ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Газовый термометр: особенности, преимущества прибора и сфера применения. Разнообразие термометров и их применение

Уравнение состояния идеального газа

позволяет в качестве термометрической величины взять либо p , либо V , которые могут измеряться с большой точностью.

Как показывает эксперимент, достаточно разреженные газы очень близки к идеальному. Поэтому их можно непосредственно взять в качестве термометрического тела.

Таким путём приходят к идеально-газовой шкале температур. Идеально-газовая температура – это температура, отсчитываемая по газовому термометру, наполненному разреженным газом. Преимущество идеально-газовой шкалы температур перед всеми прочими эмпирическими температурными шкалами состоит в том, что, как показывает опыт, температура Т , определённая по формуле (4), очень слабо зависит от химической природы газа, которым наполнен резервуар газового термометра. Показания различных газовых термометров при измерении температуры одного и того же тела очень мало отличаются друг от друга.

На практике газовый термометр обычно реализуют следующим образом: объём газа V поддерживается постоянным, тогда индикатором температуры служит измеряемое давление p .

Закон Шарля для реперных точек в этом случае будет иметь вид:

где p 1 – давление некоторой массы газа, близкого к идеальному, при температуре таяния льда Т 1 ; р 2 – давление при температуре кипения воды Т 2 .

Градус температуры, по определению, можно выбрать таким, чтобы разница между указанными температурами была равна 100, т.е.

Опытным путём установлено, что давление р 2 в 1,3661 раза больше, чем р 1 . Следовательно, для вычисления Т 2 и Т 1 имеем два уравнения: К и . Решение их даёт Т 1 =273,15 К; Т 2 =373,15 К.

Для определения температуры какого-либо тела его приводят в контакт с газовым термометром и после установления теплового равновесия измеряют давление р газа в термометре. При этом температура тела определится по формуле

Отсюда следует, что при Т =0 р =0. Температуру, соответствующую нулевому давлению идеального газа, назвали абсолютным нулём, а температуру, отсчитываемую от абсолютного нуля, – абсолютной температурой. Здесь понятие абсолютного нуля температуры введено на основе экстраполяции. В реальности по мере приближения к абсолютному нулю наблюдаются всё более и более заметные отступления от законов идеальных газов, газы начинают конденсироваться. Строгое доказательство существования абсолютного нуля температуры основано на втором начале термодинамики.



Шкала Кельвина

(абсолютная термодинамическая шкала температур)

В СИ условились шкалу температур определять по одной реперной точке, в качестве которой взята тройная точка воды. В так называемой абсолютной термодинамической шкале температур или шкале Кельвина принимается по определению, что температура этой точки равна точно 273,16 К.

Такой выбор численного значения сделан для того, чтобы промежуток между нормальными точками плавления льда и кипения воды с максимально возможной точностью составлял 100 К, если пользоваться газовым термометром с идеальным газом. Тем самым устанавливается преемственность шкалы Кельвина с ранее применявшейся шкалой с двумя реперными точками. Измерения показали, что температуры нормальных точек плавления льда и кипения воды в описанной шкале равны приближённо 273,15 и 373,15 К соответственно.

Определённая таким образом шкала температур не зависит от индивидуальных свойств термометрического вещества.

Абсолютная термодинамическая температура Т , отсчитываемая по этой шкале, есть мера интенсивности хаотического движения молекул и является монотонной функцией внутренней энергии. Для идеального газа непосредственно связана с внутренней энергией ().

Название «термодинамическая» она получила потому, что совершенно независимо может быть выведена из чисто термодинамических расчётов на основе второго начала термодинамики.

Абсолютная термодинамическая шкала является основной температурной шкалой в физике. В области температур, где пригоден газовый термометр, эта шкала практически не отличается от идеально-газовой шкалы температур.

Температура по шкале Цельсия (t , ) связана с Т (в К) равенством

Причём К.

Виды термометров

Температура не может быть измерена непосредственно. Поэтому действие термометров основано на различных физических явлениях, зависящих от температуры: на тепловом расширении жидкостей, газов и твёрдых тел, изменении с температурой давления газа или насыщенных паров, электрического сопротивления, термо-э.д.с., магнитной восприимчивости и др.

Основными узлами всех приборов для измерения температуры являются чувствительный элемент, где реализуется термометрическое свойство, и связанный с ним измерительный прибор (манометр, потенциометр, измерительный мост, милливольтметр и т.д.).

Эталоном современной термометрии является газовый термометр постоянного объёма (термометрической величиной является давление). С помощью газовых термометров температуру измеряют в широком интервале: от 4 до 1000 К. Газовые термометры используются обычно как первичные приборы, по которым градуируют вторичные термометры, применяемые непосредственно в экспериментах.

Из вторичных термометров наибольшее распространение получили жидкостные термометры, термометры сопротивления и термоэлементы (термопары).

В жидкостных термометрах термометрическим телом, как правило, является ртуть или этиловый спирт. Обычно жидкостные термометры применяются в диапазоне температур от 125 до 900 К. Нижняя граница измеряемых температур определяется свойствами жидкости, верхняя – свойствами стекла капилляра.

В термометрах сопротивления термометрическим телом является металл или полупроводник, сопротивление которого изменяется с температурой. Изменение сопротивления с температурой измеряют при помощи мостовых схем (см. рис.). Термометры сопротивления из металлов применяются в интервале температур от 70 до 1300 К, из полупроводников (термисторы) – в интервале от 150 до 400 К, а углеродные – до температур жидкого гелия.
Широкое распространение в температурных измерениях получили термометры на основе термопар. Термометрическим телом здесь служат два спая разнородных металлов. Если два проводника соединить по схеме (см. рис.), то вольтметр в цепи будет регистрировать напряжение, значе-

ние которого пропорционально разности температур спаев 1 и 2. Если температуру одного из спаев поддерживать постоянной, то показания вольтметра будут зависеть только от температуры второго спая. Такие термометры особенно удобно применять в области высоких температур – порядка 700-2300 К.

При очень высокой температуре материалы плавятся и описанные виды термометров неприменимы. В этом случае в качестве термометрического тела берётся само тело, температуру которого необходимо измерить, а в качестве термометрической величины – излучаемая телом электромагнитная энергия. По известным законам излучения делают заключение о температуре тела. Международный комитет мер и весов установил термодинамическую шкалу при температуре выше 1064 именно на основе законов излучения. Приборы, с помощью которых измеряется энергия излучения, называются пирометрами.

При очень низкой температуре (»1К) также не удается применять обычные методы измерения температур, поскольку выравнивание температур при контакте происходит очень медленно и, кроме того, обычные термометрические величины становятся непригодными (например, давление газа становится весьма малым, сопротивление практически не зависит от температуры). В этих условиях также в качестве термометрического тела берётся само тело, а в качестве термометрической величины – характеристики его свойств, например, магнитных.

В переводе с греческого языка означает «измерять тепло». История изобретения термометра берет начало с 1597 года, когда Галилей создал термоскоп – шарик с припаянной трубкой – для определения степени нагретости воды. Этот прибор не имел шкалы, а его показания зависели от атмосферного давления. С развитием науки термометр видоизменялся. Жидкостный термометр впервые был упомянут в 1667 году, а в 1742 году шведский физик Цельсий создал термометр со шкалой, в которой точка 0 соответствовала температуре замерзания воды, а 100 – температуре ее кипения.

Мы часто пользуемся термометром для определения температуры воздуха на улице или температуры тела, однако этим применение термометра вовсе не ограничивается. На сегодняшний день существует множество способов измерить температуру вещества, а современные термометры совершенствуются до сих пор. Опишем наиболее распространенные типы измерителей температуры.

Принцип действия данного типа термометров основан на эффекте расширения жидкости при нагревании. Термометры, у которых в качестве жидкости используется ртуть, часто применяются в медицине для измерения температуры тела. Несмотря на токсичность ртути, ее использование позволяет определять температуру с большей точностью по сравнению с другими жидкостями, так как расширение ртути происходит по линейному закону. В метеорологии используют термометры на спирту. Это связано в первую очередь с тем, что ртуть загустевает при значении 38 °С и не годится для измерения более низких температур. Диапазон жидкостных термометров в среднем составляет от 30 °С до +600 °С, а точность не превышает одну десятую долю градуса.

Газовый термометр

Газовые термометры работают по тому же принципу, что и жидкостные, только в качестве рабочего вещества в них используется инертный газ. Этот тип термометра является аналогом манометра (прибора для измерения давления), шкала которого градуируется в единицах температуры. Основным преимуществом газового термометра является возможность измерения температур около абсолютного нуля (его диапазон составляет от 271 °С до +1000 °С). Предельно достижимая точность измерения составляет 2*10 -3 °С. Получение высокой точности газового термометра является сложной задачей, поэтому такие термометры не используются в лабораторных измерениях, а применяются для первичного определения температуры вещества.

Этот вид термометров работает по аналогии с газовыми и жидкостными. Температура вещества определяется в зависимости от расширения металлической спирали или ленты из биметалла. Механический термометр отличается высокой надежностью и простотой в использовании. Как самостоятельные приборы такие термометры широкого распространения не получили и в настоящее время используются в основном в качестве устройств для сигнализации и регулирования температуры в системах автоматизации.

Электрический термометр (термометр сопротивления)

В основу работы электрического термометра заложена зависимость сопротивления проводника от температуры. Сопротивление металлов линейно увеличивается с ростом температуры, поэтому именно металлы и используются для создания этого типа термометров. Полупроводники по сравнению с металлами дают большую точность измерений, однако термометры на их основе практически не выпускаются из-за сложностей, связанных с градуировкой шкалы. Диапазон термометров сопротивления напрямую зависит от рабочего металла: например, для меди он составляет от -50 °С до +180 °С, а для платины – от -200 °С до +750 °С. Электрические термометры устанавливают в качестве датчиков температуры на производстве, в лабораториях, на экспериментальных стендах. Они часто комплектуются совместно с другими измерительными устройствами

Также называют термопарным. Термопара представляет из себя контакт двух разных проводников, измеряющих температуру на основе эффекта Зеебека, открытого в 1822 году. Этот эффект состоит в появлении разницы потенциалов на контакте между двумя проводниками при наличии между ними градиента температур. Таким образом, через контакт при изменении температуры начинает проходить электрический ток. Преимуществом термопарных термометров является простота исполнения, широкий диапазон измерений, возможность заземления спая. Однако есть и недостатки: термопара подвержена коррозии и другим химическим процессам со временем. Максимальной точностью обладают термопары с электродами из благородных металлов и их сплавов – платиновые, платинородиевые, палладиевые, золотые. Верхняя граница измерения температуры с помощью термопары составляет 2500 °С, нижняя – около -100 °С. Точность измерения термопарного датчика может достигать 0,01 °С. Термометр на основе термопар незаменим в системах управления и контроля на производстве, а также при измерении температуры жидких, твердых, сыпучих и пористых веществ.

Волоконно-оптический термометр

С развитием технологий изготовления оптоволокна, возникли новые возможности его использования. Датчики на основе оптоволокна проявляют высокую чувствительность к различным изменениям во внешней среде. Малейшее колебание температуры, давления или натяжения волокна приводят к изменениям распространения в нем света. Оптоволоконные датчики температуры часто применяются для обеспечения безопасности на производстве, для пожарного оповещения, контроля герметичности емкостей с огнеопасными и токсичными веществами, обнаружения утечек и т. п. Диапазон таких датчиков не превышает +400 °С, а максимальная точность составляет 0,1 °С.

Инфракрасный термометр (пирометр)

В отличие от всех предыдущих типов термометров, является бесконтактным прибором. Более подробно прочитать про пирометры и его характеристики можно в отдельной на нашем сайте. Технический пирометр способен измерять температуру в диапазоне от 100 °С до 3000 °С, с точностью до нескольких градусов. Инфракрасные термометры удобны не только в условиях производства. Все чаще они применяются для измерения температуры тела. Это связано со многими преимуществами пирометров по сравнению с ртутными аналогами: безопасность использования, высокая точность, минимальное время на измерение температуры.

В завершение отметим, что сейчас сложно представить себе жизнь без этого универсального и незаменимого прибора. Простые термометры можно встретить в быту: они используются для поддержания температуры в утюге, стиральной машине, холодильнике, измерения температуры окружающего воздуха. Более сложные датчики устанавливают в инкубаторах, теплицах, сушильных камерах, на производстве.

Выбор термометра или датчика температуры зависит от сферы его использования, диапазона измерения, точности показаний, габаритных размеров. А в остальном – все зависит от вашей фантазии.

Существует немало разновидностей термометров. У каждого вида свои особенности и преимущества. Одним из наиболее востребованных измерителей является газовый термометр. Этот прибор отличается своей практичностью и долговечностью в эксплуатации. Изготавливаются эти приборы преимущественно из стекла или кварца, поэтому температура, которую он измеряет, должна быть низкой либо не слишком высокой. Современные модели отличаются от своих предшественников, но принципиальных изменений в работе новых приборов нет.

Особенности

Газовый термометр - это аналог манометра (измеритель давления). Зачастую используют измерители постоянного объема. В таких приборах температура газа меняется в зависимости от давления. Предел таким термометром составляет 1 300 К. Представленные виды термометра отличаются широким спросом. Тем более что на современном рынке представлены новые, усовершенствованные модели.

Принцип работы газового термометра идентичен жидкостному измерителю и основан на эффекте расширения жидкости при нагреве, только в качестве рабочего вещества здесь используется инертный газ.

Преимущества

Прибор позволяет измерять температуру в границах от 270 и до 1 000 градусов. Также стоит отметить высокую точность работы прибора. Газовый термометр имеет сильную сторону - надежность. По стоимости приборы довольно демократичные, но цена будет зависеть от производителя и качества работы устройства. При покупке прибора лучше не экономить и приобрести действительно качественный вариант, который будет точен в работе и прослужит максимально долго и эффективно.

Сфера применения

Газовый измеритель служит для определения температуры веществ. Может использоваться в специализированных лабораториях. Наиболее точный результат показывается, когда веществом выступает гелий или водород. Также данным видом термометров пользуются, чтобы измерить работу других устройств.

Нередко газовые термометры постоянного объема применяются для вириального коэффициента. Данный вид термометра может быть использован и для относительного измерения при помощи сдвоенного прибора.

Газовый термометр в основном используется для измерения температурных показателей определенных веществ. Этот прибор широко востребован в отрасли физики и химии. При использовании качественного газового термометра гарантирована высокая точность показателей. Этот вид измерителя температуры очень прост в использовании.

Газовый термометр

прибор для измерения температуры, действие которого основано на зависимости давления или объёма идеального газа от температуры. Чаще всего применяют Г. т. постоянного объёма (рис. ), который представляет собой заполненный газом баллон 1 неизменного объёма, соединённый тонкой трубкой 2 с устройством 3 для измерения давления. В таком Г. т. изменение температуры газа в баллоне пропорционально изменению давления. Г. т. измеряют температуры в интервале от Газовый термометр2К до 1300 К. Предельно достижимая точность Г. т. в зависимости от измеряемой температуры 3·10 -3 - 2·10 -2 град. Г. т. такой высокой точности - сложное устройство; при измерении им температуры учитывают: отклонения свойств газа, заполняющего прибор, от свойств идеального газа; изменения объёма баллона с изменением температуры; наличие в газе примесей, особенно конденсирующихся; сорбцию (См. Сорбция) и десорбцию газа стенками баллона; диффузию (См. Диффузия) газа сквозь стенки, а также распределение температуры вдоль соединительной трубки.

Температурная шкала Г. т. совпадает С термодинамической температурной шкалой, и Г. т. применяется в качестве первичного термометрического прибора (см. Температурные шкалы). При помощи Г. т. определены температуры постоянных точек (реперных точек) Международной практической температурной шкалы (См. Международная практическая температурная шкала).

Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954.

Д. Н. Астров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Газовый термометр" в других словарях:

    Прибор для измерения темп ры Т, действие к рого основано на зависимости давления р или объёма V идеального газа от темп ры: pV RT (R газовая постоянная). На измерениях темп ры Г. т. построены совр. температурные шкалы. Г. т. применяется как… … Физическая энциклопедия

    Газовый термометр прибор для измерения температуры, основанный на законе Шарля. Принцип работы В конце XVIII в. Шарль установил, что одинаковое нагревание любого газа приводит к одинаковому повышению давления, если при этом объём… … Википедия

    Прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Заполненный гелием, азотом или водородом баллон, соединенный при помощи капилляра с манометром, помещают в среду, температуру… … Большой Энциклопедический словарь

    газовый термометр - — Тематики нефтегазовая промышленность EN gas thermometer … Справочник технического переводчика

    ГАЗОВЫЙ ТЕРМОМЕТР - прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Чаще всего применяют газовый термометр постоянного объема (рис. Г 4), в котором изменение температуры газа в баллоне… … Металлургический словарь

    газовый термометр - dujinis termometras statusas T sritis Standartizacija ir metrologija apibrėžtis Termometras, kurio veikimas pagrįstas idealiųjų dujų slėgio arba tūrio priklausomybe nuo temperatūros. atitikmenys: angl. gas thermometer; gas expansion thermometer… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    газовый термометр - dujinis termometras statusas T sritis fizika atitikmenys: angl. gas thermometer; gas expansion thermometer vok. Gasthermometer, n rus. газовый термометр, m; газонаполненный термометр, m pranc. thermomètre à gaz, m … Fizikos terminų žodynas

    Прибор для измерения температуры, действие которого основано на зависимости давления или объёма газа от температуры. Заполненный гелием, азотом или водородом баллон, соединённый при помощи капилляра с манометром, помещают в среду, температуру… … Энциклопедический словарь

    Газовый термометр - прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Чаще всего применяют газовый термометр постоянного объема, в котором изменение температуры газа в баллоне пропорционально… … Энциклопедический словарь по металлургии

    Прибор для измерения темп ры, действие к рого осн. на зависимости давления или объёма идеального газа от темп ры. Чаще всего применяют Г. т. пост. объёма (см. рис. при ст. Термометр), в к ром изменение темп ры газа в баллоне пропорционально… … Большой энциклопедический политехнический словарь

Жидкостные и газовые термометры.

Жидкостный термометр - прибор для измерения температуры, принцип действия которого основан на тепловом расширении жидкости. Жидкостный термометр относится к термометрам непосредственного отсчёта.

Широко применяется в технике и лабораторной практике для измерения температур в диапазоне от –200 до 750 °С. Жидкостный термометр представляет собой прозрачный стеклянный (редко кварцевый) резервуар с припаянным к нему капилляром (из того же материала).

Шкала в °С наносится непосредственно на толстостенный капилляр (так называемый палочный жидкостный термометр) или на пластинку, жестко соединённую с ним (жидкостный термометр с наружной шкалой, рис. а). Жидкостный термометр с вложенной шкалой (рис. б) имеет внешний стеклянный (кварцевый) чехол. Термометрическая жидкость заполняет весь резервуар и часть капилляра. В зависимости от диапазона измерений жидкостный термометр заполняют пентаном (от -200 до 20 °С), этиловым спиртом (от -80 до 70 °С), керосином (от -20 до 300 °С), ртутью (от -35 до 750 °С) и др.

Наиболее распространены ртутные жидкостные термометры, так как ртуть остаётся жидкой в диапазоне температур от -38 до 356 °С при нормальном давлении и до 750 °С при небольшом повышении давления (для чего капилляр заполняют азотом). Кроме того, ртуть легко поддаётся очистке, не смачивает стекло, и её пары в капилляре создают малое давление. Жидкостные термометры изготавливают из определённых сортов стекла и подвергают специальной термической обработке ("старению"), устраняющей смещение нулевой точки шкалы, связанное с многократным повторением нагрева и охлаждения термометра (поправку на смещение нуля шкалы необходимо вводить при точных измерениях). Жидкостные термометры имеют шкалы с различной ценой деления от 10 до 0,01 °С. Точность жидкостного термометра определяется ценой делений его шкалы. Для обеспечения требуемой точности и удобства пользуются жидкостные термометры с укороченной шкалой; наиболее точные из них имеют на шкале точку 0 °С независимо от нанесённого на ней температурного интервала. Точность измерений зависит от глубины погружения жидкостного термометра в измеряемую среду. Погружать термометр следует до отсчитываемого деления шкалы или до специально нанесённой на шкале черты (хвостовые термометры жидкостные). Если это невозможно, вводят поправку на выступающий столбик, которая зависит от измеряемой температуры, температуры выступающего столбика и его высоты. Основные недостатки жидкостного термометра - значительная тепловая инерция и не всегда удобные для работы габариты. К жидкостным термометрам специальных конструкций относят термометры метеорологические (специальной конструкции, предназначенных для метеорологических измерений главным образом на метеорологических станциях), метастатические (термометр Бекмана, ртутный термометр с вложенной шкалой, служащий для измерения небольших разностей температур), медицинские и др. Медицинские ртутные термометры имеют укороченную шкалу (34-42 °С) и цену деления шкалы 0,1 °С. Действуют они по принципу максимального термометра - ртутный столбик в капилляре остаётся на уровне максимального подъёма при нагревании и не опускается до встряхивания термометра.



Газовый термометр.

Прибор для измерения температуры, действие которого основано на зависимости давления или объёма идеального газа от температуры. Чаще всего применяют газовый термометр постоянного объёма (рис. ), который представляет собой заполненный газом баллон 1 неизменного объёма, соединённый тонкой трубкой 2 с устройством 3 для измерения давления. В таком газовом термометре изменение температуры газа в баллоне пропорционально изменению давления. Газовые термометры измеряют температуры в интервале от ~2К до 1300 К. Предельно достижимая точность газового термометра в зависимости от измеряемой температуры 3·10 -3 - 2·10 -2 град. Газовый термометр такой высокой точности - сложное устройство; при измерении им температуры учитывают: отклонения свойств газа, заполняющего прибор, от свойств идеального газа; изменения объёма баллона с изменением температуры; наличие в газе примесей, особенно конденсирующихся; сорбцию (поглощение твёрдым телом или жидкостью вещества из окружающей среды) и десорбцию газа стенками баллона; диффузию (взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества) газа сквозь стенки, а также распределение температуры вдоль соединительной трубки.

Термосопротивления.

Термометры сопротивления (иначе называемые термосопротивление) - это устройства для измерения температуры. Принцип действия прибора заключается в изменении электрического сопротивления сплавов, полупроводников и чистых металлов (т.е. без примесей) с температурой. Чувствительный элемент термометра представляет собой резистор, который сделан из пленки или металлической проволоки, и обладающий зависимостью электрического сопротивления от температуры. Проволока намотана на жесткий каркас, сделанный из кварца, слюды или фарфора, и заключена в защитную металлическую (стеклянную, кварцевую) оболочку. Наиболее популярны термосопротивления из платины. Платина устойчива к окислению, высокотехнологична, имеет высокий температурный коэффициент. Иногда используются термометры из меди или никеля. Темометры сопротивления обычно используют для замера температур в диапазоне от минус 263 С до плюс 1000 С. У медных термометров сопротивления диапазон значительно меньше – всего лишь от минус 50 до плюс 180 С. Основное требование к конструкции термометра – она должна быть достаточно чувствительной и стабильной, т.е. достаточной для необходимой точности замеров в указанном диапазоне температур при соответствующих условиях использования. Условия использования могут быть как благоприятными, так и неблагоприятными – агрессивные среды, вибрации и т.д. Обычно термометры сопротивления работают в совокупности с потенциометрами (резистивный элемент, величина сопротивления которого меняется механически; прибор для измерения ЭДС, напряжений компенсационным методом), логометрами (прибор, предназначенный для измерения отношения двух электрических величин), мостами измерительными. От точности этих приборов в значительной степени зависит и точность измерений самого термометра сопротивления (термосопротивления). Термометры сопротивления могут быть различными: поверхностными, ввинчивающимися, вставными, с байонетным соединением или присоединительными проводами. Термосопротивления могут использоваться для измерения температуры в жидких и газообразных средах, в климатической, холодильной и нагревательной технике, печестроении, машиностроении и т.д.

Термопары.

Термопара - термоэлемент, применяемый в измерительных и преобразовательных устройствах. Принцип его действия основан на том, что нагревание или охлаждение контактов между проводниками, отличающимися химическими или физическими свойствами, сопровождается возникновением термоэлектродвижущей силы (термоэдс). Термопара состоит из двух металлов, сваренных на одном конце. Эта часть ее помещается в месте замера температуры. Два свободных конца подключаются к измерительной схеме (милливольтметру). Наиболее распространены термопары платино-платинородиевые (ПП), хромель-алюминиевые (ХА), хромель-копелевые (ХК) (копель – медно-никелевый сплав ~ 43% Ni и ~ 0,5 % Mn), железоконстантовые (ЖК).

Термопары используются в самых различных диапазонах температур. Так, термопара из золота, легированного железом (2-й термоэлектрод - медь или хромель), перекрывает диапазон 4-270 К, медь - константан 70-800 К (константан – термостабильный сплав на основе Cu (59%) с добавкой Ni (39-41%) и Mn (1-2%)), хромель - копель 220-900 К, хромель - алюмель 220-1400 К, платинородий - платина 250-1900 К, вольфрам - рений 300-2800 К. Эдс термопар из металлических проводников обычно лежит в пределах 5-60 мВ. Точность определения температуры с их помощью составляет, как правило, несколько К, а у некоторых термопар достигает ~0,01 К. Эдс Термопара из полупроводников может быть на порядок выше, но такие термопары отличаются существенной нестабильностью.

Термопары применяют в устройствах для измерения температуры и в различных автоматизированных системах управления и контроля. В сочетании с электроизмерительным прибором (милливольтметром, потенциометром) термопара образует термоэлектрический термометр.

Измерительный прибор подключают либо к концам термоэлектродов (контакты (обычно - спаи) проводящих элементов, образующих термопару)(рис. , а), либо в разрыв одного из них (рис. , б). При измерении температуры один из спаев осязательно термостатируется (обычно при 273 К). В зависимости от конструкции и назначения различают термопары: погруженные и поверхностные; с обыкновенной, взрывобезопасной, влагонепроницаемой или иной оболочкой (герметичной или негерметичной), а также без оболочки; обыкновенные, вибротряскоустойчивые и ударопрочные; стационарные и переносные и т. д.

С поднятием температурного потолка встает проблема измерения высоких температур. Для точных измерений необходима тщательная стандартизация измерительных приборов, обеспечивающая оценку точности результатов и их сопоставляемость с данными других авторов. Для стандартизации используют точки плавления (замерзания), кипения и тройные точки определенных "эталонных" веществ. Первичные эталонные точки определены в Международной практической шкале температур 1968 г. (IРТS–68).

Для очень высоких температур (превышающих 3000 К) применяются различные сплавы вольфрама. Наиболее часто используется пара вольфрам с добавкой 3% рения – вольфрам с добавкой 25% рения с термоЭДС, близкой к 40 мВ при предельной температуре 2573 K. Комбинация молибден–тантал обеспечивает предельную температуру порядка 2800 К, а термопара вольфрам–вольфрам с добавкой 50% молибдена работоспособна до 3300 К, но имеет очень малую термоЭДС (8.24 мВ при 3273 K). Все эти термопары могут работать только в водороде, в чистых инертных газах или в вакууме.

Лекция 3.

Оптические пирометры.

При очень высоких температурах измерения оптическими пирометрами являются наиболее надежным, а часто и единственно возможным, методом. Данный метод применим и при температурах менее 1200 К, но основной областью его использования является измерение температур, превышающих это значение. Преимуществами пирометра являются измерения без физического контакта с объектом и с большой скоростью, недостатками – проблемы, связанные с излучением: образец должен быть или черным телом (коэффициент излучения равен 1), или находиться в тепловом равновесии с черным телом либо должен быть известен коэффициент излучения образца.

Пирометрия требует измерения потока излучения, что осуществимо или визуальным сравнением неизвестного потока с потоком от лампы с известными характеристиками (визуальные или субъективные пирометры), или использованием для этой цели физического приемника (фотоэлектрические или объективные пирометры).

С учетом законов излучения, пирометры можно разделить на следующие типы:

1. Спектральные пирометры, работающие в настолько узкой полосе спектра, что эффективная длина волны почти не зависит от температуры. Зная спектральную излучательную способность, можно вычислить истинную температуру. Поскольку измеренная радиация соответствует закону Планка, эти пирометры можно градуировать в одной фиксированной точке.

Рис. 1. Визуальный яркостный пирометр,

1 – источник излучения

2 – оптическая система, объектив пирометра

3 – эталонная лампа накаливания

4 – фильтр с узкой полосой пропускания

5 – окуляр

6 – реостат, регулирующий ток накала

7 – измерительный прибор

Примером является яркостный пирометр, обеспечивающий наибольшую точность измерений температуры в диапазоне 103-104 К. В простейшем визуальном яркостном пирометре с исчезающей нитью объектив фокусирует изображение исследуемого тела на плоскость, в которой расположена нить (ленточка) эталонной лампы накаливания. Через окуляр и красный фильтр, позволяющий выделять узкую спектральную область около длины волны λэ= 0,65 мкм (эффективная длина волны), нить рассматривают на фоне изображения тела и, изменяя ток накала нити, добиваются выравнивания яркостей нити и тела (нить в этот момент становится неразличимой). Шкала прибора, регистрирующего ток накала, прокалибрована обычно в °С или К, и в момент выравнивания яркостей прибор показывает так называемую яркостную температуру (Tb ) тела. Истинная температура тела Т определяется на основе законов теплового излучения Кирхгофа и Планка по формуле:

Т = T b C 2 / (C 2 + λ эIn α λ ,T), (1)

где C 2= 0,014388 м ×К, α λ , T - коэффициент поглощения тела, λ э- эффективная длина волны пирометра. Точность результата в первую очередь зависит от строгости выполнения условий измерений (α λ , T , λ эи др.). В связи с этим наблюдаемой поверхности придают форму полости. Основная инструментальная погрешность обусловлена нестабильностью температурной лампы. Заметную погрешность могут вносить также индивидуальные особенности глаза наблюдателя.

2. Наиболее чувствительны (но и наименее точны) радиационные пирометры или пирометры суммарного излучения, регистрирующие полное излучение тела. Пирометры тотальной радиации охватывают весь эффективный спектральный диапазон, излучаемый образцом, независимо от длины волны. Замеренная радиация подчиняется закону Стефана–Больцмана [закон излучения абсолютно черного тела: мощность излучения абсолютно черного тела прямо пропорциональна площади поверхности и четвертой степени температуры тела P=ST 4 ] и истинная температура может быть вычислена по общему коэффициенту излучения образца. Объектив радиационных пирометров фокусирует наблюдаемое излучение на приёмник (обычно термостолбик или болометр), сигнал которого регистрируется прибором, прокалиброванным по излучению абсолютно чёрного тела и показывающим радиационную температуру Tr . Истинная температура определяется по формуле:

Т=α т -1/4 *Т r , (2)

где α Т - полный коэффициент поглощения тела. Радиационными пирометрами можно измерять температуру, начиная с 200°С. В промышленности пирометры широко применяют в системах контроля и управления температурными режимами разнообразных технологических процессов.

3. Пирометры спектральной полосы, работающие в более широкой полосе спектра. Они имеют сильно зависящую от температуры эффективную длину волны. Поправки на температуру возможны только численной интеграцией экспериментальной кривой спектрального коэффициента излучения.

4. Двухцветные (цвет или соотношение) пирометры. Это пирометры спектра или спектральной полосы, использующие для определения температуры соотношение замеренной радиации в двух различных полосах спектра. При узких спектральных полосах температурные поправки могут быть вычислены по отношению спектральных коэффициентов излучения для двух эффективных длин волн. Этими пирометрами определяют отношение яркостей обычно в синей и красной областях спектра b 1(λ1, T)/b 2(λ2, T ) (например, для длин волн λ1= 0,48 мкм и λ2= 0,60 мкм ). Шкала прибора прокалибрована в °С и показывает цветовую температуру Tc. Истинная температура Т тела определяется по формуле

(3)

Цветовые пирометры менее точны, менее чувствительны и более сложны, чем яркостные; применяются в том же диапазоне температур.

Чувствительность цветных пирометров в диапазоне от 1300 до 4000 К составляет от 2 до 10 К. Если имеется сильное поглощение излучаемой радиации, цветные пирометры превосходят пирометры всех иных типов. Однако предположение о равных коэффициентах излучения для двух различных длин волн очень часто не соответствует действительности.

При оптимальных условиях эксперимента точность, обеспечиваемая стандартным пирометром, равна 0.04 К при 1230 К и 2 К при 3800 K. Очевидно, что достижение такой точности при обычных исследованиях невозможно. Верхний предел измерения пирометров может быть поднят использованием нейтральных фильтров. В литературе описан прецизионный прибор, допускающий измерения при температурах до 10 000 K.

Для сравнения потоков излучения от образца и от лампы вместо человеческого глаза может быть использован физический приемник (датчик). Это повышает быстродействие и точность измерений, а также расширяет их диапазон в направлении более низких температур благодаря чувствительности датчика к инфракрасному излучению.

Очень точным спектральным пирометром является прибор, основанный на принципе подсчета фотонов. Он обеспечивает измерения в диапазоне от 1400 до 2200 К с точностью, соответственно, от 0.5 до 1.0 K, согласно требованиям IPTS–68. В большинстве пирометров поток неизвестного (измеряемого) излучения сопоставляется с потоком излучения лампы и точность измерения зависит от характеристик лампы, причем главным источником погрешностей является смещение ее параметров излучения. В пирометре с подсчетом фотонов поток излучения образца измеряется непосредственно и для калибровки необходимы только одна фиксированная точка (температура плавления золота) и регулируемый, но не калиброванный источник излучения.

Существует также ряд нетрадиционных методов измерения, которые используются, когда применение обычных методов невозможно или погрешности слишком велики. Это использование температурной зависимости уширения линий в излучателе и в поглотителе (верхний предел температуры всего 1300 К). Это и шумовой термометр, основанный на зависимости напряжения шума электрического сопротивления от температуры (практический предел 1800 K). Термометры такого типа успешно применяются при измерениях криогенных температур. Точность измерения составляет 1 К а наилучший результат в диапазоне от 300 до 1300 К равен даже ±0.1 К. Это также акустические или ультразвуковые термометры, использующие зависимость скорости звука от температуры.

Интересный косвенный способ измерения температур основан на определении кривой нагрева соответствующего термометра за определенное время без необходимости достижения конечной равновесной температуры, которая может быть недопустимой для данного термометра.