ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Мой эксперимент в космосе. Развитие растения в условиях невесомости. Растения в космосе

Почти два года назад, 16 января 2016 года, в космической оранжерее Veggie на американском сегменте МКС зацвела цинния. Астронавт Скотт Келли в своем восторженном твите назвал ее «первым цветком, зацветшим в космосе».

Восторг астронавта можно понять: он вырастил эти растения из семян, ухаживал за ними, спасал от засухи, наводнения и нашествия плесени. Но он ошибся. Растения в космосе и раньше неоднократно росли, цвели и даже давали семена. Еще Циолковский говорил о том, что растения необходимы человеку для освоения космоса, чтобы служить источником пищи и кислорода. И с самого начала космической эры растения сопровождают человека в освоении внеземного пространства. Однако в отличие от людей и животных они часто остаются безызвестными участниками космических полетов. Давайте вспомним основные вехи космического растениеводства.

Первым растением, зацветшим в космосе и давшим семена , стала Arabidopsis thaliana , или резуховидка Таля. Арабидопсис зацвел в 1982 году на советской космической станции «Салют-7», в микрооранжерее «Фитон-3», благодаря усилиям космонавтов Анатолия Березового и Валентина Лебедева. Мелкий невзрачный сорняк, который живет всего пару месяцев, цветет крохотными белыми цветочками и дает множество семян. За это его и полюбили молекулярные биологи и физиологи растений всего мира. Неприхотливый, занимает мало места, быстро растет и дает много материала. Последние десятилетия это основной объект генетики и молекулярной биологии растений. Эти его свойства - малый размер и неприхотливость - оказались удобны и для космических исследований. В космических аппаратах места мало и создать растениям идеальные условия непросто.

А вообще первым растением, которое побывало в космосе и вернулось обратно , была кукуруза. Ее семена отправились в суборбитальный полет в июле 1946 года на ракете «Фау-2» (V-2), собранной в США из немецких трофейных запчастей. Согласно директиве министерства обороны США, начиная с 1946 года на каждой запущенной ракете этой серии должны были находиться экспериментальные образцы для ученых. Семена кукурузы и плодовые мушки дрозофилы были первыми подобными образцами. Ученые планировали исследовать действие космической радиации на живые организмы.

Полностью по орбите вокруг Земли первыми из растений пролетели традесканция, водоросль хлорелла, семена кукурузы, пшеницы, гороха и лука. Они отправились в космос на втором «Спутнике» в 1960 году, вместе с Белкой и Стрелкой.

Первым растением, съеденным в космосе , стал лук. Его вырастили в 1978 году на космической станции «Салют-4» в установке «Оазис» космонавты Владимир Ковалёнок и Александр Иванченков. Задачей эксперимента было - отработать условия выращивания растений и получить от них цветы и плоды с семенами. У лука нужно было срезать несколько стрелок, чтобы он не сгнил. Александр Машинский, в то время один из руководителей биологической группы НПО «Энергия», рассказывает , что часть этих стрелок космонавты съели, даже не спросив разрешения начальства.

Первые растения, облетевшие Луну, - деревья пяти хвойных и лиственных пород: сосна, пихта, секвойя, платан и ликвидамбар (лиственное дерево, распространенное на востоке Северной Америки). Около 500 семян этих деревьев отправились в космос в 1971 году на корабле «Аполлон-14» вместе с Аланом Шепардом и Эдгаром Митчеллом. Пока Шепард и Митчелл работали на поверхности спутника, их коллега Стюарт Руса облетал Луну на командном модуле. В начале своей карьеры Руса был членом парашютного пожарного отряда лесной охраны, и у него остались знакомые в Службе леса США. Они попросили его взять с собой в космос семена.

После возвращения на Землю эти семена прорастили и получили около 450 саженцев. Их посадили на территории объектов НАСА, университетов, парков и государственных учреждений в США. Одно такое «лунное дерево», сосна, растет на территории Белого дома. Несколько саженцев были отправлены в другие страны, в том числе в качестве подарка императору Японии. Другие «лунные деревья» посадили рядом с их собратьями, выращенными из семян, оставшихся на Земле. Спустя годы после посадки эти деревья практически неотличимы.

Одно из лунных деревьев, растущее в Форт-Смите, в штате Арканзас. Фото: Jesse Berry / wikimedia commons / CC BY-SA 4.0

Первое растение, «слетавшее» на Марс, - китайская капуста. Это листовая капуста, внешне похожая на салат-латук. Именно ее в оранжерее «Фитоцикл-СД» выращивали участники эксперимента «Марс-500» - пробного «полета» на Марс, который состоялся в 2010-2011 годах. В ангаре, стоящем на территории Института медико-биологических проблем РАН в Москве, построили макет марсианского корабля. В нем экипаж из шести человек провел 520 дней. За эти дни участники эксперимента отработали все этапы полета на Марс, включая выход на поверхность красной планеты, обрыв связи с Землей и даже пожар на корабле. В программу «полета» были включены и научные эксперименты, в том числе отработка методики выращивания китайской капусты в космической оранжерее, специально сконструированной для выращивания растений в невесомости. К сожалению, полакомиться свежей зеленью «космонавтам» не удалось: растения выросли мелкими и чахлыми. Предполагают, что причина этого - наличие в атмосфере «корабля» этилена и других газов, угнетающих рост растений. В реальном космическом корабле потребуется поставить воздушные фильтры на входе в отсек с оранжереей. Кроме капусты «космонавты» выращивали в обычной, земной оранжерее другие овощи - лук, сладкий перец, редис, томаты и пр. А в кают-компании стояла небольшая оранжерея для цветов.

По-настоящему же на Марс пока - кроме роботов - никто не летал. На межпланетной станции «Фобос-грунт», которую планировали отправить к одному из спутников Марса - Фобосу, должны были лететь различные живые организмы, в том числе семена редиса и ячменя. Запуск состоялся 9 ноября 2011 года, но во время запуска не сработала маршевая пусковая установка, и станция осталась на низкой околоземной орбите. В январе 2012 года ее обломки упали в Тихий океан, семена погибли вместе с ними. Так что освоение Марса живыми существами еще впереди.

Первые растения, вышедшие в открытый космос, - несколько сельскохозяйственных растений и модельных объектов: горчица, рис, томат, редис, ячмень, арабидопсис и никандра. В 2007-2008 годах их семена провели тринадцать месяцев в специальном контейнере на внешней обшивке МКС, в рамках второго этапа эксперимента «Биориск». Первый этап, завершившийся в 2006 году, включал только бактерии и грибы - ученые пытались понять, насколько эти микроорганизмы могут повредить внешнюю обшивку станции. На втором этапе к эксперименту добавили и другие биологические объекты: семена растений, икринки рыб, яйца раков, личинки насекомых. Томаты не выдержали условий открытого космоса, а вот семена других растений сохранили всхожесть, и из них уже на Земле выросли нормальные растения.

Первые растения, выросшие в «марсианской» и «лунной» почвах, - 14 видов растений, участники эксперимента, который в 2013 году провели голландские ученые под руководством Вигера Вамелинка. Для эксперимента они взяли томаты, рожь, морковь, кресс-салат и несколько видов дикорастущих растений. Их вырастили на созданных в НАСА образцах почвы, по составу такой же, как марсианский и лунный грунт. На лунной почве семена плохо прорастали, растения выросли мелкими и хилыми.

Горшки с проростками в «марсианской» (M), «лунной» (L) и «земной» (Е) почве из эксперимента Вамелинка. Фото: Wamelink et al. / PLoS ONE / CC BY 4.0

А вот в марсианском грунте растения чувствовали себя хорошо и дали биомассу не хуже, чем у контрольных растений, выращенных в земном грунте с речного дна. А кресс-салат и дикорастущее растение полевая горчица даже дали семена. То есть в марсианской почве вполне реально пытаться вырастить растения, что будет полезно для будущих обитателей марсианской колонии. Но необходимы еще эксперименты, которые бы учли не только состав марсианской почвы, но и гравитацию, освещенность, состав атмосферы и другие условия.

Космическая биология

Запуск первого в мире искусственного спутника Земли, осуществленный в Советском Союзе 4 октября 1957 г., положил начало освоению космического пространства. Успехи в развитии ракетной техники и астронавтики за истекшие годы внесли много нового в уже сложивщиеся науки, привели к рождению новых наук, и среди них космической биологии.
И хотя наши первые эксперименты с собаками на геофизических ракетах относятся к 1949 г., космическая биология как самостоятельная наука сложилась именно после 1957 г., когда стали возможны достаточно длительные опыты над животными и растениями непосредственно в космосе, на искусственных спутниках и космических кораблях.
Космическая биология изучает влияние на живые организмы Земли факторов космического полета и космического пространства. Одна из ее проблем - обеспечить жизнь людей в космических летательных аппаратах, на орбитальных и планетных станциях. Ученые также занимаются поиском и изучением внеземных форм жизни.
Необходимость биологических исследований при освоении космического пространства предвидел еще в 1908 г. К. Э. Циолковский. Один из первых советских ракетостроителей Ф. А. Цандер проводил опыты по использованию растений для регенерации воздуха. Теперь биологические эксперименты и наблюдения над животными проводятся в космосе. На советских спутниках и кораблях побывали собаки Лайка, Стрелка и Белка, Пчелка, Мушка, Чернушка, Звездочка, Ветерок, Уголек, а также мыши и крысы, черепахи, растения (традесканция и хлорелла), насекомые (дрозофила). Объектами эксперимента были кожная ткань человека и кролика, раковые клетки, вирусы, множество микроорганизмов. В опытах, проведенных американскими учеными, участвовала и обезьяна.
Все эти исследования обогатили космическую биологию. Диапазон объектов ее изучения широк - от сложных сообществ различных организмов и взаимодействия живых организмов и машин до тонких механизмов внутриклеточной регуляции и молекулярной генетики.
Эта отрасль биологии, как ни одна другая, органически связана с физикой, химией, медициной, электроникой, аэродинамикой, астрономией, геофизикой и др.
При проведении биологических экспериментов в космосе исследователь часто оказывается отдаленным на сотни и тысячи километров от животных, растений, микроорганизмов и других изучаемых объектов. В связи с этим все необходимое в опыте делают автоматические устройства, их действия заранее программируются. Различные датчики учитывают все физиологические процессы и состояния организмов: частоту дыхания, кровяное давление, пульс, нервное возбуждение, скорость роста, интенсивность фотосинтеза, скорость размножения водорослей или бактерий и др.
Управляют опытами с помощью дистанционных радиосистем. Результаты приходят на Землю по радиотелеметрическим линиям в виде специальных кодов. Электронные вычислительные машины расшифровывают и обрабатывают полученную информацию, после чего она поступает в распоряжение ученых.
Таким образом, экспериментатор и исследуемый объект связаны целой системой радиотелеметрических устройств.
Какие же факторы влияют на живые земные организмы при полете в космос и в самом космическом пространстве?
Во-первых, это факторы, связанные с динамикой полета космического аппарата. При старте ракеты и с возрастанием скорости ее движения возникают и быстро увеличиваются перегрузки. Быстро растет вес всех тел на корабле, увеличиваясь в 5-10 раз, а иногда и больше. Работа мощных двигателей ракеты вызывает сильные шумы и вибрации.
С выходом корабля на орбиту, или траекторию свободного полета, в кабине наступает состояние невесомости.
Воздействие на живые организмы перегрузок, вибрации, шумов, невесомости - все это в поле зрения космической биологии. Особенно важно изучить последствия длительного состояния невесомости. Этим занимается один из разделов той же науки - гравитационная биология.
Опыты показывают, что состояние невесомости (если оно не слишком длительно) не отражается губительно на жизнедеятельности организмов. Однако еще не ясно, не будет ли чрезмерной нагрузкой для земных организмов возвращение в условия земного притяжения после длительного состояния невесомости. Кроме того, неизвестно, насколько глубоко воздействие земного притяжения на физиологию клетки, на образование и развитие зародышей. Есть предположение, что сила тяжести оказывает влияние в первых стадиях на дробление оплодотворенной яйцеклетки.
Особенно чувствительными к состоянию невесомости могут оказаться растения в период развития, ведь и на них сильно влияет земное притяжение и, как известно, под его действием растения ориентируются в пространстве. Важно знать, как будут протекать эти процессы, если сила тяжести отсутствует, и какова минимальная сила тяжести для нормального развития различных организмов. От этого может зависеть конструкция будущих обитаемых космических аппаратов.
Во-вторых, это факторы космического пространства. Живые организмы подвергаются действиям космических и гамма-лучей, рентгеновского излучения, ультрафиолетовых лучей. Космическая биология изучает их действие в сочетании с невесомостью, перегрузками, вибрациями, своеобразным тепловым режимом и др., определяет их дозы, допустимые для жизни, а также средства необходимой защиты.

И, наконец, фактор изоляции. Ограниченность пространства и свободы движений в сравнительно небольших герметизированных кабинах космических кораблей, монотонность и однообразие обстановки, отсутствие многих привычных для жизни условий - все это необычно для земных организмов. Поэтому ученые проводят специальные исследования высшей нервной деятельности высокоорганизованных существ, в том числе и человека, выясняют, насколько приспособлены они к длительной изоляции и как сохранить в этих условиях их работоспособность.
Космической биологии предстоит сложный поиск надежных систем, которые неограниченно долго могли бы обеспечивать жизнь людей в корабле и снабжали бы их всем необходимым для нормальной жизни в случае высадки на другие планеты.
Ученые полагают, что если на борту корабля и планетных станций разместить сообщества определенных растительных и животных организмов, космонавты смогут иметь кислород, пищу и воду, а накапливающиеся в результате жизнедеятельности углекислота и различные отходы будут использоваться повторно.
Полный биологический круговорот веществ на Земле обеспечивается взаимодействием различных организмов, в котором важное место занимают зеленые растения. Используя солнечный свет, они связывают углекислоту, синтезируют органические вещества, выделяют кислород и создают тем самым условия для жизни других организмов. Имея в виду именно эту особенность растений, еще К. А. Тимирязев отмечал "космическую роль зеленых растений".
Зеленые растения на кораблях при неограниченном солнечном свете позволят создать такие замкнутые системы (космонавт станет их составной частью), в которых одно и то же взятое с Земли количество веществ будет находиться в непрерывном круговороте. Эти системы названы замкнутыми экологическими комплексами. (Экология - наука о взаимоотношениях растений и животных с окружающей средой.)
Человек, поглощая кислород, будет выдыхать углекислоту. Растения же, поглотив углекислоту, создадут из нее пищевые вещества и выделят кислород. Все отходы человеческого организма будут полностью использованы для питания растений.

Особенно интересны в этой связи одноклеточные зеленые водоросли, такие, как (хлорелла. Она быстро размножается и очень питательна. Хлорелла может расти насточных водах и их очищать. Для ее культивирования создаются самонастраивающиеся автоматические аппараты. Кроме растений, в экологическую систему будут включены определенные животные и некоторые микроорганизмы.
Энергию для многих процессов даст солнце.
Работа по созданию замкнутого экологического комплекса связана с большими трудностями. Все звенья такого биологического сообщества должны быть строго согласованы друг с другом, управляемы и надежны.
Людей издавна интересует: есть ли жизнь на других планетах, какова она, может ли жизнь быть занесенной с одного небесного тела на другое, как изменяются при этом ее формы и свойства?
Ученые давно предполагают, что жизнь существует не только на Земле. Но неопровержимого, научного доказательства этого до сих пор нет.
Попытки решить, существует ли жизнь на Марсе, наблюдениями с Земли с помощью

оптических инструментов оказались бесплодными. Полеты в космическое пространство позволили начать изучение жизни вне Земли опытным путем. Поисками и изучением простейших форм жизни в космосе, а также изучением жизни на других планетах занимается экзобиология - составная часть космической биологии. Автоматические устройства на искусственных спутниках, ракетах и автоматических планетных станциях дают возможность брать пробы в самом космическом пространстве, чтобы обнаружить органические вещества, микроорганизмы и споры внеземного происхождения. Межпланетные автоматические станции, подобные станциям "Луна-9", "Луна-13", позволят брать пробы непосредственно с поверхности небесных тел.
Космические аппараты могут случайно перенести на другие планеты земные организмы, которые способны развиваться в новых условиях и подавить существовавшую там до этого жизнь или же остаться на этих планетах в "земном" или измененном виде, а человек, когда-либо попав туда, будет введен в заблуждение, приняв земные организмы за внеземные. И наоборот, возвращающиеся на Землю корабли могут занести внеземные микроорганизмы, которые в земных условиях могут вызвать непредвиденные вспышки новых заболеваний.
Важность контроля в этой области не подлежит сомнению. Он возложен также на экзобиологов.

В августе 1960 г. Стрелка благополучно вернулась из космического полета. Тот факт, что Стрелка принесла щенят, имеет большое медико-биологическое значение. Сейчас ученые наблюдают уже не только за ними, но и за их потомством.

В.Е. Семененко

Размещение фотографий и цитирование статей с нашего сайта на других ресурсах разрешается при условии указания ссылки на первоисточник и фотографии.

54 года назад, 12 апреля 1961 года Юрий Алексеевич Гагарин – первый космонавт Земли, совершил первый в мире полет в космос на корабле «Восток». Наш космонавт очень интересовался цветами. А какие цветы он любил больше всего, вы узнаете из подборки любопытных фактов дуэта «растение и космос».

Интересные факты о растениях и космосе:

  1. В 1980 году на борт космической станции «Салют-6» были отправлены тюльпаны. Ученые предполагали, что цветы зацветут в космосе. К сожалению, тогда чуда не случилось – тюльпаны завяли на следующий день. По возвращении из полета, космонавт В. Ляхов отчаянно произнес: «Судя по всему, в космосе никто жить не может!». Но Герои Советского Союза тоже могут ошибаться.
  2. Но космонавты, вооружившись терпением, продолжили исследования. Иначе как можно исследовать такую глубину, как космос? И, надев цветочные скафандры, в космос отравились . Они продержались в суровых условиях космоса целых полгода! Даже образовались новые листочки и воздушные корни. Однако цветы опали сразу же по прибытию в космос.
  3. Арабидопсис (Arabidopsis Thaliana) – Гагарин среди цветов. Он побывал в космосе в 1982 году. Арабидопсис расцвел и даже дал семена в условиях полного отсутствия гравитации.
  4. А Юрию Алексеевичу по нраву были ромашки. Согласитесь, скромные маленькие солнышки замечательно характеризуют их поклонника: такой же скромный и лучезарный.
  5. Интересно, а на ромашки растут? Если растут на Марсе, то они там синего или фиолетового цвета от листьев до корней. А если на , то желтого или оранжевого.
  6. В космосе цветы и пахнуть будут иначе, чем на Земле. Аромат цветка зависит от многих условий. И некоторые умело этим пользуются. Запахи различных видов роз, выращенных на космическом корабле Дискавери, дали основу для духов «Zen» от Shiseido.
  7. Деревья тоже хотят в космос! В 2004 году бонсай-сосна отправилась на воздушных шарах бороздить просторы Вселенной. Эта идея пришла в голову японскому художнику, который совместно с компанией, запускающей в полет космические корабли, ее и осуществил. За компанию с сосной полетел большой цветочный букет. Эта великолепная композиция летала на высоте 30 километров над Землей.
  8. Оказывается, есть цветок, который тесно связан с неизведанным космосом, но при этом, он никуда и не думал летать. Этот цветок – космос. Во-первых, он так и называется. Во-вторых, он такой же загадочный и манящий. Шоколадный космос (Chocolate Cosmos) долгое время считался исчезнувшим. Но, к счастью, предусмотрительные биологи начала XX века успели собрать семена с последнего экземпляра этого неуловимого растения. Цветок в буквальном смысле хочется съесть – он имеет ярко выраженный запах шоколада.
  9. За растениями для разработки новых лекарств – в космос! Клетки женьшеня, прожив 75 дней на МКС, стали более продуктивными и эффективными. Осталось только сохранить эти чудесные свойства, чтобы создавать волшебные пилюли от всех болезней.
  10. Канадские ученые разработали «Лунный оазис». Это своего рода переносной парник, в котором учтены все условия для выращивания различных культур и растений. В будущем они надеются отправить парник на Луну, чтобы проверить работоспособность оазиса. По словам разработчиков, это позволит обеспечивать свежими фруктами и овощами будущих переселенцев с Земли.
  11. Похожие исследования ведут и российские ученые. Еще с конца 90-х годов они трудятся над созданием космической оранжереи. На МКС есть оранжерея «Лада», в которой выращивают картофель, редис, ячмень и др. Однако целей преследуют много: от чисто научных интересов до снятия стресса космонавтов во внеземных условиях.
  12. Японские ученые совместно с индийскими проводят исследования в условиях микрогравитации. «Космические умы» этих стран хотят проследить изменения биологических функций растений. Для начала выращивать будут обыкновенные водоросли. Посмотрим, может и суши можно будет поесть в космическом ресторане?

Человечеству потребовались все знания, собранные учёными за сотни лет, чтобы начать космические полёты. И тогда человек столкнулся с новой проблемой - для колонизации других планет и дальних перелётов нужно разработать замкнутую экосистему, в том числе - обеспечить космонавтов едой, водой и кислородом. Доставлять еду на Марс, который находится за 200 миллионов километров от Земли, дорого и сложно, логичнее будет найти такие способы производства продуктов, которые легко реализовать в полёте и на Красной планете.

Как на семена влияет микрогравитация? Какие овощи будут безвредны, если их вырастить в богатой тяжёлыми металлами почве Марса? Как обустроить плантацию на борту космического корабля? Учёные и космонавты уже более пятидесяти лет ищут ответы на эти вопросы.

На иллюстрации - российский космонавт Максим Сураев обнимает растения в установке «Лада» на борту Международной космической станции, 2014 год.

Константин Циолковский в «Целях звездоплавания» писал: «Вообразим себе длинную коническую поверхность или воронку, основание или широкое отверстие которой прикрыто прозрачной шаровой поверхностью. Она прямо обращена к Солнцу, а воронка вращается вокруг своей длинной оси (высоты). На непрозрачных внутренних стенках конуса - слой влажной почвы с насаженными в ней растениями». Так он предлагал искусственно создавать гравитацию для растений. Растения должны быть подобраны плодовитые, мелкие, без толстых стволов и не работающих на солнце частей. Так колонизаторов можно частично обеспечить биологически активными веществами и микроэлементами и регенерировать кислород и воду.

В 1962 году главный конструктор ОКБ-1 Сергей Королёв ставил задачу: «Надо бы начать разработку «Оранжереи (ОР) по Циолковскому», с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над «космическими урожаями».


Рукопись К.Э. Циолковского «Альбом космических путешествий», 1933 год.

СССР вывел на орбиту первый искусственный спутник Земли 4 октября 1957 года, спустя двадцать два года после смерти Циолковского. Уже в ноябре того же года в космос отправили дворняжку Лайку, первую из собак, которые должны были открыть путь в космос людям. Лайка погибла от перегрева всего за пять часов, хотя полёт рассчитали на неделю - на это время хватило бы кислорода и еды.

Учёные предположили, что проблема возникла из-за генетически заложенной ориентации - проросток должен тянуться к свету, а корень - в противоположную сторону. Они усовершенствовали «Оазис», и следующая экспедиция взяла на орбиту новые семена.

Лук вырос. Виталий Севастьянов сообщил на Землю, что стрелки достигли десяти-пятнадцати сантиметров. «Какие стрелки, какого лука? Понимаем, это шутка, мы же вам давали горох, а не луковицы», - говорили с Земли. Бортинженер ответил, что из дома космонавты прихватили две луковицы, чтобы посадить их сверх плана, и успокоил учёных - горошины почти все взошли.

Но растения отказывались цвести. На этой стадии они погибали. Такая же судьба ждала тюльпаны, которые в установке «Лютик» на Северном полюсе распустились, а в космосе - нет.

Зато лук можно было есть, что успешно делали в 1978 году космонавты В. Коваленок и А. Иванченков: «Вот хорошо поработали. Может быть, теперь нам в награду и луковицу разрешат съесть».


Техника - молодёжи, 1983-04, страница 6 . Горох в установке «Оазис»

Космонавты В. Рюмин и Л. Попов в апреле 1980 года получили установку «Малахит» с цветущими орхидеями. Орхидеи крепятся в коре деревьев и в дуплах, и учёные посчитали, что они могут быть менее подвержены геотропизму - способности органов растений располагаться и расти в определённом направлении относительно центра земного шара. Цветки через несколько дней опали, но при этом у орхидей образовались новые листья и воздушные корни. Ещё чуть позже советско-вьетнамский экипаж из В. Горбатко и Фам Туай привёзли с собой подрощенный арабидопсис.

Растения не хотели цвести. Семена всходили, но, например, орхидея не зацвела в космосе. Учёным нужно было помочь растениям справиться с невесомостью. Это делали в том числе с помощью электростимуляции корневой зоны: учёные считали, что электромагнитное поле Земли может влиять на рост. Ещё один способ предполагал описанный Циолковским план по созданию искусственной гравитации - растения выращивались в центрифуге. Центрифуга помогла - ростки ориентировались вдоль вектора центробежной силы. Наконец космонавты добились своего. В «Светоблоке» зацвёл Арабидопсис.

Слева на изображении ниже - оранжерея «Фитон» на борту «Салют-7». Впервые в этой орбитальной оранжерее Резуховидка Таля (Арабидопсис) прошла полный цикл развития и дала семена. Посредине - «Светоблок», в которой на борту «Салют-6» Арабидопсис впервые зацвёл. Справа - бортовая оранжерея «Оазис-1А» на станции «Салют-7»: она была оснащена системой дозированного полуавтоматического полива, аэрации и электростимулирования корней и могла перемещать вегетационные сосуды с растениями относительно источника света.


«Фитон», «Светоблок» и «Оазис-1А»


Установка «Трапеция» для исследования роста и развития растений.


Наборы с семенами


Бортовой журнал станции «Салют-7», зарисовки Светланы Савицкой

На станции «Мир» была установлена первая в мире автоматическая оранжерея «Свет». Российские космонавты в 1990-2000-х годах провели в этой оранжерее шесть экспериментов. Они растили салаты, редис и пшеницу. В 1996-1997 годах Институт медико-биологических проблем РАН планировал вырастить семена растений, полученные в космосе - то есть поработать с двумя поколениями растений. Для эксперимента выбрали гибрид дикой капусты высотой около двадцати сантиметров. У растения был один минус - космонавтам нужно было заниматься опылением.

Результат был интересный - семена второго поколения в космосе получили, и они даже взошли. Но растения выросли до шести сантиметров вместо двадцати пяти. Маргарита Левинских, научный сотрудник Института медико-биологических проблем РАН, рассказывает , что ювелирную работу по опылению растений выполнял американский астронавт Майкл Фоссум.


Видео Роскосмоса о выращивании растений в космосе. На 4:38 - растения на станции «Мир»

В апреле 2014 года грузовой корабль Dragon SpaceX доставил на Международную космическую станцию установку для выращивания зелени Veggie, а в марте астронавты начали тестировать орбитальную плантацию. Установка контролирует свет и поступление питательных веществ. В августе 2015 в меню астронавтов включили свежую зелень , выращенную в условиях микрогравитации.


Выращенный на Международной космической станции салат


Так плантация на космической станции может выглядеть в будущем

В российском сегменте Международной космической станции действует оранжерея «Лада» для эксперимента «Растения-2» . В конце 2016 или начале 2017 года на борту появится версия «Лада-2». Над этими проектами работает Институт медико-биологических проблем РАН.

Космическая растениеводство не ограничивается экспериментами в невесомости. Человеку для колонизации других планет придётся развивать сельское хозяйство на грунте, который отличается от земного, и в атмосфере, имеющей иной состав. В 2014 году биолог Майкл Маутнер вырастил спаржу с картофелем на метеоритном грунте. Чтоб получить пригодную для выращивания почву, метеорит был размолот в порошок. Опытным путём он сумел доказать, что на грунте внеземного происхождения могут произрасти бактерии, микроскопические грибы и растения. Материал большинства астероидов содержит фосфаты, нитраты и иногда воду.


Спаржа, выросшая на метеоритном грунте

В случае с Марсом, где много песка и пыли, измельчение породы не понадобится. Но возникнет другая проблема - состав почвы. В грунте Марса есть тяжёлые металлы, повышенное количество которых в растениях опасно для человека. Учёные из Голландии имитировали марсианскую почву и с 2013 года вырастили на ней десять урожаев нескольких видов растений.

В результате эксперимента учёные выяснили, что содержание тяжёлых металлов в выращенных на имитированном марсианском грунте горохе, редисе, ржи и помидорах не опасно для человека. Картофель и другие культуры учёные продолжают исследовать.


Исследователь Вагер Вамелинк инспектирует растения, выращиваемые на имитированной марсианской почве. Фото: Joep Frissel/AFP/Getty Images


Содержание металлов в урожае, собранном на Земле и на симуляциях почвы Луны и Марса

Одной из важных задач является создание замкнутого цикла жизнеобеспечения. Растения получают углекислый газ и отходы жизнедеятельности экипажа, взамен отдают кислород и производят еду. Учёные проверяли возможность использования в пищу одноклеточной водоросли хлореллы, содержащей 45% белка и по 20% жиров и углеводов. Но эта в теории питательная еда не усваивается человеком из-за плотной клеточной стенки. Существуют способы решения данной проблемы. Можно расщеплять клеточные стенки технологическими методами, используя термообработку, мелки помол или другие способы. Можно брать с собой разработанные специально для хлореллы ферменты, которые космонавты будут принимать с едой. Учёные могут и вывести ГМО-хлореллу, стенку которой человеческие ферменты смогут расщепить. Хлореллой для питания в космосе сейчас не занимаются, но используют в замкнутых экосистемах для производства кислорода.

Эксперимент с хлореллой проводили на борту орбитальной станции «Салют-6». В 1970-е годы ещё считали, что пребывание в микрогравитации не оказывает отрицательного влияния на человеческий организм - слишком было мало информации. Изучить влияние на живые организмы пытались и с помощью хлореллы, жизненный цикл которой длится всего четыре часа. Её удобно было сравнивать с хлореллой, выращенной на Земле.



Прибор ИФС-2 предназначался для выращивания грибов, культур тканей и микроорганизмов, водных животных.

С 70-х годов в СССР проводили эксперименты по замкнутым системам. В 1972 году началась работа «БИОС-3» - эта система действует и сейчас . Комплекс оснащён камерами для выращивания растений в регулируемых искусственных условиях - фитотронами. В них выращивали пшеницу, сою, салат чуфу, морковь, редис, свёклу, картофель, огурцы, щавель, капусту, укроп и лук. Учёные смогли достичь почти на 100% замкнутый цикл по воде и воздуху и до 50-80% - по питанию. Главные цели Международного центра замкнутых экологических систем - изучить принципы функционирования таких систем различной степени сложности и разработать научные основы их создания.

Одним из громких экспериментов, симулирующих перелёт к Марсу и возвращение на Землю, был «Марс-500» . В течение 519 дней шесть добровольцев находились в замкнутом комплексе. Эксперимент организовали Рокосмос и Российская академия наук, а партнёром стало Европейское космическое агентство. На “борту корабля” были две оранжереи - в одной рос салат, в другой - горох. В данном случае целью было не вырастить растения в приближенных к космическим условиям, а выяснить, насколько растения важны для экипажа. Поэтому дверцы оранжереи заклеили непрозрачной плёнкой и установили датчик, фиксирующий каждое открывание. На фото слева член экипажа «Марс-500» Марина Тугушева работает с оранжереями в рамках эксперимента.

Ещё один эксперимент на «борту» «Марс-500» - GreenHouse. В видео ниже член экспедиции Алексей Ситнев рассказывает об эксперименте и показывает оранжерею с различными растениями. Добавить метки

Человечеству потребовались все знания, собранные учёными за сотни лет, чтобы начать космические полёты. И тогда человек столкнулся с новой проблемой - для колонизации других планет и дальних перелётов нужно разработать замкнутую экосистему, в том числе - обеспечить космонавтов едой, водой и кислородом. Доставлять еду на Марс, который находится за 200 миллионов километров от Земли, дорого и сложно, логичнее будет такие способы производства продуктов, которые легко реализовать в полёте и на Красной планете.

Как на семена влияет микрогравитация? Какие овощи будут безвредны, если их вырастить в богатой тяжёлыми металлами почве Марса? Как обустроить плантацию на борту космического корабля? Учёные и космонавты уже более пятидесяти лет ищут ответы на эти вопросы.

Константин Циолковский в «Целях звездоплавания» писал: «Вообразим себе длинную коническую поверхность или воронку, основание или широкое отверстие которой прикрыто прозрачной шаровой поверхностью. Она прямо обращена к Солнцу, а воронка вращается вокруг своей длинной оси (высоты). На непрозрачных внутренних стенках конуса - слой влажной почвы с насаженными в ней растениями». Так он предлагал искусственно создавать гравитацию для растений. Растения должны быть подобраны плодовитые, мелкие, без толстых стволов и не работающих на солнце частей. Так колонизаторов можно частично обеспечить биологически активными веществами и микроэлементами и регенерировать кислород и воду.

В 1962 году главный конструктор ОКБ-1 Сергей Королёв ставил задачу: «Надо бы начать разработку «Оранжереи (ОР) по Циолковскому», с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над «космическими урожаями».


Рукопись К.Э. Циолковского «Альбом космических путешествий», 1933 год. Источник

СССР вывел на орбиту первый искусственный спутник Земли 4 октября 1957 года, спустя двадцать два года после смерти Циолковского. Уже в ноябре того же года в космос отправили дворняжку Лайку, первую из собак, которые должны были открыть путь в космос людям. Лайка погибла от перегрева всего за пять часов, хотя полёт рассчитали на неделю - на это время хватило бы кислорода и еды.

Полёт Белки и Стрелки в августе 1960 года был более успешен и для собак, и для сопровождающих их животных - сорока мышей и двух крыс. Вместе с этим «Ноевым ковчегом» советские учёные отправили в космос семена кукурузы, пшеницы, гороха и лука. На Землю вся команда спустилась в контейнере, разработанном для будущих полётов человека. Но этого было мало - заниматься сельским хозяйством в космосе должен был начать человек.


Собака Лайка, первая собака на орбите Земли

В книге «Космос - землянам» лётчик-космонавт, член экспедиции «Союз-3» Георгий Береговой писал о том, что человеку свойственно ощущать причастность к земной природе, где бы он ни был: «Но когда оказываешься за пределами родной планеты, это воспринимается особенно остро. Обратите внимание, с каким волнением и теплотой рассказывают космонавты о том, как выглядит Земля с высоты орбиты. Ну а если вместе с ними путешествует в безжизненной пустоте космоса кусочек живого мира, то забота о «земляках» становится прямо-таки нежной. Даже когда эти «земляки» - зеленые стебли обыкновенного гороха. Именно его, кстати, выращивали на «Салюте-4» А. Губарев и Г. Гречко, а затем вновь посадили участники следующей экспедиций - П. Климук и В. Севастьянов».

На орбитальной станции «Салют-4», запущенной в 1974 году, была установка «Оазис» для культивирования растений в невесомости. Георгий Гречко писал в книге «Космонавт №34», что работа с системой была одним из самых интересных экспериментов в его полёте. Установка была гидропоническая, земли не было, горошины должны были прорастать в пропитанной марле. Вскоре после начала работы с «Оазисом» космонавт заметил, что в одну кювету вода не поступает, а в другую поступает слишком обильно, заставляя горошины подгнивать. Из установки срывались огромные капли воды, за которыми Гречко гонялся по станции с салфетками. Он отрезал шланг и стал поливать горошины вручную, пока несколько часов возился с аппаратом.

Космонавт признаётся, что из-за ненависти к биологии в школе чуть не загубил эксперимент. Он посчитал, что ростки путаются в ткани, растут неправильно, и освободил их от марли, но это не помогало. Оказалось, что он перепутал корешки со стеблями.

Эксперимент завершился успешно. Впервые в космосе растения прошли цикл от семени до взрослого стебля гороха. Но из 36 зерен взошли и выросли только три.


«Оазис-1» в Мемориальном музее космонавтики. Источник

Учёные предположили, что проблема возникла из-за генетически заложенной ориентации - проросток должен тянуться к свету, а корень - в противоположную сторону. Они усовершенствовали «Оазис», и следующая экспедиция взяла на орбиту новые семена.

Лук вырос. Виталий Севастьянов сообщил на Землю, что стрелки достигли десяти-пятнадцати сантиметров. «Какие стрелки, какого лука? Понимаем, это шутка, мы же вам давали горох, а не луковицы», - говорили с Земли. Бортинженер ответил, что из дома космонавты прихватили две луковицы, чтобы посадить их сверх плана, и успокоил учёных - горошины почти все взошли.

Но растения отказывались цвести. На этой стадии они погибали. Такая же судьба ждала тюльпаны, которые в установке «Лютик» на Северном полюсе распустились, а в космосе - нет.

Зато лук можно было есть, что успешно делали в 1978 году космонавты В. Коваленок и А. Иванченков: «Вот хорошо поработали. Может быть, теперь нам в награду и луковицу разрешат съесть».


Техника - молодёжи, 1983-04, страница 6. Горох в установке «Оазис»

Космонавты В. Рюмин и Л. Попов в апреле 1980 года получили установку «Малахит» с цветущими орхидеями. Орхидеи крепятся в коре деревьев и в дуплах, и учёные посчитали, что они могут быть менее подвержены геотропизму - способности органов растений располагаться и расти в определённом направлении относительно центра земного шара. Цветки через несколько дней опали, но при этом у орхидей образовались новые листья и воздушные корни. Ещё чуть позже советско-вьетнамский экипаж из В. Горбатко и Фам Туай привёзли с собой подрощенный арабидопсис.

Растения не хотели цвести. Семена всходили, но, например, орхидея не зацвела в космосе. Учёным нужно было помочь растениям справиться с невесомостью. Это делали в том числе с помощью электростимуляции корневой зоны: учёные считали, что электромагнитное поле Земли может влиять на рост. Ещё один способ предполагал описанный Циолковским план по созданию искусственной гравитации - растения выращивались в центрифуге. Центрифуга помогла - ростки ориентировались вдоль вектора центробежной силы. Наконец космонавты добились своего. В «Светоблоке» зацвёл Арабидопсис.

Слева на изображении ниже - оранжерея «Фитон» на борту «Салют-7». Впервые в этой орбитальной оранжерее Резуховидка Таля (Арабидопсис) прошла полный цикл развития и дала семена. Посредине - «Светоблок», в которой на борту «Салют-6» Арабидопсис впервые зацвёл. Справа - бортовая оранжерея «Оазис-1А» на станции «Салют-7»: она была оснащена системой дозированного полуавтоматического полива, аэрации и электростимулирования корней и могла перемещать вегетационные сосуды с растениями относительно источника света.


«Фитон», «Светоблок» и «Оазис-1А»


Установка «Трапеция» для исследования роста и развития растений. Источник


Наборы с семенами


Бортовой журнал станции «Салют-7», зарисовки Светланы Савицкой

На станции «Мир» была установлена первая в мире автоматическая оранжерея «Свет». Российские космонавты в 1990-2000-х годах провели в этой оранжерее шесть экспериментов. Они растили салаты, редис и пшеницу. В 1996-1997 годах Институт медико-биологических проблем РАН планировал вырастить семена растений, полученные в космосе - то есть поработать с двумя поколениями растений. Для эксперимента выбрали гибрид дикой капусты высотой около двадцати сантиметров. У растения был один минус - космонавтам нужно было заниматься опылением.

Результат был интересный - семена второго поколения в космосе получили, и они даже взошли. Но растения выросли до шести сантиметров вместо двадцати пяти. Маргарита Левинских, научный сотрудник Института медико-биологических проблем РАН, рассказывает, что ювелирную работу по опылению растений выполнял американский астронавт Майкл Фоссум.


Видео Роскосмоса о выращивании растений в космосе. На 4:38 - растения на станции «Мир»

В апреле 2014 года грузовой корабль Dragon SpaceX доставил на Международную космическую станцию установку для выращивания зелени Veggie, а в марте астронавты начали тестировать орбитальную плантацию. Установка контролирует свет и поступление питательных веществ. В августе 2015 в меню астронавтов включили свежую зелень, выращенную в условиях микрогравитации.


Выращенный на Международной космической станции салат


Так плантация на космической станции может выглядеть в будущем

В российском сегменте Международной космической станции действует оранжерея «Лада» для эксперимента «Растения-2». В конце 2016 или начале 2017 года на борту появится версия «Лада-2». Над этими проектами работает Институт медико-биологических проблем РАН.

Космическая растениеводство не ограничивается экспериментами в невесомости. Человеку для колонизации других планет придётся развивать сельское хозяйство на грунте, который отличается от земного, и в атмосфере, имеющей иной состав. В 2014 году биолог Майкл Маутнер вырастил спаржу с картофелем на метеоритном грунте. Чтоб получить пригодную для выращивания почву, метеорит был размолот в порошок. Опытным путём он сумел доказать, что на грунте внеземного происхождения могут произрасти бактерии, микроскопические грибы и растения. Материал большинства астероидов содержит фосфаты, нитраты и иногда воду.


Спаржа, выросшая на метеоритном грунте

В случае с Марсом, где много песка и пыли, измельчение породы не понадобится. Но возникнет другая проблема - состав почвы. В грунте Марса есть тяжёлые металлы, повышенное количество которых в растениях опасно для человека. Учёные из Голландии имитировали марсианскую почву и с 2013 года вырастили на ней десять урожаев нескольких видов растений.

В результате эксперимента учёные выяснили, что содержание тяжёлых металлов в выращенных на имитированном марсианском грунте горохе, редисе, ржи и помидорах не опасно для человека. Картофель и другие культуры учёные продолжают исследовать.


Исследователь Вагер Вамелинк инспектирует растения, выращиваемые на имитированной марсианской почве. Фото: Joep Frissel/AFP/Getty Images


Содержание металлов в урожае, собранном на Земле и на симуляциях почвы Луны и Марса

Одной из важных задач является создание замкнутого цикла жизнеобеспечения. Растения получают углекислый газ и отходы жизнедеятельности экипажа, взамен отдают кислород и производят еду. Учёные проверяли возможность использования в пищу одноклеточной водоросли хлореллы, содержащей 45% белка и по 20% жиров и углеводов. Но эта в теории питательная еда не усваивается человеком из-за плотной клеточной стенки. Существуют способы решения данной проблемы. Можно расщеплять клеточные стенки технологическими методами, используя термообработку, мелки помол или другие способы. Можно брать с собой разработанные специально для хлореллы ферменты, которые космонавты будут принимать с едой. Учёные могут и вывести ГМО-хлореллу, стенку которой человеческие ферменты смогут расщепить. Хлореллой для питания в космосе сейчас не занимаются, но используют в замкнутых экосистемах для производства кислорода.

Эксперимент с хлореллой проводили на борту орбитальной станции «Салют-6». В 1970-е годы ещё считали, что пребывание в микрогравитации не оказывает отрицательного влияния на человеческий организм - слишком было мало информации. Изучить влияние на живые организмы пытались и с помощью хлореллы, жизненный цикл которой длится всего четыре часа. Её удобно было сравнивать с хлореллой, выращенной на Земле.


Источник


Прибор ИФС-2 предназначался для выращивания грибов, культур тканей и микроорганизмов, водных животных. Источник

С 70-х годов в СССР проводили эксперименты по замкнутым системам. В 1972 году началась работа «БИОС-3» - эта система действует и сейчас. Комплекс оснащён камерами для выращивания растений в регулируемых искусственных условиях - фитотронами. В них выращивали пшеницу, сою, салат чуфу, морковь, редис, свёклу, картофель, огурцы, щавель, капусту, укроп и лук. Учёные смогли достичь почти на 100% замкнутый цикл по воде и воздуху и до 50-80% - по питанию. Главные цели Международного центра замкнутых экологических систем - изучить принципы функционирования таких систем различной степени сложности и разработать научные основы их создания.

Одним из громких экспериментов, симулирующих перелёт к Марсу и возвращение на Землю, был «Марс-500». В течение 519 дней шесть добровольцев находились в замкнутом комплексе. Эксперимент организовали Рокосмос и Российская академия наук, а партнёром стало Европейское космическое агентство. На “борту корабля” были две оранжереи - в одной рос салат, в другой - горох. В данном случае целью было не вырастить растения в приближенных к космическим условиям, а выяснить, насколько растения важны для экипажа. Поэтому дверцы оранжереи заклеили непрозрачной плёнкой и установили датчик, фиксирующий каждое открывание. На фото слева член экипажа «Марс-500» Марина Тугушева работает с оранжереями в рамках эксперимента.

Ещё один эксперимент на «борту» «Марс-500» - GreenHouse. В видео ниже член экспедиции Алексей Ситнев рассказывает об эксперименте и показывает оранжерею с различными растениями.

У человека будет много шансов умереть на Марсе. Он рискует разбиться при посадке, замёрзнуть на поверхности или же просто не долететь. И, конечно, умереть от голода. Растениеводство необходимо для образования колонии, и учёные и космонавты работают в этом направлении, показывая удачные примеры выращивания некоторых видов не только в условиях микрогравитации, но и в имитированном грунте Марса и Луны. У космических колонистов определенно будет возможность повторить успех Марка Уотни.