/формирование экранных изображений и выходных форм информационно-вычислительных задач по запросам диспетчера или неоперативного персонала (администратора системы) и включают:
. сбор и обработка информации о состоянии оборудования системы освещения;
. измерение и контроль потребления электроэнергии по каждому Шкафу Пункта Включения (ШПВ);
. обнаружение, сигнализация и регистрация аварийных ситуаций, отказов отдельного оборудования, несанкционированного проникновения в ШПВ;
. контроль несанкционированного подключения к кабельным сетям / сетям освещения;
. выполнение расчетных задач, расчет наработки и т.д.
. архивирование истории изменения параметров на жестком магнитном диске;
. ведение журнала выполненных событий;
. формирование и выдача оперативных, архивных данных персоналу;
. формирование и печать отчетной документации - за смену, за месяц, выполнение других отчётов;
. учет потребляемой электроэнергии;

Функции сигнализации:
Сигнализационные функции проявляются при возникновении следующих условий:
. срабатывание концевого выключателя на двери шкафа ШПВ (при выполнении несанкционированного доступа);
. возникновение аварийной ситуации и/или изменение состояния пункта включения;
. несанкционированное подключение к кабельным сетям, к сетям освещения;
. авария канала связи со шкафом пункта включения;
. критическое число неисправных светильников;

Функции управления: АСУО может работать в одном из трех режимов управления:
. Автоматический режим работы - основной режим работы.
- управление освещением согласно расписанию заданному диспетчером;
- управление уличным освещением может осуществляться по континентальному световому дню (определение времени восхода / захода солнца по широте и долготе объекта освещения);
- управление уличным освещением по показанию датчика уровня освещенности;
. Ручной дистанционный режим работы.
- управление освещением с АРМ диспетчера. Диспетчер в ручном режиме активирует необходимые переключения, задания и установки. Например, в аварийной ситуации или при ремонтных / регламентных работах.
. Ручной аппаратный режим работы.
- управление освещением по месту установки ШПВ. Обслуживающий персонал осуществляет переключение освещения с помощью переключателей, установленных в ШПВ, проводя необходимые проверки работоспособности при ремонтных и регламентных работах.

Сервисные функции:

. автоматическая диагностика каналов связи со шкафом пункта включения;
. автоматическая диагностика коммутирующего оборудования;
. конфигурирование системы;
. проведение в регламентируемых пределах подключений / отключений, проверки / замены элементов системы;
. ручной ввод установок и констант управления, обработки информации;
. защита от несанкционированного доступа в среду системы;
. доступ к функциональным возможностям системы предоставляется согласно установленным административным разграничениям уровней доступа.

Внедрение автоматизированной системы управления освещением промышленного предприятия (как административных, так и производственных объектов) позволяет осуществлять телекоммуникационный контроль состояния сетей и осветительных приборов, управлять режимами горения светильников, дистанционно управлять освещением отдельных участков объекта по заранее заданному графику, а также вести учет энергопотребления и следить за эффективным использованием электроэнергии.

АСОУ сегодня - это реальный и наиболее перспективный инструмент энергосбережения.


Максим Береснев, эксперт ООО «Арман»

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Требуемый микроклимат в помещении создается следующими системами инженерного оборудования зданий: отопления, освещения, вентиляции и кондиционирования воздуха. Системы отопления служат для создания и поддержания в помещениях в холодный период года необходимых температур воздуха, регламентируемых соответствующими нормами. Таким образом, они позволяют разрешить лишь одну из задач по созданию и обеспечению микроклимата в помещении - необходимого теплового режима.

В тесной связи с тепловым режимом помещений находится воздушный режим, под которым понимают процесс обмена воздухом между помещениями и наружным воздухом. Системы вентиляции предназначены для удаления из помещений загрязненного воздуха.

Системы кондиционирования воздуха являются более совершенными средствами создания и обеспечения в помещениях улучшенного микроклимата.

Автоматизация освещения - очень важный элемент на производстве. Автоматизация освещения имеет два приемущества, первое - это экономия электроэнергии, то есть выключение освещения во время достаточного естественного освещения. Второе приемущество - это оптимальное освещение в производственном помещений. Недостаток освещения приводит к упадку сил, а так же к сонливости. В результате продутивность работы снижается.

1. Выбор и обоснование конфигурации обордувания

1.1 Формулировка задания

В данной работе рассматривается система автоматического управления отоплением, вентиляцией и освещением произвоственного помещения.

Управление поделено на три сегмента, которые будут в дальнейшем времени показаны на панели HMI. Управление осуществляется в автоматичиском или в ручном режиме. Система включается при нажатий кнопки START. Далее происходит выбор режима. Если нажата кнопка STOP, то все выходные элементы будут выключены.

Первый сегмент это отопление. Отопительная система должна работать так, чтобы в помещениях всегда было комфортно. Отопление помещения происходит методом конвекции, то есть нагретый воздух поднимается вверх. Воздух нагревается посредством радиаторов, в которых нагретая вода поступает по трубам из котла отопления.

Имеется датчик аналоговый температуры ТТ, установленный внутри помещения. Система отопления работает по двум режимам ZIMA и LETO, зависящий от времени года. После выбора режима включается KTL (котел). В холодное время года (ZIMA) нагревание включается если температура ниже 19 градусов, при достижений температуры 21 градусов нагревание отключается. При превышений температуры в 26 градусов включается CON (кондиционер). Оно выключается при температуре ниже или равной 24 градусов.

В теплое время года (LETO) работает так же. Но нагревание воды начинается если температура внутри помещения ниже 16 градусов, при достижений температуры 18 градусов нагревание отключается. При превышений температуры в 25 градусов включается CON (кондиционер). Оно выключается при температуре ниже или равной 23 градусов.

Так же можно управлять отоплением в ручную. Есть кнопка включения EN_H и выключения DIS_H нагревания воды. Кондиционирование так же можно включить EN_CON либо выключить DIS_CON.

Второй сегмент это освещение. На улице расположен аналоговый датчик освещенности DL. Освещение зависит от показания этого датчика. В помещение падает большое количество света с улицы. В комнате имеется два источника света вспомогательное освещение S_LED и основоное освещение M_LED. Если освещение на улице в диапазоне от 900 до 1200 люксов, то оба источника света будут выключены. При недостатке освещения, то есть если освещение ниже 500 люксов, после задержки в 30 секунд включается основное освещение. Если вспомогательное было включено, то оно выключится. Если освещение в диапазоне от 500 до 900, после задержки в 30 секунд включится вспомгательное освещение и выключится основное освещение если оно было включено. Так же его можно включить S_LED_ON и выключить S_LED_OFF в ручную. После наступления ночи, сделав задержку в 30 секунд включается основное освещение, если вспомогательное освещение было включено, то оно отключается. Оновное освещение так же можно включить M_LED_ON либо выключить M_LED_OFF в любое время в ручном режиме. Третий сегмент это вентиляция. Вентиляция происходит вытяжной системой. Которое включается периодический каждые пол часа. В помещений находится датчик углекислого газа DCO2. При величине до 400 ppm вытяжение не будет работать. При увелечений концентраций углекислого газа, если оно будет лежать в диапазоне от 400 ppm до 600 ppm и если таймер отсчитал свои 30 минут, то включается вытяжка воздуха на 5 минут. Если показания будут в диапазоне от 600 ppm до 1000 ppm и если таймер отсчитал свои 30 минут, то включается вытяжка воздуха на 10 минут. Есле же концентрация будет выше 1000 ppm и если таймер отсчитал свои 30 минут, то включается вытяжка воздуха на 15 минут. Вытяжение включается EXH_ON либо отключается EXH_OFF в ручном режиме кнопками.

1.2 Составление структурной схемы системы автоматизаций

Рисунок 1 - Структурная схема система автоматизаций

1.3 Выбор и обоснование выбора оборудования

Поскольку у нас 15 входных сигналов и 6 выходных сигналов, в качестве программируемого логического контроллера (PLC) было выбрано Siemens Simatic S7 314C-2PN/DP CPU (6ES7314-6EH04-0AB0). Потому что он компактный и со встройными модулями. А так же еще один резервный ПЛК. Резервный ПЛК нужен для того, чтобы работать в случае поломки первого процессора. На рисунке 2 изображена аппаратная часть ПЛК.

Характеристика:

Рабочая память 192 Кб.

Загружаемая память (MMC) - 8 МБ.

Время выполнения логических операций - 0.06 мкс:

Количество флагов/таймеров/счетчиков -2048/256/256.

Кол-во каналов ввода-вывода, дискретных/ аналоговых, не более - 16048/1006.

Встроенные интерфейсы - MPI / DP и ETHERNET PROFINET.

Встроенных дискретных входов/выходов - 24/16.

Встроенных аналоговых входов/выходов -4 AI (I/U) +1 AI (Pt100)/2 AO.

4 быстрых счётчика (60 кГц).

Блок питания PS 307; 5 A отличается следующими свойствами:

Выходной ток 5 A.

Выходное напряжение 24 в пост. тока; регулируемое, устойчивое при коротком замыкании и холостом ходе.

Подключение к однофазной системе переменного тока (номинальное входное напряжение 120/230 В перем. тока, 50/60 Гц).

Надежная гальваническая развязка в соответствии с EN 60 950.

Может быть использован как источник питания нагрузки.

В проекте будет использовано SIMATIC HMI Comfort Panel. SIMATIC HMI Comfort Panel -- это новая серия панелей оператора для решения широкого круга задач человеко-машинного интерфейса. Отсутствие вращающихся частей, небольшая монтажная глубина, высокая стойкость к вибрационным и ударным, а также электромагнитным воздействиям, степень защиты фронтальной части корпуса IP65 позволяют использовать панели этой серии в жестких промышленных условиях, успешно решать задачи оперативного управления и мониторинга на уровне производственных машин и установок.

Все панели этой серии оснащены:

Встроенным интерфейсом RS 422/RS 485 с поддержкой протокола PROFIBUS DP.

Встроенным интерфейсом PROFINET. В панелях операторов с диагональю экрана от 7” и выше этот интерфейс оснащен встроенным 2-канальным коммутатором Ethernet.

Двумя USB-Host портами и одним USB портом ведомого прибора.

Двумя отсеками для установки SIMATIC HMI SD карт.

Аудио входом и аудио выходом.

2-полюсным съемным терминальным блоком подключения цепи питания =24 В.

Они могут работать с программируемыми контроллерами:

S7-300/ S7-400/ WinAC с подключением через PROFIBUS DP или PROFINET;

В данном проекте будет использовано TP1200 Comfort, диагональ 12 дюймов.

Датчик освещенности DL.

Техническое описание.

Датчик освещенности имеет следующие характеристики:

Датчики для встраиваемых применений D15х40мм (LP01) / D30х6мм (LP02).

Встроенный кабель длиной от 2 до 15м (стандартная длина 2м).

Спектральная характеристика в области видимого света: 400…700нм.

Стандартные диапазоны измерения: 100, 1000, 10000 Люкс.

Выходной сигнал: 4-20мА с 2-х проводной схемой подключения.

Отличительной особенностью датчиков серии LP01 и LP02 является наличие встроенной платы преобразования сигналов фотоэлемента в ток 4-20мА, что позволяет передавать выходной сигнал без искажений на расстояние до 500м.

Датчик температуры TT.

Датчик температуры комнатный SIEMENS QAA2071 используется в системах вентиляции и кондиционирования воздуха для измерения и регулирования комнатной температуры. Датчик температуры QAA2071 выполнен на базе чувствительного элемента NTC и работает в диапазоне температур 0...50 °C

Таблица 1 - Техническое описание

Датчик DCO2.

Датчик DCO2 предназначен для измерения содержания CO2 воздуха в помещении. Датчики (кроме реле) комбинируют в современном корпусе измерение содержания СО2, относительной влажности (RH) и температуры (Т). Измерение содержания СО2 основывается на инфракрасном принципе.

Таблица 2 - Техническое описание

Напряжение питания

15…35 В пост. тока

Тип выхода

перекидное реле 0-10 В 4-20 мА

Диапазоны измерения CO2

0…2000 ррм 0…5000 ррм

Погрешность измерения CO2 (25°С)

<± (50ррм+2% от изм. знач.) <± (50ррм+3% от изм. знач.)

Диапазоны измерения влажности

Погрешность измерения влажности

Погрешность измерения темп.

Рабочая температура

20 … +60 °С

Температура хранения

20 … +60 °С

Относительная влажность

Твердотелое реле

Технические параметры:

Управление: пост.ток.

Управляющее напряжение, В 3…32.

Коммутируемое переменное напряжение, В 40…440.

Максимальный ток нагрузки, А 100.

Физические кнопки управления.

Характеристика:

Рабочее напряжение, В 24.

Ток нагрузки, А 10.

Температура работы, С -55...65.

Рисунок 2 - Конфигурация оборудования

1.4 Составление электрической схемы автоматизации

Рисунок 3 - Электрическая схема аналогового входа

Рисунок 4 - Электрическая схема дискретного входа\выхода

2. Составление блок схемы алгоритма и програмного обеспечения нижнего уровня на языке Step7 LAD, STL

2.1 Составление блок-схемы алгоритма программы

В первой части на рисунке 5 происходит опрос кнопок (физические кнопки или управление через HMI). Сначала происходит опрос кнопки STOP, если есть сигнал то все механизмы отключаются независимо от режима работы. Если сигнала нет, то происходит опрос кнопки START. При отрицательном состояний (она не нажата) цикл уходит в конец. Если есть сигнал о нажатий START, то выполняется вторая часть.

Во второй части на рисунке 6 происходит выбор режима работы (автоматический или ручной режим). Если есть сигнал AUTO, то выбирается режим автоматического управления и работа переходит в третью часть. Если сигнала нет то ПЛК делает опрос MANUAL. При положительном сигнале, управление осуществляется в ручном режиме и работа переходит в четвертую часть.

В третьей части на рисунке 6 происходит выбор режима работы отопления и кондиционирования, зависящий от времени года. После этого прооисходит опрос датчика температуры TT, далее управление зависит от значения этого датчика.

В четвертой части (рисунок 6) осуществляется опрос кнопок управления (физические кнопки или управление через HMI) в ручном режиме работы. В этой части исходя из сигнала кнопок происходит выключение либо включение исполнительных механизмов.

В пятой части (рисунок 6) ПЛК делает опрос датчика освещения DL, а затем исходя из его значений выполняется автоматическое управление освещением. После этого происходит опрос значений датчика углекислого газа DCO2, управление вытяжкой зависит от его значений.

Для удобства программирования алгоритма, он был поделен на отдельные функций. Порядок вызова функций организоционным блоком изображен на рисунке 5.

Рисунок 5 - Структура прикладной программы

Рисунок 6 - Блок-схема алгоритма программы

Рисунок 7 - Блок-схема алгоритма программы

2.2 Составление таблицы символов

Для удобной работы тэги были разделены на несколько таблиц символов. На рисунке 7 изображен список этих таблиц. BIN_IN содержит 42 тэга которые используются для обработки дискретных входных сигналов. ANA_IN содержит тэги аналоговых входных сигналов. BIN_OUT содержит тэги дискретных сигналов. В Useful_tags находятся прочие тэги которые являются неотъемлемой частью алгоритма программы.

На рисунке 8, 9, 10, 11, 12 изображены непосредственно тэги применяемые на уровне программирования алогоритма автоматизаций.

Рисунок 8 - Группы тэгов

Рисунок 9 - Тэги BIN_IN

Рисунок 10 - Тэги BIN_IN

Рисунок 11 - Тэги ANA_IN

Рисунок 12 - Тэги BIN_OUT

Рисунок 13 - Тэги useful_tags

2.3 Составление программы на языке Step7 (STL)

Алгоритм работы программы в TIA Portal для автоматизаций отопления, кондиционирования, освещения и вентиляций приведен на языке STL:

Рисунок 14 - Функциянальные блоки программы

Рисунок 15 - Кнопка остановки системы

Рисунок 16 - Старт системы и выбор автоматического режима

Рисунок 17 - Масштабирование аналогового сигнала датчика температуры

Рисунок 18 - Масштабирование аналогового сигнала датчика освещенности

Рисунок 19 - Масштабирование аналогового сигнала датчика углекислого газа

Рисунок 20 - Выбор режима работы отоплени

Рисунок 21 - Включение нагревания воды (температура ниже 18)

Рисунок 22 - Выключение нагревания воды (температура больше 18)

Рисунок 23 - Включение кондиционера (температура больше 25)

Рисунок 24 - Выключение кондиционера (температура ниже 23)

Рисунок 25 - После обработки блока отопления, следующем вызывается блок автоматизация освещения

Рисунок 26 - Включение основного освещения (освещение ниже 500 лк)

Рисунок 27 - Включение вспомогательного освещения (освещение в диапазоне от 500 до 900 лк)

Рисунок 28 - Выключение всего освещения (освещение в диапазоне от 900 до 1200 лк)

Рисунок 29 - После обработки функций освещения следующем вызывается функция вентиляции

Рисунок 30 - Включение таймера ожидания проверки

Рисунок 31 - Включение вытяжения на 15 сек.(концентрация газа в диапазоне от 400 до 600 ppm)

Рисунок 32 - Включение вытяжения на 20 сек.(концентрация газа в диапазоне от 600 до 1000 ppm)

Рисунок 33 - Включение вытяжения на 25 сек.(концентрация газа больше 1000 ppm)

Если в начале выбора режима отопления был выбран режим ZIMA, то вызывается функция ZIMA и обрабатывается так же как и функция LETO. Отличия только в диапазонах температуры.

Рисунок 34 - Вызов функций ZIMA

Ручное управление выполняется в одной функций MANUAL. Вызывается в организоционном блоке если была нажата кнопка ручного управления. Ниже представленных рисунках изображены включения выходных элементов. Алгоритм выключения выполняется при таком же порядке, но результат RLO инвертируется.

Рисунок 35 - Вызов функций MANUAL

Рисунок 36 - Включение котела отопления

Рисунок 37 - Выключение котела отопления

Рисунок 38 - Включение обогревания

Рисунок 39 - Включение кондиционера

Рисунок 40 - Включение основного освещения

Рисунок 41 - Включение основного освещения

Рисунок 42 - Включение вытяжения

3. Создание диспетчерского пункта и реализация полной SCADA системы

3.1 Составление перечня тегов (HMI Tags) связи программы контроллера с объектами диспетчерского пункта

программный контроллер логический аналоговый

В разделе HMI Tags (рисунок 43) был создан список тегов для визуализации и управления технологическим объектом.

Рисунок 43 - Данные HMI Tags

3.2 Составление окон диспетчерского пункта (Screens) для HMI панели.

Окна диспетчерского пункта для HMI состоит из семи окон (рисунок 44). Root Screen (рисунок 45) - это окно которое открывается при включений HMI. В этом окне находятся три кнопки являющиеся ссылками на окна AUTOMATION, MANUAL, TRENDS.

Окно AUTOMATION (рисунок 46) состоит из панели управления в режиме автоматического управления. MANUAL (рисунок 47) - окно содержащее панель управления в режиме ручного управления.

TRENDS (рисунок 48) содержит графическое представление значений аналоговых входных сигналов.

Рисунок 44 - Окна диспетчерского пункта

Рисунок 45 - Окна диспетчерского пункта

Рисунок 46 - Окно автоматического управления

Рисунок 47 - Окно в режиме ручного управления

Рисунок 48 - Окно TRENDS

Рисунок 49 - Trend датчика температуры TT

Рисунок 50 - Trend датчика освещения DL

Рисунок 51 - Trend датчика углекислого газа DCO2

Заключение

Во время выполнения курсовой работы закрепил знания по курсу «Средства автоматизации технологического процесса ТЭК», развил навыки проектирования автоматизированных систем управления технологическими объектами, освоил основные свойства микропроцессорных систем, изучил структурное и програмное построение микропроцессорных систем и промышленных контроллеров, закрепил навыки программирования промышленных контроллеров.

В ходе выполнения данной работы произвел выбор конфигурации оборудования с учетом особенностей технологического объекта. Составил блок-схему алгоритма функционирования автоматизированной системы управлением микроклимата и написал програмное обеспечение нижнего уровня на языке STL. Реализовал полную SCADA систему для выбранного технлогического объекта.

Литература

1. А.А. Копесбаева, Е.С Ким. Средства автоматизации технологического процесса ТЭК. Методические указания по выполнению курсовой работы для студентов специальности 5B071600 - Приборостроение.- Алматы: АУЭС, 2016, - 23с.

2. Siemens AG. S7 300 Modul Data. Руководство.

3. Siemens AG. HMI Comfort Panel. Data sheet. Руководство.

4. Siemens AG. Датчик температуры комнатный. Руководство к экпслуатации. Landis & Staefa Division, 1996.

5. Датчики освещенности LP01 / LP02. Техническое описание.

6. Жаров С.А. Основы сетевой безопасности: Криптографические алгоритмы и протоколы. - ВРс.: Винтерфэл, 2012.

Размещено на Allbest.ru

Подобные документы

    Разработка и обоснование функциональной схемы системы автоматического управления технологическим процессом. Расчет мощности электродвигателей. Выбор и компоновка шкафа электроавтоматики. Моделирование программного обеспечения в Logo Soft Comfort v6.0.

    курсовая работа , добавлен 02.04.2013

    Разработка алгоритма автоматизации технологического участка производственного предприятия машиностроительного профиля. Составление программы для реализации релейно-контактной схемы управления объектом на основе программируемого логического контроллера.

    контрольная работа , добавлен 30.04.2012

    Техническое обеспечение, расчет информационно-измерительного канала системы автоматического управления. Методическое обеспечение: описание модели АЦП, спектральный анализ на основе преобразования Фурье. Разработка прикладного программного обеспечения.

    курсовая работа , добавлен 21.05.2010

    Разработка автоматизированной системы управления технологическими процессами очистки, компримирования и осушки нефтяного газа на базе программируемого логического контроллера SLC-500 фирмы Allen Bradley. Расчёт системы автоматического регулирования.

    дипломная работа , добавлен 06.05.2015

    Разработка алгоритмов и блок-схем, описывающих процесс визуализации и модификации поведения нестандартных управляющих элементов. Описание принципов композиции и организации элементов управления, а также описание выбранного стиля и цветовой гаммы.

    курсовая работа , добавлен 22.05.2012

    Особенности работы с последовательным портом в среде Visual Studio. Тестирование работы протокола Modbus RTU в режиме Slave. Описание и технические характеристики программируемого логического контроллера Овен 100. Построение диаграммы передачи фреймов.

    отчет по практике , добавлен 19.07.2015

    Основные методы и уровни дистанционного управления манипуляционными роботами. Разработка программного обеспечения системы терминального управления техническим объектом. Численное моделирование и анализ исполнительной системы робота манипулятора.

    дипломная работа , добавлен 09.06.2009

    Функционально-модульная структура программного обеспечения контроллера домофона. Электронная схема электронного замка, модуля микрофона и динамика. Выбор комбинированного источника питания. Разработка программного модуля. Программа управления домофоном.

    курсовая работа , добавлен 29.03.2017

    Идентификация объекта управления на основе экспериментальных данных. Синтез информационно-управляющей системы и анализ ее характеристик: аналогового регулятора Смита и его цифровое перепроектирование, адаптация. Выбор микропроцессорного контроллера.

    курсовая работа , добавлен 16.10.2013

    Структура микропроцессорной системы, алгоритм ее управления и передачи сигналов. Карта распределения адресов. Разработка электрической принципиальной схемы и выбор элементной базы. Расчет потребляемого тока, блока питания, программного обеспечения.

Расход электроэнергии на цели освещения может быть приметно снижен достижением хорошей работы осветительной установки в каждый момент времени.

Достигнуть более полного и четкого учета наличия дневного света, равно как и учета присутствия людей в помещении, можно, применяя средства автоматического управления освещением (СУО) . Управление осветительной нагрузкой осуществляется при всем этом 2-мя основными методами: отключением всех либо части осветительных приборов (дискретное управление) и плавным конфигурацией мощности осветительных приборов (схожим для всех либо личным).

К системам дискретного управления освещением сначала относятся разные фотореле (фотоавтоматы) и таймеры. Принцип деяния первых основан на включении и выключении нагрузки по сигналам датчика внешней естественной освещенности .

2-ые производят коммутацию осветительной нагрузки зависимо от времени суток по за ранее заложенной программке.


К системам дискретного управления освещением относятся так­же автоматы, снаряженные датчиками присутствия . Они отключают осветительные приборы в помещении спустя данный просвет времени после того, как из него удаляется последний человек. Это более экономный вид систем дискретного управления, но к побочным эффектам их использования относится вероятное сокра­щение срока службы ламп за счет нередких включений и выключений.

Системы плавного регулирования мощности освещения по собственному устройству несколько труднее. Принцип их деяния объясняет набросок.

В ближайшее время многими забугорными фирмами освоено создание оборудования для автоматизации управления внутренним освещением. Современные системы управления освещением соединяют внутри себя значимые способности экономии электроэнергии с наибольшим удобством для юзеров.

Автоматические системы управления освещением , созданные для использования в публичных зданиях, делают последующие обычные для этого вида изделий функции:

Четкое поддержание искусственной освещенности в помещении на данном уровне . Достигается это введением в систему управления освещением фотоэлемента, находящегося снутри помещения и контролирующего создаваемую осветительной установкой освещенность. Уже только одна эта функция позволяет сберегать энергию за счет отсечки так именуемого «избытка освещенности».


Учет естественной освещенности в помещениии . Невзирая на наличие в в подавляющем большинстве помещений естественного освещения в светлое время суток, мощность осветительной установки рассчитывается без его учета.

Если поддерживать освещенность, создаваемую вместе осветительной установкой и естественным освещением, на данном уровне, то можно еще посильнее понизить мощность осветительной установки в каждый момент времени.

В определенное время года и часы суток может быть даже внедрение 1-го естественного освещения. Эта функция может осуществляться этим же фотоэлементом, что и в прошлом случае, при условии, что он выслеживает полную (естественную + искусственную) освещенность. При всем этом экономия энергии может составлять 20 — 40%.

Учет времени суток и денька недели. Дополнительная экономия энергии в освещении может быть достигнута отключением осветительной установки в определенные часы суток, также в выходные и торжественные деньки. Эта мера позволяет отлично биться с забывчивостью людей, не отключающих освещение на рабочих местах перед своим уходом. Для ее реализации автоматическая система управления освещением должна быть оборудована своими часами реального времени.

Учет присутствия людей в помещении. При оборудовании системы управления освещением датчиком присутствия можно включать и отключать осветительные приборы зависимо от того, есть ли люди в данном помещении. Эта функция позволяет расходовать энергию более нормально, но ее применение оправдано далековато не во всех помещениях. В отдельных случаях она может даже сокращать срок службы осветительного оборудования и создавать противное воспоминание при работе.

Получаемая за счет отключения осветительных приборов по сигналам таймера и датчиков присутствия экономия электроэнергии составляет 10 — 25 %.

Дистанционное беспроводное управление осветительной установкой . Хотя такая функция не является автоматической, она нередко находится в автоматических системах управления освещением благодаря тому, что ее реализация на базе электроники системы управления освещением очень ординарна, а сама функция добавляет существенное удобство в управлении осветительной установкой.

Способами конкретного управления осветительной установкой является дискретное включение/отключение всех либо части осветительных приборов по командам управляющих сигналов, также ступенчатое либо плавное понижение мощности освещения зависимо от этих же сигналов.

Ввиду того, что современные регулируемые электрические ПРА имеют ненулевой нижний порог регулирования, в современных автоматических системах управления освещением применяется композиция плавного регулирования прямо до нижнего порога с полным отключением ламп в светильниках при его достижении.

Системы автоматического управления освещением, условно можно поделить на два главных класса — так именуемые локальные и централизованные .

Для локальных систем типично управление только одной группой осветительных приборов, в то время как централизованные системы допускают подключение фактически нескончаемого числа раздельно управляемых групп осветительных приборов.

В свою очередь, по охватываемой сфере управления локальные системы могут быть подразделены на «системы управлении светильниками» и «системы управления освещением помещений» , а централизованные — на спец (только для управления освещением) и общего предназначения (для управления всеми инженерными системами строения — отоплением, кондиционированием, пожарной и охранной сигнализацией и т.д.).


Локальные «системы управления светильниками» почти всегда не требуют дополнительной проводки, а ино­гда даже уменьшают необходимость в прокладке проводов. Конструктивна они производятся в компактных корпусах, фиксируемых конкретно на осветительном приборе либо на пробирке одной из ламп. Все датчики, обычно, составляют один электрический прибор, в свою очередь, интегрированный в корпус самой системы.

Нередко осветительные приборы, оборудованные датчиками, обмениваются меж собой информацией по проходам электронной сети. Из-за этого даже в случае, если в здании остался единственный человек, находящиеся на его пути осветительные приборы останутся включенными.

Централизованные системы управления освещением

Централизованные системы управления освещением, более много отвечающие наименованию «умственных», строятся на базе процессоров, обеспечивающих возможность фактически одновременного многовариантного управления значимым (до нескольких сотен) числом осветительных приборов. Такие системы могут применяться или только для управления освещением, или также и для взаимодействия с другими системами построек (к примеру, с телефонной сетью, системами безопасности, вентиляции, отопления и солнцезащитных огораживаний).

Централизованные системы выдают также управляющие сигналы на осветительные приборы по сигналам ло­кальных датчиков. Но преобразование сигналов происходит в едином (центральном) узле, что предоставляет дополнительные способности вручную управлять освещением строения. Сразу значительно упрощается ручное изменение метода работы системы.

При системах централизованного дистанционного либо автоматического управления освещением питание цепей управления разрешается от полосы, питающей освещение.

Для помещений, имеющих зоны с различными критериями естественного освещения, управление рабочим освещением должно обеспечивать включение и отключение осветительных приборов группами либо рядами по мере конфигурации естественной освещенности помещений.

Имеющийся ассортимент автоматических систем управления освещением (СУО) делится на три класса:

1) СУО осветительного прибора — простая компактная система, конструктивно являющаяся частью осветительного прибора и управляющая только или одной группой нескольких близкорасположенных осветительных приборов.

2) — самостоятельная система, управляющая одной либо несколькими группами осветительных приборов в одном либо нескольких помещениях.

3) СУО строения — централизованная компьютеризованная система управления, обхватывающая освещение и другие системы целого строения либо группы построек.

Большая часть компаний-производителей систем управления освещением (СУО) осветительных приборов изготовляют эти системы в виде отдельных блоков, которые могут быть интегрированы в осветительные приборы разных типов.

Бесспорным преимуществом СУО осветительных приборов является простота их монтажа и эксплуатации, также надежность. В особенности надежны СУО, не требующие электропитания, потому что выходу из строя более подвержены блоки питания СУО и энергопотребляющие микросхемы.

Но если требуется управлять осветительными установками больших помещений либо, к примеру, стоит задачка личного управления всеми светильниками в помещении, СУО осветительных приборов оказываются довольно дорогим средством регулирования, потому что требуют установки одной СУО на один осветительный прибор. В данном случае удобнее использовать , которые содержат меньше электрических компонент, чем требуется в прошлом случае, и потому более дешевы.


представляют собой блоки, размещаемые за навесноыми потолками либо конструктивно встраиваемые в электронные распределительные щиты. Системы этого типа, обычно, производят одну функцию либо фиксированный набор функций, выбор меж которыми делается перестановкой тумблеров на корпусе либо выносном пульте управления системы.

Подобные СУО относительно ординарны в изготовлении и обычно построены на дискретных логических микросхемах. Датчики СУО помещений всегда являются выносными, они должны быть расположены в помещении с управляемыми осветительными установками и к ним нужна особая проводка, что представляет собой определенное практическое неудобство.

Создатель статьи: Sun Cheek

Расход электроэнергии на цели освещения может быть заметно снижен достижением оптимальной работы осветительной установки в каждый момент времени.

Добиться наиболее полного и точного учета наличия дневного света, равно как и учета присутствия людей в помещении, можно, применяя средства автоматического управления освещением (СУО) . Управление осветительной нагрузкой осуществляется при этом двумя основными способами: отключением всех или части светильников (дискретное управление) и плавным изменением мощности светильников (одинаковым для всех или индивидуальным).

К системам дискретного управления освещением в первую очередь относятся различные фотореле (фотоавтоматы) и таймеры. Принцип действия первых основан на включении и отключении нагрузки по сигналам датчика наружной естественной освещенности .

Вторые осуществляют коммутацию осветительной нагрузки в зависимости от времени суток по предварительно заложенной программе.

К системам дискретного управления освещением относятся так­же автоматы, оснащенные датчиками присутствия . Они отключают светильники в помещении спустя заданный промежуток времени после того, как из него удаляется последний человек. Это наиболее экономичный вид систем дискретного управления, однако к побочным эффектам их использования относится возможное сокра­щение срока службы ламп за счет частых включений и выключений.

Системы плавного регулирования мощности освещения по своему устройству несколько сложнее. Принцип их действия поясняет рисунок.

В последнее время многими зарубежными фирмами освоено производство оборудования для автоматизации управления внутренним освещением. Современные системы управления освещением сочетают в себе значительные возможности с максимальным удобством для пользователей.

Автоматизированные системы управления освещением , предназначенные для использования в общественных зданиях, выполняют следующие типичные для этого вида изделий функции:

Точное поддержание искусственной освещенности в помещении на заданном уровне . Достигается это введением в систему управления освещением фотоэлемента, находящегося внутри помещения и контролирующего создаваемую осветительной установкой освещенность. Уже только одна эта функция позволяет экономить энергию за счет отсечки так называемого "излишка освещенности".

Учет естественной освещенности в помещениии . Несмотря на наличие в в подавляющем большинстве помещений естественного освещения в светлое время суток, мощность осветительной установки рассчитывается без его учета.

Если поддерживать освещенность, создаваемую совместно осветительной установкой и естественным освещением, на заданном уровне, то можно еще сильнее снизить мощность осветительной установки в каждый момент времени.

В определенное время года и часы суток возможно даже использование одного естественного освещения. Эта функция может осуществляться тем же фотоэлементом, что и в предыдущем случае, при условии, что он отслеживает полную (естественную + искусственную) освещенность. При этом экономия энергии может составлять 20 - 40%.

Учет времени суток и дня недели. Дополнительная экономия энергии в освещении может быть достигнута отключением осветительной установки в определенные часы суток, а также в выходные и праздничные дни. Эта мера позволяет эффективно бороться с забывчивостью людей, не отключающих освещение на рабочих местах перед своим уходом. Для ее реализации автоматизированная система управления освещением должна быть оборудована собственными часами реального времени.

Учет присутствия людей в помещении. При оборудовании системы управления освещением датчиком присутствия можно включать и отключать светильники в зависимости от того, есть ли люди в данном помещении. Эта функция позволяет расходовать энергию наиболее оптимально, однако ее применение оправдано далеко не во всех помещениях. В отдельных случаях она может даже сокращать срок службы осветительного оборудования и производить неприятное впечатление при работе.

Получаемая за счет отключения светильников по сигналам таймера и датчиков присутствия экономия электроэнергии составляет 10 - 25 %.

Дистанционное беспроводное управление осветительной установкой . Хотя такая функция не является автоматизированной, она часто присутствует в автоматизированных системах управления освещением благодаря тому, что ее реализация на базе электроники системы управления освещением очень проста, а сама функция добавляет значительное удобство в управлении осветительной установкой.

Методами непосредственного управления осветительной установкой является дискретное включение/отключение всех или части светильников по командам управляющих сигналов, а также ступенчатое или плавное снижение мощности освещения в зависимости от этих же сигналов.

Ввиду того, что современные регулируемые электронные ПРА имеют ненулевой нижний порог регулирования, в современных автоматизированных системах управления освещением применяется комбинация плавного регулирования вплоть до нижнего порога с полным отключением ламп в светильниках при его достижении.

Системы автоматического управления освещением, условно можно разделить на два основных класса - так называемые локальные и централизованные .

Для локальных систем характерно управление только одной группой светильников, в то время как централизованные системы допускают подключение практически бесконечного числа раздельно управляемых групп светильников.

В свою очередь, по охватываемой сфере управления локальные системы могут быть подразделены на "системы управлении светильниками" и "системы управления освещением помещений" , а централизованные - на специализированные (только для управления освещением) и общего назначения (для управления всеми инженерными системами здания - отоплением, кондиционированием, пожарной и охранной сигнализацией и т.д.).

Локальные "системы управления светильниками" в большинстве случаев не требуют дополнительной проводки, а ино­гда даже сокращают необходимость в прокладке проводов. Конструктивна они выполняются в малогабаритных корпусах, закрепляемых непосредственно на светильнике или на колбе одной из ламп. Все датчики, как правило, составляют один электронный прибор, в свою очередь, встроенный в корпус самой системы.

Часто светильники, оборудованные датчиками, обмениваются между собой информацией по проходам электрической сети. За счет этого даже в случае, если в здании остался единственный человек, находящиеся на его пути светильники останутся включенными.

Централизованные системы управления освещением

Централизованные системы управления освещением, наиболее полно отвечающие названию "интеллектуальных", строятся на основе микропроцессоров, обеспечивающих возможность практически одновременного многовариантного управления значительным (до нескольких сотен) числом светильников. Такие системы могут применяться либо только для управления освещением, либо также и для взаимодействия с другими системами зданий (например, с телефонной сетью, системами безопасности, вентиляции, отопления и солнцезащитных ограждений).

Централизованные системы выдают также управляющие сигналы на светильники по сигналам ло­кальных датчиков. Однако преобразование сигналов происходит в едином (центральном) узле, что предоставляет дополнительные возможности вручную управлять освещением здания. Одновременно существенно упрощается ручное изменение алгоритма работы системы.

При системах централизованного дистанционного или автоматического управления освещением питание цепей управления разрешается от линии, питающей освещение.

Для помещений, имеющих зоны с разными условиями естественного освещения, управление рабочим освещением должно обеспечивать включение и отключение светильников группами или рядами по мере изменения естественной освещенности помещений.

Существующий ассортимент автоматизированных систем управления освещением (СУО) делится на три класса:

1) СУО светильника - простейшая малогабаритная система, конструктивно являющаяся частью светильника и управляющая только либо одной группой нескольких близлежащих светильников.

2) - самостоятельная система, управляющая одной или несколькими группами светильников в одном или нескольких помещениях.

3) СУО здания - централизованная компьютеризованная система управления, охватывающая освещение и другие системы целого здания или группы зданий.

Большинство компаний-производителей систем управления освещением (СУО) светильников изготовляют эти системы в виде отдельных блоков, которые могут быть встроены в светильники различных типов.

Безусловным преимуществом СУО светильников является простота их монтажа и эксплуатации, а также надежность. Особенно надежны СУО, не требующие электропитания, так как выходу из строя наиболее подвержены блоки питания СУО и энергопотребляющие микросхемы.

Однако если требуется управлять осветительными установками крупных помещений или, например, стоит задача индивидуального управления всеми светильниками в помещении, СУО светильников оказываются достаточно дорогим средством управления, так как требуют установки одной СУО на один светильник. В этом случае удобнее использовать , которые содержат меньше электронных компонентов, чем требуется в предыдущем случае, и поэтому более дешевы.

представляют собой блоки, размещаемые за подвесными потолками или конструктивно встраиваемые в электрические распределительные щиты. Системы этого типа, как правило, осуществляют одну функцию или фиксированный набор функций, выбор между которыми производится перестановкой переключателей на корпусе или выносном пульте управления системы.

Подобные СУО относительно просты в изготовлении и обычно построены на дискретных логических микросхемах. Датчики СУО помещений всегда являются выносными, они должны быть размещены в помещении с управляемыми осветительными установками и к ним необходима специальная проводка, что представляет собой определенное практическое неудобство.

В статье рассматривается вопрос классификации, устройства, принципов действия и реализуемых функций систем управления освещением различного уровня, в том числе, на базе светодиодных технологий.

Если проанализировать среднестатистический 8-часовой рабочий день на любом крупном или мелком производстве, то однозначно можно прийти к выводу о необходимости организации искусственного освещения. Без него создать оптимальные условия для трудовой активности, повысить производительность и безопасность персонала нереально. Об этом говорится в множестве отраслевых и ведомственных актов, но здесь упускается один важный на сегодня момент – экономия ресурсов. Работая, осветительные приборы потребляют определенный объем электроэнергии, что при неэффективной схеме становится тяжелым бременем для бюджета предприятия. Можно, конечно же, перейти на галогенные или светодиодные светильники, но куда эффективнее видится системы управления освещением на производстве. Именно об этом и пойдет речь далее.

Что такое СУО?

Электрический ток, который необходим для питания всех электроприборов, в том числе, и осветительных, не возникает из неоткуда. Для этого, к примеру, нужно сжечь определенный объем угля на ТЭС, высвободив тепловую энергию. Последняя передается пару, который крутит лопасти турбины, в результате чего генерируется то самое электричество. Подобных технологических цепочек в зависимости от типа станции (АЭС, ГЭС и т. д.) предостаточно, но общим для них является необходимость использования природных ресурсов, а они, как известно, не безграничны.

Стремление к в таких условиях выглядит более чем обоснованным, если не из соображения экономии ресурсов, то уж точно с финансовой точки зрения. Более того, Закон Украины 75/94-ВР прямо обязывает принимать конкретные меры по повышению эффективности. К таким мероприятиям относится, в частности, проектирование освещения, системы управления им. В профессиональной среде они называются сокращенно, посредством аббревиатуры – СУО.

Такая система представляет собой электронную сеть, в которой действуют заранее определенные интеллектуальные алгоритмы. Главной задачей СУО является автоматизация функционирования как внутреннего, так и наружного освещения. На практике это означает, что человеку не нужно больше ходить и нажимать на кнопки выключателей, чтобы на рабочем месте стало светлее. За него эти задачи решает центральный или локальный пульт управления. Причем, он определяет не только время, когда необходимо подключить/отключить отдельные контура, но и интенсивность светового потока.

Классификация

В зависимости от предпринятых проектных и масштабов системы, они могут комплектоваться различными устройствами:

  • Выключатели с возможностью автоматического реагирования;
  • Диммеры, корректирующие яркость освещения в зависимости от заданных условий;
  • Лампы, прожекторы, светодиодные ленты (с сопутствующим оборудованием);
  • Комплекты датчиков (света, движения, открытия, присутствия);
  • Системы управления с использованием специального ПО и т. д.

Учитывая разнообразие задач и используемых для их комплектующих, система автоматического управления освещением классифицируется по широкому перечню критериев. К ним обычно относят способ передачи данных, а также масштабы и иерархическую структуру.

По способу передачи данных и контроля все СУО можно разделить на два типа: аналоговые и цифровые. Для первой группы характерной особенностью является наличие большого количества кабельной соединительной продукции, что в любом случае экономически не выгодно. Цифровые системы используют специальный протокол, к примеру, DSI (аналогичный используется в дисплеях мобильных устройствах), который позволяет минимизировать количество проводки, повысить комфорт монтажа и эксплуатации.

По масштабам реализации все делят также на два типа:

  • Локальные . Осуществляется контроль отдельной небольшой группы светильников. В большинстве случаев такие системы не нуждаются в обособленной проводке – весь конструктив, включая датчики и контроллеры, монтируется в компактном корпусе прямо на светильниках. Отдельные варианты таких СУО могут обмениваться между собой информацией, используя действующую сеть электропитания приборов;
  • Централизованные . Возможность управления большим количеством контуров освещения, в том числе, остальными инженерными системами объекта (отоплением, кондиционированием, водоснабжением и т. д.). Выполнение подобных задач требует построения сложной иерархии, использования специального ПО, микропроцессоров, систем обмена данными. Управление отдельными ветками осуществляется из центрального узла на основании заданных параметров работы и показаний локальных датчиков.

Кроме того, существует достаточно четкая иерархия, в рамках которой система управления наружным освещением (как и внутренним) может реализовывать определенный объем задач:

  • СУО базового уровня . Имеет возможность регулировать освещенность в диапазоне 0…1000 люкс на высотах 0…5 м, световой поток в пределах 10…100%, определять движение, присутствие на участке, активировать и деактивировать освещение в автоматическом режиме. Кроме светильников, в комплектацию входят промышленные датчики и автоматика локального применения;
  • СУО среднего уровня . на базе шкафов управления, включающих средства автоматизации, коммутации, учета электроэнергии и свободно программируемые контроллеры с модулями расширения;
  • СУО продвинутого уровня . Управление таким масштабным проектом требует использования специального программного и аппаратного обеспечения. Реализуется на базе персональных или промышленных компьютеров. Имеет возможность визуализации процессов, архивирования, анализа, передачи данных, контроля состояния системы, формирования отчетностей. Для связи могут использоваться проводные и беспроводные технологии (Ethernet, Internet, GPRS, IP).

Функции системы управления освещением

Автоматические СУО в зависимости от выполняют следующие группы функций:

  • Информационные . Обеспечение визуализации состояния СУО и управления ею. Сюда можно отнести сбор и обработку информации от датчиков, измерение, контроль параметров работы отдельных элементов, регистрацию штатных и нештатных ситуаций, формирование отчетов и т. п.;
  • Сигнализирующие . Информирование персонала о срабатывании автоматов (выключателей), возникновении аварий, несанкционированных подключениях к системе, числе неисправных точек освещения;
  • Управляющие . Обеспечение возможности работы в автоматическом и ручном (дистанционном, аппаратном) режимах;
  • Сервисные . Автоматическая и ручная диагностика, конфигурирование, защита и обеспечение доступа к СУО.

Системы управления светодиодным освещением

Использование излучающих в видимом диапазоне полупроводников на сегодняшний день является одним из наиболее перспективных . Но поскольку это тип приборов имеет совершенно иной принцип и требования к работе, нежели энергосберегающие и лампы накаливания. В частности, существует возможность изменения яркости в зависимости от требования (например, времени суток). Для этого обычно используется широтно-испульсная модуляция (ШИМ). На светодиоды подается импульсами высокой частоты ток, в результате чего происходит их частое включение/выключение. Человеческий глаз же воспринимает этот процесс, как плавное изменение яркости.

Еще один специфический момент – это цвет, который получается при смешивании отдельных каналов. Для контроля этого процесса обычно используют различные вариации RGB-контролеров (стандартные, многоканальные, DMX, DALI), репитеры, диммеры, датчики.

Подробнее

Экспортные истории: как Украина «несет свет» в Европу

Подробнее

Модернизация системы электроосвещения на ДТЭК Добропольская ЦОФ

Подробнее

Что такое теплоотвод в светодиодном светильнике?

Подробнее

Сколько в год можно сэкономить на электроэнергии с использованием светодиодного освещения?

Подробнее

20 Сен

Энергоэффективное освещение, как конкурентное преимущество

Подробнее

Особенности эксплуатации светодиодного освещения

Подробнее

Автоматизация освещения

Подробнее

Окупаемость инвестиций в модернизацию системы освещения

Подробнее

Оптическая система LED светильника: линзы, отражатели