ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Правильный расчет тепловой мощности системы отопления по площади помещения

Порядок расчета установлен СНиП 2.04.05-91, который введен в действие с 1 октября 1996 г.

Расчетная тепловая мощность С. О. определяется по формуле:

Q = Q 1 b 1 b 2 + Q 2 – Q 3 (1)

Где Q 1 – расчетные тепловые потери здания, кВт;

b 1 – коэффициент дополнительного теплового потока, устанавливаемых отопительных приборов за счет округления сверх расчетной величины принимается по табл. 1 (изменяется от 1,02 до 1,14)

b 2 – коэффициент учета дополнительных потерь теплоты отопительными приборами, расположенными у наружных ограждений при отсутствии теплозащитных кранов, принимаемый по табл. 2 (от 1,01 до 1,07).

Q 2 – потери теплоты, кВт, трубопроводами, проходящими в неотапливаемых помещениях;

Q 3 – тепловой поток, кВт, регулярно поступающий от освещения, оборудования и людей, который следует учитывать в целом на систему отопления здания. Для жилых домов величину Q 3 следует учитывать из расчета 0,01 кВт на 1м 2 общей площади.

При расчетах тепловой мощности С. О. производственных зданий необходимо дополнительно учитывать расход теплоты на нагревание материалов, оборудования и транспортных средств.

Расчетные тепловые потери Q 1 , кВт, определяются по формуле:

Q 1 = (Q а + Q в), (2)

Где Q а – тепловой поток, кВт, через ограждающие конструкции;

Q в – потери теплоты, кВт, на нагревание вентиляционного воздуха.

Величины Q а и Q в рассчитываются для каждого отапливаемого помещения.

Тепловой поток Q а, кВт, рассчитывается для каждого элемента ограждающей конструкции по формуле:

Q а = ( в – t н)(1 + -3 ,

Где А – расчетная площадь ограждающей конструкции, м 2

R – сопротивление теплопередаче ограждающей конструкции, м 2 о С/Вт, которое должно определяться по СНиП II-3-79** (кроме полов на грунте) с учетом установленных нормативов минимального теоретического сопротивления ограждений. Для полов на грунте и стен, расположенных ниже уровня земли, сопротивление теплопередаче следует определять по зонам шириной 2 м параллельным наружным стенам, по формуле:

Где R с – сопротивление теплопередаче, м 2 о С/Вт, принимаемое равным 2,1для 1 зоны, 4,3 – для второй, 8,6 – ля третьей зоны и 14,2 для оставшейся площади пола;

Толщина утепляющего слоя, м, учитываемая при коэффициенте теплопроводности утеплителя < 1,2 Вт/(м 2 о С);

t в – расчетная температура внутреннего воздуха, о С, принимаемая согласно требованиям норм проектирования зданий различного назначения с учетом повышения V в зависимости от высоты помещения;

t н – расчетная температура наружного воздуха, о С, принимаемая по данным приложения 8, или температура воздуха смежного помещения, если его температура более чем на 3 о С отличается от температуры помещения, для которого рассчитывают теплопотери;

n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху и определяемый по СНиП II-3-79**.

Добавочные потери теплоты в долях от основных потерь, учитываемые:

а) для наружных вертикальных и наклонных ограждений, ориентированных на направления, откуда в январе дует ветер со скоростью, превышающей 4,5 м/с с повторяемостью не менее 15% согласно СНиП 2.01.01-82, в размере 0,05 при скорости ветра до 5 м/с и в размере 0,10 при скорости 5 м/с и более; при типовом проектировании добавочные потери следует учитывать в размере 0,05 для всех помещений;

б) для наружных вертикальных и наклонных ограждений многоэтажных зданий в размере 0,20 для первого и второго этажей; 0,15 – для третьего; 0,10 – для четвертого этажа зданий с числом этажей 16 и более; для 10 – 15-этажных зданий добавочные потери следует учитывать в размере 0,10 для первого и второго этажей и 0,05 – для третьего этажа.

Потери теплоты Q В, кВт, рассчитываются для каждого отапливаемого помещения, имеющего одно или большее количество окон или балконных дверей в наружных стенах, исходя из необходимости обеспечения подогрева отопительными приборами наружного воздуха в объеме однократного воздухообмена в час по формуле:

Q В = 0,337 А П h (t В – t H) 10 -3 ,

Где А П – площадь пола помещения, м 2

h – высота помещения от пола до потолка, м, но не более 3,5.

Помещения, из которых организована вытяжная вентиляция с объемом вытяжки, превышающим однократный воздухообмен в час, должны, как правило, проектироваться с приточной вентиляцией подогретым воздухом. При обосновании допускается обеспечивать подогрев наружного воздуха отопительными приборами в отдельных помещениях при объеме вентиляционного воздуха не превышающем двух объемов в час.

В помещениях, для которых нормами проектирования зданий установлен объем вытяжки менее однократного воздухообмена в час, величину Q В следует рассчитывать как расход теплоты на нагревание воздуха в объеме нормируемого воздухообмена от температуры t H до температуры t В, о С.

Потери теплоты Q В, кВт, на название наружного воздуха, проникающего во входные вестибюли (холлы) и лестничные клетки через открывающиеся в холодное время наружные двери при отсутствии воздушно-тепловых завес следует рассчитывать по формуле:

Q В = 0,7 В (Н 0,8Р) (t В – t H) 10 -3 , (6)

Где Н – высота здания, м;

Р – количество людей, находящихся в здании;

В – коэффициент, учитывающий количество входных тамбуров. При одном тамбуре (две двери) В=1,0, при двух тамбурах (три двери) В=0,6.

Расчет теплоты на нагревание наружного воздуха, проникающего через двери отапливаемых незадымляемых лестничных клеток с поэтажными выходами на лоджии следует вести по формуле (6) при Р=0, принимая для каждого этажа значение Н, равное расстоянию, м, от середины двери рассчитываемого этажа до перекрытия лестничной клетки.

При расчете теплопотерь входных вестибюлей, лестничных клеток и цехов воздушно-тепловыми завесами; помещений, оборудованных действующей постоянно в течение рабочего времени приточной вентиляцией с подпором воздуха. А также при расчете потерь теплоты через летние и запасные наружные двери и ворота величину Q В учитывать не следует.

Потери теплоты Q В, кВт, на нагревание воздуха, врывающегося через наружные ворота, не оборудованные воздушно-тепловыми завесами, следует рассчитывать с учетом скорости ветра, принимаемой по обязательному приложению 8, к времени открытия ворот.

Расчет потери теплоты на нагревание инфильтрующегося через неплотности ограждающих конструкций воздуха выполнять не требуется.

5. Потери теплоты Q 2 = q l 10 -3 , (7)

где l – длина участков теплоизолированных трубопроводов различных диаметров, прокладываемых в неотапливаемых помещениях;

q – нормированная линейная плотность теплового потока термоизолированного трубопровода, принимаемая по п. 3.23. При этом толщина теплоизоляционного слоя из, м, трубопроводов должна рассчитываться по формулам:

Из = 0,5 d (В – l) (8)

в – коэффициент, равный 0,9, который необходимо учитывать, если более 75% отопительных приборов оборудованы автоматическими терморегуляторами;

с – коэффициент, равный 0,95, который необходимо учитывать, если на абонентском вводе системы отопления установлены приборы автоматического пофасадного регулирования.

7. Определенные расчетом величины тепловой мощности Q и максимального годового теплопотребления Q год, отнесенные к 1 м 2 общей (для жилых домов) или полезной (для общественных зданий) площади, не должны превышать нормативных контрольных значений, приведенных в обязательном приложении 25.

8. Расход теплоносителя G, кг/ч. в системе отопления следует определять по формуле:

G= 3,6 10 3 Q/ (С t), (11)

Где С – удельная теплоемкость воды, принимаемая равной 4,2 кДж/(кг о С);

t – разность температур, о С, теплоносителя на входе в систему и на выходе из нее;

Q – тепловая мощность системы, кВт, определяемая по формуле (1) с учетом бытовых тепловыделений Q 3 .

Расход теплоносителя в двухтрубных системах отопления, оборудованных индивидуальными автоматическими терморегуляторами, рассчитанный по формуле (11), должен приниматься с коэффициентом 1,1.

9. Расчетную тепловую мощность Q пр, кВт, каждого отопительного прибора следует определять по формуле:

Q пр = Q а + Q в + Q вн – 0,9 Q тр – Q эп, (12)

Где Q а, Q в следует рассчитывать в соответствии с п.п.2 – 4 настоящего приложения;

Q вн – потери теплоты, кВт, через внутренние стены, отделяющие помещения, для которого рассчитывается тепловая мощность отопительного прибора, от смежного помещения, в котором возможно эксплуатационное понижение температуры при регулировании. Величину Q вн следует учитывать только при расчете тепловой мощности отопительных приборов, на подводках к которым проектируются автоматические терморегуляторы. При этом для каждого помещения следует рассчитывать теплопотери Q вн только через одну внутреннюю стену при разности температур между внутренними помещениями 8 о С;

Q тр – тепловой поток, кВт, от неизолированных трубопроводов отопления, прокладываемых в помещении;

Q эп – тепловой поток, кВт, регулярно поступающий в помещение от электрических приборов, освещения, технического оборудования, коммуникаций, материалов и других источников. При расчете тепловой мощности отопительных приборов жилых, общественных и административно-бытовых зданий величину Q эп учитывать не следует.

Величина бытовых тепловыделений учитывается для всего здания в целом при расчетах тепловой мощности системы отопления и общего расхода теплоносителя.

Расчетная тепловая мощность отопительных приборов в двухтрубных системах отопления, оборудованных индивидуальными автоматическими терморегуляторами, рассчитанная по формуле (12), должна приниматься с коэффициентом 1,1.

Уют и комфорт жилья начинаются не с выбора мебели, отделки и внешнего вида в целом. Они начинаются с тепла, которое обеспечивает отопление. И просто приобрести для этого дорогой нагревательный котел и качественные радиаторы недостаточно – сначала необходимо спроектировать систему, которая будет поддерживать в доме оптимальную температуру. Но чтобы получить хороший результат, нужно понимать, что и как следует делать, какие существуют нюансы и как они влияют на процесс. В этой статье вы ознакомитесь с базовыми знаниями о данном деле – что такое тепловой расчет системы отопления, как он проводится и какие факторы на него влияют.

Для чего необходим тепловой расчет

Некоторые владельцы частных домов или те, кто только собираются их возводить, интересуются тем, есть ли какой-то смысл в тепловом расчете системы отопления? Ведь речь идет о простом загородном коттедже, а не о многоквартирном доме или промышленном предприятии. Достаточно, казалось бы, только купить котел, поставить радиаторы и провести к ним трубы. С одной стороны, они частично правы – для частных домовладений расчет отопительной системы не является настолько критичным вопросом, как для производственных помещений или многоквартирных жилых комплексов. С другой стороны, существует три причины, из-за которых подобное мероприятие стоит провести.

  1. Тепловой расчет существенно упрощает бюрократические процессы, связанные с газификацией частного дома.
  2. Определение мощности, требуемой для отопления жилья, позволяет выбрать нагревательный котел с оптимальными характеристиками. Вы не переплатите за избыточные характеристики изделия и не будет испытывать неудобств из-за того, что котел недостаточно мощен для вашего дома.
  3. Тепловой расчет позволяет более точно подобрать , трубы, запорную арматуру и прочее оборудование для отопительной системы частного дома. И в итоге все эти довольно дорогостоящие изделия проработают столько времени, сколько заложено в их конструкции и характеристиках.


Исходные данные для теплового расчета системы отопления

Прежде чем приступать к подсчетам и работе с данными, их необходимо получить. Здесь для тех владельцев загородных домов, которые прежде не занимались проектной деятельностью, возникает первая проблема – на какие характеристики стоит обратить свое внимание. Для вашего удобства они сведены в небольшой список, представленный ниже.

  1. Площадь постройки, высота до потолков и внутренний объем.
  2. Тип здания, наличие примыкающих к нему строений.
  3. Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
  4. Количество окон и дверей, как они обустроены, насколько качественно утеплены.
  5. Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
  6. Продолжительность отопительного сезона, средний минимум температуры в этот период.
  7. «Роза ветров», наличие неподалеку других строений.
  8. Местность, где уже построен или только еще будет возводиться дом.
  9. Предпочтительная для жильцов температура тех или иных помещений.
  10. Расположение точек для подключения к водопроводу, газу и электросети.



Расчет мощности системы отопления по площади жилья

Одним из наиболее быстрых и простых для понимания способов определения мощности отопительной системы является расчет по площади помещения. Подобный метод широко применяется продавцами нагревательных котлов и радиаторов. Расчет мощности системы отопления по площади происходит в несколько простых шагов.

Шаг 1. По плану или уже возведенному зданию определяется внутренняя площадь постройки в квадратных метрах.

Шаг 2. Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м 2 жилья.

Шаг 3. Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.

Шаг 4. Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м 2 потребуется примерно 15 000 Вт.

Совет! В некоторых случаях владельцы коттеджей разделяют внутреннюю площадь жилья на ту часть, которой требуется серьезный обогрев, и ту, для которой подобное излишне. Соответственно, для них применяются разные коэффициенты – к примеру, для жилых комнат это 100, а для технических помещений – 50-75.

Шаг 5. По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.



Следует понимать, что единственным преимуществом подобного способа теплового расчета отопительной системы является скорость и простота. При этом метод обладает множеством недостатков.

  1. Отсутствие учета климата в той местности, где возводиться жилье – для Краснодара система отопления с мощностью 100 Вт на каждый квадратный метр будет явно избыточной. А для Крайнего Севера она может оказаться недостаточной.
  2. Отсутствие учета высоты помещений, типа стен и полов, из которых они возведены – все эти характеристики серьезно влияют на уровень возможных тепловых потерь и, следовательно, на необходимую мощность отопительной системы для дома.
  3. Сам способ расчета системы отопления по мощности изначально был разработан для больших производственных помещений и многоквартирных домов. Следовательно, для отдельного коттеджа он не является корректным.
  4. Отсутствие учета количества окон и дверей, выходящих на улицу, а ведь каждый из подобных объектов является своеобразным «мостиком холода».

Так имеет ли смысл применять расчет системы отопления по площади? Да, но только в качестве предварительных прикидок, позволяющих получить хоть какое-то представление о вопросе. Для достижения лучших и более точных результатов следует обратиться к более сложным методикам.

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи. Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м 2 , комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так.

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м 3 .

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.


Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 + 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 + 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому.

Калькулятор — расчет объема системы отопления

Укажите запрашиваемые данные и нажмите
«РАССЧИТАТЬ ОБЪЕМ ТЕПЛОНОСИТЕЛЯ»

КОТЁЛ

Объем теплообменника котла, литров (паспортная величина)

РАСШИРИТЕЛЬНЫЙ БАК

Объем расширительного бака, литров

ПРИБОРЫ ИЛИ СИСТЕМЫ ТЕПЛООБМЕНА

Разборные, секционные радиаторы

Тип радиатора:

Общее количество секций

Неразборные радиаторы и конвекторы

Объем прибора по паспорту

Количество приборов

Теплый пол

Тип и диаметр трубы

Общая длина контуров

ТРУБЫ КОНТУРА ОТОПЛЕНИЯ (подача + обратка)

Стальные трубы ВГП

Ø ½ ", метров

Ø ¾ ", метров

Ø 1 ", метров

Ø 1¼ ", метров

Ø 1½ ", метров

Ø 2 ", метров

Армированные полипропиленовые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

Ø 50 мм, метров

Металлопластиковые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

ДОПОЛНИТЕЛЬНЫЕ ПРИБОРЫ И УСТРОЙСТВА СИСТЕМЫ ОТОПЛЕНИЯ (теплоаккумулятор, гидрострелка, коллектор, теплобоменник и другие)

Наличие дополнительных приборов и устройств:

Суммарный объем дополнительных элементов системы

Видео — Расчет тепловой мощности систем отопления

Тепловой расчет системы отопления – пошаговая инструкция

Перейдем от быстрых и простых способов расчета к более сложному и точному методу, учитывающему различные факторы и характеристики жилья, для которого проектируется система отопления. Используемая формула похожа по своему принципу на ту, что использовалась для расчета по площади, но дополнена огромным количеством корректирующих коэффициентов, каждый из которых отображает тот или иной фактор или характеристику здания.

Q=1,2*100*S*К 1 *К 2 *К 3 *К 4 *К 5 *К 6 *К 7

Теперь разберем составляющие этой формулы по отдельности. Q – конечный результат вычислений, необходимая мощность отопительной системы. В данном случае представлен в ваттах, при желании вы можете перевести его в КВт*ч.

А 1,2 – это коэффициент резерва по мощности. Желательно учитывать его в ходе расчетов – тогда вы точно можете быть уверены в том, что нагревательный котел обеспечит вам комфортную температуру в доме даже в самые сильные морозы за окном.


Цифру 100 вы могли видеть ранее – это количество ватт, необходимых для обогрева одного квадратного метра жилой комнаты. Если речь идет о нежилом помещении, кладовке и т. д. – его можно изменить в меньшую сторону. Также данная цифра нередко корректируется, исходя из личных предпочтений хозяина дома – кому-то комфортно в «натопленной» и очень теплой комнате, кому-то больше по душе прохлада.

S – площадь комнаты. Высчитывается на основе плана постройки или уже по готовым помещениям.

Теперь перейдем непосредственно к корректирующим коэффициентам. К 1 учитывает конструкцию окон, применяющихся в той или иной комнате. Чем больше значение – тем выше потери тепла. Для самого простого одинарного стекла К 1 равен 1,27, для двойного и тройного стеклопакетов – 1 и 0,85 соответственно.


К 2 учитывает фактор потерь тепловой энергии через стены здания. Значение зависит от того, из какого материала они сложены, и обладают ли слоем теплоизоляции.

Некоторые из примеров данного коэффициента приведены в следующем списке:

  • кладка в два кирпича со слоем теплоизоляции 150 мм – 0,85;
  • пенобетон – 1;
  • кладка в два кирпича без теплоизоляции – 1,1;
  • кладка в полтора кирпича без теплоизоляции – 1,5;
  • стена бревенчатого сруба – 1,25;
  • стена из бетона без утепления – 1,5.


К 3 показывает соотношение площади окон к площади помещения. Очевидно, что чем больше их – тем выше теплопотери, так как каждое окно является «мостиком холода», и полностью этот фактор нельзя устранить даже для самых качественных тройных стеклопакетов с прекрасным утеплением. Значения данного коэффициента приведены в таблице ниже.

Таблица. Корректирующий коэффициент соотношения площади окон к площади помещения.

Соотношение площади окон к площади пола в помещении Значение коэффициента К3
10% 0,8
20% 1,0
30% 1,2
40% 1,4
50% 1,5

По своей сути К 4 похож на региональный коэффициент, который использовался в тепловом расчете системы отопления по объему жилья. Но в данном случае он привязан не к какой-то конкретной местности, а к среднему минимуму температуры в самый холодный месяц года (обычно для этого выбирается январь). Соответственно, чем этот коэффициент выше, тем больше энергии потребуется для отопительных нужд – прогреть помещение при -10°С намного проще, чем при -25°С.

Все значения К 4 приведены ниже:

  • до -10°С – 0,7;
  • -10°С – 0,8;
  • -15°С – 0,9;
  • -20°С – 1,0;
  • -25°С – 1,1;
  • -30°С – 1,2;
  • -35°С – 1,3;
  • ниже -35°С – 1,5.


Следующий коэффициент К 5 учитывает число стен в помещении, выходящих наружу. Если она одна – его значение равно 1, для двух – 1,2, для трех – 1,22, для четырех – 1,33.

Важно! В ситуации, когда тепловой расчет применяется для всего дома сразу, используется К 5 , равный 1,33. Но значение коэффициента может уменьшиться в том случае, когда к коттеджу пристроен отапливаемый сарай или гараж.

Перейдем к двум последним корректирующим коэффициентам. К 6 учитывает то, что находится над помещением – жилой и отапливаемый этаж (0,82), утепленный чердак (0,91) или холодный чердак (1).

К 7 корректирует результаты расчета в зависимости от высоты комнаты:

  • для помещения высотой 2,5 м – 1;
  • 3 м – 1,05;
  • 5 м – 1,1;
  • 0 м – 1,15;
  • 5 м – 1,2.

Совет! При расчетах также стоит обратить внимание на розу ветров в той местности, где будет располагаться дом. Если он будет постоянно находиться под воздействием северного ветра, то потребуется более мощная система отопления.

Результатом применения формулы, изложенной выше, станет требуемая мощность отопительного котла для частного дома. А теперь приведем пример расчета по данному способу. Исходные условия следующие.

  1. Площадь помещения – 30 м 2 . Высота – 3 м.
  2. В качестве окон используются двойные стеклопакеты, их площадь относительно таковой у комнаты – 20%.
  3. Тип стены – кладка в два кирпича без слоя теплоизоляции.
  4. Средний минимум января для местности, где стоит дом, составляет -25°С.
  5. Помещение является угловым в коттедже, следовательно, наружу выходят две стены.
  6. Над комнатой – утепленный чердак.

Формула для теплового расчета мощности отопительной системы будет выглядеть следующим образом:

Q=1,2*100*30*1*1,1*1*1,1*1,2*0,91*1,02=4852 Вт


Двухтрубная схема нижней разводки системы отопления

Важно! Существенно ускорить и упростить процесс расчета системы отопления поможет специальное программное обеспечение.


После завершения расчетов, изложенных выше, необходимо определить, сколько радиаторов и с каким числом секций понадобится для каждого отдельного помещения. Для подсчета их количества есть простой способ.

Шаг 1. Определяется материал, из которого будут изготовлены батареи отопления в доме. Это может быть сталь, чугун, алюминий или биметаллический композит.

Шаг 3. Подбираются модели радиаторов, подходящих владельцу частного дома по стоимости, материалу и некоторым другим характеристикам.

Шаг 4. На основании технической документации, ознакомиться с которой можно на сайте компании-производителя или продавца радиаторов, определяется, какую мощность выдает каждая отдельная секция батареи.

Шаг 5. Последний шаг – разделить мощность, требуемую на обогрев помещения, на мощность, вырабатываемую отдельной секцией радиатора.


На этом ознакомление с базовыми знаниями о тепловом расчете системы отопления и способах его осуществления можно считать законченным. Для получения большего объема информации желательно обратиться к специализированной литературе. Также будет не лишним ознакомиться с нормативными документами, такими как СНиП 41-01-2003.














1.
2.
3.
4.

Прежде, чем приступить к монтажу автономной системы отопления в собственном доме или квартире, владельцу недвижимости необходимо иметь проект. Создание его специалистами подразумевает, в том числе, что будет выполнен расчет тепловой мощности для помещения, имеющего определенную площадь и объем. На фото можно увидеть, как может выглядеть отопительная система частного домовладения.

Необходимость расчета тепловой мощности системы отопления

Потребность в вычислении тепловой энергии, необходимой для обогрева комнат и подсобных помещений, связана с тем, что нужно определить основные характеристики системы в зависимости от индивидуальных особенностей проектируемого объекта, включая: Расчет необходимой мощности отопления является важным моментом, его результат используют для вычисления параметров отопительного оборудования, которое планируют установить:
  1. Подбор котла в зависимости от его мощности . Эффективность функционирования отопительной конструкции определяется правильностью выбора нагревательного агрегата. Котел должен иметь такую производительность, чтобы обеспечить обогрев всех помещений в соответствии с потребностями людей, проживающих в доме или квартире, даже в наиболее холодные зимние дни. Одновременно при наличии у прибора избыточной мощности часть вырабатываемой энергии не будет востребована, а значит, некоторая сумма денег потратится напрасно.
  2. Необходимость согласовывать подключение к магистральному газопроводу . Для присоединения к газовой сети потребуется ТУ. Для этого подают заявку в соответствующую службу с указанием предполагаемого расхода газа на год и оценкой тепловой мощности в сумме для всех потребителей.
  3. Выполнение расчетов периферийного оборудования . необходим для определения длины трубопровода и сечения труб, производительности циркуляционного насоса, типа батарей и т.д.


Варианты приблизительных расчетов

Выполнить точный расчет тепловой мощности системы отопления довольно сложно, его могут сделать только профессионалы, имеющие соответствующую квалификацию и специальные знания. По этой причине данные вычисления обычно поручают специалистам.

В тоже время существуют и более простые способы, позволяющие приблизительно оценить величину требуемой тепловой энергии и их можно сделать самостоятельно:

  1. Нередко применяют расчет мощности отопления по площади (детальнее: " "). Считается, что жилые дома возводятся по проектам, разработанным с учетом климата в определенном регионе, и что в проектных решениях заложено использование материалов, которые обеспечивают требуемый тепловой баланс. Поэтому при расчете принято умножать величину удельной мощности на площадь помещений. Например, для Московского региона данный параметр находится в пределе от 100 до 150 ватт на один «квадрат».
  2. Более точный результат будет получен, если учитывать объем помещения и температуру. Алгоритм вычисления включает высоту потолка, уровень комфорта в отапливаемом помещении и особенности дома.

    Используемая формула выглядит следующим образом: Q = VхΔTхK/860, где:


    V – объем помещения;
    ΔT – разница между температурой внутри дома и снаружи на улице;
    К – коэффициент теплопотерь.

    Поправочный коэффициент позволяет учесть конструктивные особенности объекта недвижимости. Например, когда определяется тепловая мощность системы отопления здания, для строений с обычной кровлей из двойной кирпичной кладки К находится в диапазоне 1,0–1,9.
  3. Метод укрупненных показателей. Во многом похож на предыдущий вариант, но его применяют для вычисления тепловой нагрузки для систем отопления многоквартирных зданий или других больших объектов.


Все три вышеперечисленные способы, позволяющие сделать расчет необходимой теплоотдачи, дают приблизительный результат, который может отличаться от реальных данных или в меньшую, или в большую сторону. Понятно, что монтаж маломощной отопительной системы не обеспечит требуемую степень обогрева.

В свою очередь, избыток мощности у отопительного оборудования приведет к быстрому износу приборов, перерасходу топлива, электроэнергии, а соответственно и денежных средств. Подобные расчеты обычно применяют в несложных случаях, например, при выборе котла.

Точное вычисление тепловой мощности

Степень теплоизоляции и ее эффективность зависят от того, насколько качественно она сделана и от конструктивных особенностей зданий. Основная часть теплопотерь приходится на наружные стены (примерно 40%), затем следуют оконные конструкции (около 20%), а крыша и пол – это 10%. Остальное тепло покидает дом через вентиляцию и двери.

Поэтому расчет тепловой мощности системы отопления должен учитывать данные нюансы.

Для этого используют поправочные коэффициенты:

  • К1 зависит от типа окон. Двухкамерным стеклопакетам соответствует 1, обычному остеклению – 1,27, трехкамерному окну – 0,85;
  • К2 показывает степень теплоизоляции стен. Находится в пределе от 1 (пенобетон) до 1,5 для бетонных блоков и кладки в 1,5 кирпича;
  • К3 отражает соотношение между площадью окон и пола. Чем больше оконных рам, тем сильнее потери тепла. При 20% остекления коэффициент равен 1, а при 50% он увеличивается до 1,5;
  • К4 зависит от минимальной температуры снаружи здания на протяжении отопительного сезона. За единицу принимают температуру -20 °C, а затем на каждые 5 градусов прибавляют или вычитают 0,1;
  • К5 учитывает количество наружных стен. Коэффициент для одной стены равен 1, если их две или три, тогда он составляет 1,2, когда четыре – 1,33;
  • К6 отражает тип помещения, которое находится над определенной комнатой. При наличии сверху жилого этажа величина поправки – 0,82, теплого чердака – 0,91, холодного чердака - 1,0;
  • К7 – зависит от высоты потолков. Для высоты 2,5 метра это 1,0, а для 3-х метров - 1,05.
Когда все поправочные коэффициенты известны, делают расчет мощности системы отопления для каждого помещения, используя формулу:
Как правило, для обеспечения запаса тепловой энергии на всевозможные непредвиденные случаи результат увеличивают на 15–20%. Это могут быть сильнейшие морозы, разбитое окно, поврежденная теплоизоляция и т.д.

Пример выполнения расчета

Допустим, необходимо знать, какая должна быть тепловая мощность системы отопления для дома из бруса площадью 150 м² с теплым чердаком, тремя внешними стенами и двойными стеклопакетами на окнах. При этом высота стен 2,5 метра, а площадь остекления составляет 25%. Минимальная температура на улице в самую морозную пятидневку находится на отметке -28 °C.


Поправочные коэффициенты в данном случае будут равны:

Q=100 Вт/ м²х135 м²х1,0х1,25х1,1х1,16х1,22х0,91х1,0 = 23,9 кВт.

В итоге мощность отопительной системы составит: W=Qх1,2 = 28,7 кВт.

В том случае, когда бы использовался упрощенный метод вычислений, основанный на расчете мощности отопления согласно площади, то результат был бы совсем иной:

100–150 Вт х150м² = 15–22,5 кВт

Отопительная система функционировала бы без запаса по мощности - на пределе. Приведенный пример является подтверждением важности применения точных способов, позволяющих определять тепловые нагрузки на отопление.

Пример расчета тепловой мощности системы отопления на видео:

где - расчетные тепловые потери здания, кВт;

- коэффициент учета дополнительного теплового потока устанавливаемых отопительных приборов за счет округления сверх расчетной величины, принимаемый по табл. 1.

Таблица 1

Типоразмерный шаг, кВт

при номинальном тепловом потоке, кВт, минимального типоразмера

- коэффициент учета дополнительных потерь теплоты отопительными приборами, расположенными у наружных ограждений при отсутствии теплозащитных экранов, принимаемый по табл. 2.

Таблица 2

Отопительный прибор

Коэффициент при установке прибора

у наружной стены в зданиях

у остекления светового проема

жилых и общественных

производственных

Радиатор чугунный

Конвектор с кожухом

Конвектор без кожуха

- потери теплоты, кВт, трубопроводами, проходящими в неотапливаемых помещениях;

- тепловой поток, кВт, регулярно поступающий от освещения, оборудования и люден, который следует учитывать в целом на систему отопления здания. Для жатых домов величину следует учитывать из расчета 0.01 кВт на 1 м" обшей площади.

При расчетах тепловой мощности систем отопления производственных зданий следует дополнительно учитывать расход теплоты на нагревание материалов, оборудования и транспортных средств.

2. Расчетные тепловые потери , кВт, должны рассчитываться по формуле:


(2)

где: - тепловой поток, кВт, через ограждающие конструкции;

- потери теплоты, кВт, на нагревание вентиляционного воздуха.

Величины и рассчитываются для каждого отапливаемого помещения.

3. Тепловой поток , кВт, рассчитывается для каждого элемента ограждающей конструкции по формуле:


(3)

где А - расчетная площадь ограждающей конструкции, м 2 ;

R - сопротивление теплопередаче ограждающей конструкции. м 2 °С/Вт, которое должно определяться по СНиП II-3-79** (кроме полов на грунте) с учетом установленных нормативов минимального термического сопротивления ограждений. Для полов на грунте и стен, расположенных ниже уровня земли, сопротивление теплопередаче следует определять по зонам шириной 2 м. параллельным наружным стенам, по формуле:


(4)

где - сопротивление теплопередаче, м 2 °С/Вт, принимаемое равным 2,1 для I зоны, 4,3 - для второй, 8,6 - для третьей зоны и 14,2 для оставшейся площади пола;

- толщина утепляющего слоя, м, учитываемая при коэффициенте теплопроводности утеплителя <1,2Вт/м 2 °С;

- расчетная температура внутреннего воздуха, °С, принимаемая согласно требованиям норм проектирования зданий различного назначения с учетом повышения ее в зависимости от высоты помещения;

- расчетная температура наружного воздуха, °С, принимаемая по данным приложения 8, или температура воздуха смежного помещения, если его температура более чем на 3 °С отличается от температуры помещения, для которого рассчитываются теплопотери;

- коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху и определяемый по СНнП П-3-79**

- добавочные потери теплоты в долях от основных потерь, учитываемые:

а) для наружных вертикальных и наклонных ограждений, ориентированных на направления, откуда в январе дует ветер со скоростью, превышающей 4,5 м/с с повторяемостью не менее 15% согласно СНиП 2.01.01-82, в размере 0,05 при скорости ветра до 5 м/с и в размере 0,10 при скорости 5 м/с и более; при типовом проектировании добавочные потерн следует учитывать в размере 0,05 для всех помещений;

б) для наружных вертикальных и наклонных ограждений многоэтажных зданий в размере 0,20 для первого и второго этажей; 0,15 -для третьего; 0,10 -для четвертого этажа здании с числом этажей 16 и более; для 10-15 - этажных здании добавочные потери следует учитывать в размере 0,10 для первого и второго этажей и 0,05 -для третьего этажа.

4. Потери теплоты , кВт, рассчитываются для каждого отапливаемого помещения, имеющего одно или большее количество окон или балконных дверей в наружных стенах, исходя из необходимости обеспечения подогрева отопительными приборами наружного воздуха в объеме однократного воздухообмена в час по формуле:

где - площадь пола помещения, м 2 ;

- высота помещения от пола до потолка, м, но не более 3,5.

Помещения, из которых организована вытяжная вентиляция с объемом вытяжки, превышающим однократный воздухообмен в час должны, как правило, проектироваться с приточной вентиляцией подогретым воздухом. При обосновании допускается обеспечивать подогрев наружного воздуха отопительными приборами в отдельных помещениях при объеме вентиляционного воздуха, не превышающем двух обменов в час.

В помещениях, для которых нормами проектирования зданий установлен объем вытяжки менее однократного воздухообмена в час, величину следует рассчитывать как расход теплоты на нагревание воздуха в объеме нормируемого воздухообмена от температуры до температуры °С.

Потери теплоты кВт, на нагревание наружного воздуха, проникающего во входные вестибюли (холлы) и лестничные клетки через открывающиеся в холодное время года наружные двери при отсутствии воздушно-тепловых завес следует рассчитывать по формуле:

где

- высота здания, м:

Р - количество людей, находящихся в здании;

В – коэффициент, учитывающий количество входных тамбуров. При одном тамбуре (две двери) в - 1,0; при двух тамбурах (три двери) в = 0,6.

Расчет теплоты на нагревание наружного воздуха, проникающего через двери отапливаемых незадымляемых лестничных клеток с поэтажными выходами на лоджии следует вести по формуле (6) при

, принимая для каждого этажа значение

, разное расстоянию, м. от середины двери рассчитываемого этажа до перекрытия лестничной клетки.

При расчете теплопотерь входных вестибюлей, лестничных клеток и цехов с воздушно-тепловыми завесами: помещений, оборудованных действующей постоянно в течение рабочего времени приточной вентиляцией с подпором воздуха, а также при расчете потерь теплоты через летние и запасные наружные двери и ворота величину учитывать не следует.

Потери теплоты , кВт, на нагревание воздуха, врывающегося через наружные ворота, не оборудованные воздушно-тепловыми завесами, следует рассчитывать с учетом скорости ветра, принимаемой по обязательному приложению 8, и времени открытия ворот.

Расчет потери теплеть: на нагревание инфильтрующегося через неплотности ограждающих конструкций воздуха выполнять не требуется.

5. Потери теплоты , кВт, трубопроводами, проходящими в неотапливаемых помещениях, следует определять по формуле:


(7)

где: - длины участков тепле изолированных трубопроводов различных диаметров, прокладываемых в неотапливаемых помещениях;

- нормированная линейная плотность теплового потока теплоизолированного трубопровода, принимаемая по п. 3.23. При этом толщина теплоизоляционного слоя , м трубопроводов должна. рассчитывается по формулам:


(8)

где - наружный размер трубопровода, м;

- теплопроводность теплоизоляционного слоя, Вт/(м °С);


- средняя за отопительный сезон разность температур теплоносителя и окружающего воздуха.

6. Величину расчетного годового теплопотребления системой отопления здания

, ГДж. следует рассчитывать по формуле:

где - количество градусо-суток отопительного периода, принимаемое по приложению 8;

а - коэффициент, равный 0,8. который необходимо учитывать, если система отопления оборудована приборами автоматического уменьшения тепловой мощности в нерабочее время;

- коэффициент, разный 0,9, который необходимо учитывать, если более 75% отопительных приборов оборудованы автоматическими терморегуляторами;

с - коэффициент, разный 0,95, который необходимо учитывать, если на абонентском вводе системы отопления установлены приборы автоматического пофасадного регулирования.

7. Определенные расчетом величины тепловой мощности и максимального годового теплопотребления

, отнесенные к 1 м 2 общей (для жилых домов) или полезной (для общественных здании) площади, не должны превышать нормативных контрольных значений, приведенных в обязательном приложении 25.

8. Расход теплоносителя ,.кг/ч. а системе отопления следует определять по формуле:


(11)

где с - удельная теплоемкость воды, принимаемая равной 4,2 кДж/(кг 0 С);


- разность температур. °С, теплоносителя на входе в систему и на выходе из нее;

- тепловая мощность системы, кВт. определенная по формуле (1) с учетом бытовых тепловыделений .

9. Расчетную тепловую мощность

, кВт, каждого отопительного прибора следует определять по формуле:

где

следует рассчитывать в соответствии с пп. 2-4 настоящего приложения;



- потери теплоты, кВт, через внутренние стены, отделяющие помещение, для которого рассчитывается тепловая мощность отопительного прибора, от смежного помещения, в котором возможно эксплуатационное понижение температуры при регулировании. Величину

следует учитывать только при расчете тепловой мощности отопительных приборов, на подводках к которым проектируются автоматические терморегулятора. При этом для каждого помещения следует рассчитывать теплопотери

только через одну внутреннюю стену при разности температур между внутренними помещениями 8 0 С;


- тепловой поток. кВт, от неизолированных трубопроводов отопления, прокладываемых в помещении;


- тепловой поток, кВт, регулярно поступающий в помещение от электрических приборов, освещения, технологического оборудования, коммуникаций, материалов и других источников. При расчете тепловой мощности отопительных приборов жилых, общественных и административно-бытовых зданий величину

учитывать не следует.

Величина бытовых тепловыделении учитывается для всего здания в целом при расчетах тепловой мощности системы отопления и общего расхода теплоносителя.

2.3. УДЕЛЬНАЯ ТЕПЛОВАЯ ХАРАКТЕРИСТИКА

Общие теплопотери здания Q зд принято относить к 1 м 3 его наружного объема и 1°С расчетной разности температуры. Получаемый показательq 0 , Вт/(м 3 К), называют удельной тепловой характеристикой здания:


(2.11)

где V н - объем отапливаемой части здания по внешнему обмеру, м 3 ;

(t в -t н.5) - расчетная разность температур для основных помещений здания.

Удельную тепловую характеристику, вычисляемую после расчета теплопотерь, используют для теплотехнической оценки конструктивно-планировочных решений здания, сравнивая ее со средними показателями для аналогичных зданий. Для жилых и общественных зданий оценку производят по расходу теплоты, отнесенному I м 2 общей площади.

Величина удельной тепловой характеристики определяется прежде всего размерами световых проемов по отношению к общей площади наружных ограждений, так как коэффициент теплоотдачи заполнения световых проемов значительно выше коэффициента теплопередачи других ограждений. Кроме того, она зависит от объема и формы зданий. Здания малого объема обладают повышенной характеристикой, как и здания узкие, сложной конфигурации с увеличенным периметром.

Уменьшенные теплопотери и, следовательно, тепловую характеристику имеют здания, форма которых близка к кубу. Еще меньше теплопотери шарообразных сооружений того же объема в связи с сокращением площади внешней поверхности.

Удельная тепловая характеристика зависит также от района строительства здания вследствие изменения теплозащитных свойств ограждения. В северных районах при относительном уменьшении коэффициента теплопередачи ограждений этот показатель ниже, чем в южных.

Значения удельных тепловых характеристик приводятся в справочной литературе.

Применяя ее, определяют потери теплоты зданием по укрупненным показателям:

где β t - поправочный коэффициент, учитывающий изменение удельной тепловой характеристики при отклонении фактической расчетной разности температур от 48°:


(2.13)

Подобные расчеты теплопотерь позволяют установить ориентировочную потребность в тепловой энергии при перспективном планировании тепловых сетей и станций.

3.1 КЛАССИФИКАЦИЯ СИСТЕМ ОТОПЛЕНИЯ

Отопительные установки проектируют и монтируют в процессе возведения здания, увязывая их элементы со строительными конструкциями и планировкой помещений. Поэтому отопление считают отраслью строительной техники. Затем отопительные установки действуют в течение всего срока службы сооружения, являясь одним из видов инженерного оборудования зданий. К отопительным установкам предъявляют следующие требования:

1 - санитарно-гигиенические: поддерживание равномерной температуры помещений; ограничение температуры поверхности нагревательных приборов, возможность их очистки.

2 - экономические: невысокие капитальные вложения и эксплуатационные затраты, а также небольшой расход металла.

3 - архитектурно-строительные: соответствие планировке помещений, компактность, увязка со строительными конструкциями, согласование со сроками строительства зданий.

4 - производственно-монтажные: механизация изготовления деталей и узлов, минимальное число элементов, сокращение трудовых затрат и повышение производительности при монтаже.

5 - эксплуатационные: безотказность и долговечность, простота и удобство управления и ремонта, бесшумность и безопасность действия.

Каждое из указанных требований следует учитывать при выборе отопительной установки. Однако основными считаются санитарно-гигиенические и эксплуатационные требования. Установка должна обладать способностью передавать в помещение изменяющиеся в соответствии с теплопотерями количество теплоты.

Система отопления - совокупность конструктивных элементов, предназначенных для получения, переноса и передачи необходимого количества тепловой энергии во все обогреваемые помещения.

Система отопления состоит из следующих основных конструктивных элементов (рис. 3.1).


Рис. 3.1. Принципиальная схема системы отопления

1- теплообменник; 2 и 4 –подающий и обратный теплопроводы; 3- отопительный прибор.

теплообменника 1 для получения тепловой энергии при сжигании топлива или от другого источника; отопительных приборов 3 для теплопередачи в помещение; теплопроводов 2 и 4 - сети труб или каналов для теплопереноса от теплообменника к отопительным приборам. Теплоперенос осуществляется теплоносителем - жидким (вода) или газообразным (пар, воздух, газ).

1.В зависимости от вида системы делятся на:

Водяные;

Паровые;

Воздушные или газовые;

Электрические.

2. В зависимости от расположения источника теплоты и обогреваемого помещения:

Местные;

Центральные;

Централизованные.

3. По способу циркуляции:

С естественной циркуляцией;

С механической циркуляцией.

4. Водяные по параметрам теплоносителя:

Низкотемпературные TI ≤ 105°С;

Высокотемпературные Tl>l05 0 C.

5. Водяные и паровые по направлению движения теплоносителя в магистралях:

Тупиковые;

С попутным движением.

6. Водяные и паровые по схеме соединения нагревательных приборов с трубами:

Однотрубные;

Двухтрубные.

7. Водяные по месту прокладки подающих и обратных магистралей:

С верхней разводкой;

С нижней разводкой;

С опрокинутой циркуляцией.

8. Паровые по давлению пара:

Вакуум-паровые Р а <0.1 МПа;

Низкого давления P a =0.1 - 0.47 МПа;

Высокого давления P a > 0.47 МПа.

3.2. ТЕПЛОНОСИТЕЛИ

Теплоносителем для системы отопления может быть любая среда, обладающая хорошей способностью аккумулировать тепловую энергию и изменять теплотехнические свойства, подвижная, дешевая, не ухудшающая санитарные условия в помещении, позволяющая регулировать отпуск теплоты, в том числе автоматически. Кроме того, теплоноситель должен способствовать выполнению требований, предъявляемых к системам отопления.

Наиболее широко в системах отопления используют воду, водяной пар и воздух, поскольку эти теплоносители в наибольшей степени отвечают перечисленным требованиям. Рассмотрим основные физические свойства каждого из теплоносителей, которые оказывают влияние на конструкцию и действие системы отопления.

Свойства воды : высокая теплоемкость, высокая плотность, несжимаемость, расширение при нагревании с уменьшением плотности, повышение температуры кипения при повышении давления, выделение абсорбируемых газов при повышении температуры и понижении давления.

Свойства пара : малая плотность, высокая подвижность, высокая энтальпия за счет скрытой теплоты фазового превращения (табл. 3.1), повышение температуры и плотности с возрастанием давления.

Свойства воздуха : низкая теплоемкость и плотность, высокая подвижность, уменьшение плотности при нагревании.

Краткая характеристика параметров теплоносителей для системы отопления приведена в табл. 3.1.

Таблица 3.1. Параметры основных теплоносителей.

*Скрытая теплота фазового превращения.

4.1. ОСНОВНЫЕ ВИДЫ, ХАРАКТЕРИСТИКИ И ОБЛАСТЬ ПРИМЕНЕНИЯ СИСТЕМ ОТОПЛЕНИЯ

Водяное отопление благодаря ряду преимуществ перед другими системами получило в настоящее время наиболее широкое распространение. Для уяснения устройства и принципа действия системы водяного отопления рассмотрим схему системы, представленную на рис. 4.1.


Рис.4.1.Схема двухтрубной системы водяного отопления с верхней разводкой и естественной циркуляцией.

Вода, нагретая в теплогенераторе К до температуры Т1 , поступает в теплопровод - главный стояк I в подающие магистральные теплопроводы 2. По подающим магистральным теплопроводам горячая вода поступает в подающие стояки 9. Затем по подающим подводкам 13 горячая вода поступает в отопительные приборы 10 , через стенки которых теплота передается воздуху помещения. Из отопительных приборов охлажденная вода с температурой Т2 по обратным подводкам 14, обратным стоякам II и обратным магистральным теплопроводам 15 возвращается в теплогенератор К, где она снова подогревается до тем­пературы Т1 и далее циркуляция происходит по замкнутому кольцу.

Система водяного отопления гидравлически замкнута и имеет определенную вместимость отопительных приборов, теплопроводов, арматуры, т.е. постоянный объем заполняющей ее воды. При повышении температуры воды она расширяется и в замкнутой, заполненной водой системе отопления внутреннее гидравлическое давление может превысить механическую прочность ее элементов. Чтобы этого не произошло, в системе водяного отопления имеется расширительный бак 4 , предназначенный для вмещения прироста объема воды при ее нагревании, а также для удаления через него воздуха в атмосферу, как при заполнении системы водой, так и в период ее эксплуатации. Для регулирования теплоотдачи отопительных приборов на подводках к ним устанавливают регулировочные краны 12.

Перед пуском в действие каждая система заполняется водой из водопровода 17 через обратную линию до сигнальной трубы 3 в расширительный бак 4 . Когда уровень воды в системе повысится до уровня переливной трубы и вода будет вытекать в раковину, находящуюся в котельной, кран на сигнальной трубе закрывают и прекращают заполнение системы водой.

При недостаточном прогреве приборов вследствие засорения трубопроводов или арматуры, а также в случае появления утечки, вода из отдельных стояков может быть спущена без опорожнения и прекращения работы других участков системы. Для этого закрывают вентили или краны 7 на стояках. Из тройника 8 , установленного в нижней части стояка, вывертывают пробку, и к штуцеру стояка присоединяют гибкий шланг, по которому вода из теплопроводов и приборов стекает в канализацию. Чтобы вода быстрее стекала и стекла полностью, из верхнего тройника 8 вывертывают пробку. Представленные на рис. 4.1-4.3 системы отопления называются системами с естественной циркуляцией. В них движение воды осуществляется под действием разности плотностей охлажденной воды после отопительных приборов, и горячей воды, поступающей в систему отопления.

Вертикальные двухтрубные системы с верхней разводкой применяют в основном при естественной циркуляции воды в системах отопления зданий до 3-х этажей включительно. Эти системы по сравнению с системами при нижней разводке подающей магистрали (рис.4.2) имеют большее естественное циркуляционное давление, в их проще воздухоудаление из системы (через расширительный бак).


Рис. 7.14. Схема двухтрубной системы водяного отопления с нижней разводкой и естественной циркуляцией

К-котел; 1-главный стояк; 2, 3, 5-соединительная, переливная, сигнальная трубы расширительного бака; 4 - расширительный бак; 6-воздушная линия; 7 - воздухосборник; 8 - подающие подводки; 9 - регулировочные краны у отопительных приборов; 10-отопительные приборы; 11-обратные подводки; 12-обратные стояки (охлажденной воды); 13-подающие стояка (горячей воды); 14-тройник с пробкой для спуска воды; 15- краны или вентили на стояках; 16, 17-подающий и обратный магистральные теплопроводы; 18-запорные вентили или задвижки на магистральных теплопроводах для регулирования и отключения отдельных веток; 19 - воздушные краны.


Рис.4.3.Схема однотрубной системы водяного отопления с верхней разводкой и естественной циркуляцией

Двухтрубная система с нижним расположением обеих магистралей и естественной циркуляцией (рис.4.3) перед системой с верхней разводкой имеет преимущество: монтаж и пуск систем может производиться поэтажно по мере возведения здания: удобнее эксплуатация системы, т.к. вентили и краны на подающем и обратном стояках находятся внизу и в одном месте. Двухтрубные вертикальные системы с нижней разводкой применяют в малоэтажных зданиях с кранами двойной регулировки у отопительных приборов, что объясняется большой гидравлической и тепловой устойчивостью в сравнении с системами с верхней разводкой.

Удаление воздуха из этих систем осуществляется воздушными кранами 19 (рис.4.3).

Основное преимущество двухтрубных систем независимо от способа циркуляции теплоносителя - поступление воды с наивысшей температурой TI к каждому отопительному прибору, что обеспечивает максимальную разность температур TI-T2 и, следовательно, минимальную площадь поверхности приборов. Однако в двухтрубной системе, особенно с верхней разводкой, имеет место значительный расход труб и усложняется монтаж.

По сравнению с двухтрубными системами отопления вертикальные однотрубные системы с замыкающими участками (рис. 4.3, левая часть) имеют ряд преимуществ: меньшая первоначальная стоимость, более простой монтаж и меньшая длина теплопроводов, более красивый внешний вид. Если приборы, находящиеся в одном помещении, присоединены по проточной схеме к стояку с двух сторон, то у одного из них (правый стояк на рис. 4.3) устанавливают регулировочный кран. Такие системы применяют в малоэтажных производственных зданиях.

На рис. 4.5 показана схема однотрубных горизонтальных систем отопления. Горячая вода в таких системах поступает в отопительные приборы одного и того же этажа из теплопровода, проложенного горизонтально. Регулировка и включение отдельных приборов в горизонтальных системах с замыкающими участками (рис. 4.5 б) достигается также легко, как и вертикальных системах. В горизонтальных проточных системах (рис. 4.5 а, в) регулировка может быть только поэтажной, что является существенным их недостатком.

Рис. 4.5. Схема однотрубных горизонтальных систем водяного отопления

а, в- проточная; б- с замыкающими участками.


Рис. 4.6 Системы водяного отопления с искусственной циркуляцией

1 - расширительный бак; 2 - воздушная сеть; 3- насос циркуляционный; 4- теплообменник

К основным достоинствам однотрубных горизонтальных систем относятся меньший, чем в вертикальных системах, расход труб, возможность поэтажного включения системы и стандартность узлов. Кроме того, горизонтальные системы не требуют пробивки отверстий в перекрытиях, и монтаж их в сравнении с вертикальными системами гораздо проще. Они довольно широко применяются в производственных и общественных помещениях.

Общими преимуществами систем с естественной циркуляцией воды, предопределяющими в некоторых случаях их выбор, являются относительная простота устройства и эксплуатации; отсутствие насоса и потребности в электроприводе, бесшумность действия; сравнительная долговечность при правильной эксплуатации (до 30-40 лет) и обеспечение равномерной температуры воздуха в помещении в течение отопительного периода. Однако в системах водяного отопления с естественной циркуляцией естественное давление имеет очень большую величину. Поэтому при большой протяженности циркуляционных колец (>30м), а, следовательно, при значительных сопротивлениях движению воды в них, диаметры трубопроводов по расчету получаются очень большими и система отопления называется экономически невыгодной как по первоначальным затратам, так и в процессе эксплуатации.

В связи с изложенным область применения систем с естественной циркуляцией ограничена обособленными гражданскими зданиями, где недопустимы шум и вибрация, квартирным отоплением, верхними (техническими) этажами высоких зданий.

Системы отопления с искусственной циркуляцией (рис. 4.6-4.8) принципиально отличаются от систем водяного отопления с естественной циркуляцией тем, что в них в дополнение к естественному давлению, возникающему в результате охлаждения воды в приборах и трубах, значительно большее давление создается циркуляционным насосом, который устанавливается на обратном магистральном трубопроводе у котла, а расширительный бак присоединен не к подающему, а к обратному теплопроводу около всасывающего патрубка насоса. При таком присоединении расширительного бака воздух из системы через него отводиться не может, поэтому для удаления воздуха из сети теплопроводов и отопительных приборов служат воздушные линии, воздухосборники и воздушные краны.

Рассмотрим схемы вертикальных двухтрубных систем отопления с искусственной циркуляцией (рис.4,6). Слева показана система с верхним расположением подающей магистрали, а справа - система с нижним расположением обеих магистралей. Обе системы отопления относятся к так называемым тупиковым системам, в которых нередко получается большая разница в потере давления в отдельных циркуляционных кольцах, т.к. длины их разные: чем дальше расположен прибор от котла, тем большую протяженность имеет кольцо этого прибора. Поэтому в системах с искусственной циркуляцией, особенно при большой протяженности теплопроводов, целесообразно применять попутное движение воды в подающих и охлаждённых магистралях по схеме, предложенной проф. В. М. Чаплиным. По этой схеме (рис. 4.7) длина всех циркуляционных колец почти одинакова, вследствие чего легко получить равную потерю давления в них и равномерный прогрев всех приборов. СНиП рекомендует такие системы устраивать при числе стояков в ветви более 6. Недостатком этой системы по сравнению с тупиковой является несколько большая общая длина теплопроводов, и, как следствие, большая на 3-5% первоначальная стоимость системы.


Рис.4.7. Схема двухтрубной системы водяного отопления с верхней разводкой и попутным движением воды в подающей и обратной магистралях и искусственной циркуляцией

1 - теплообменник; 2, 3, 4, 5 - циркуляционная, соединительная,сигнальная, переливная трубы расширительного бака; 6 - расширительный бак; 7- подающий магистральный теплопровод; 8 - воздухосборник; 9 - отопительный прибор; 10 - кран двойной регулировки; 11 - обратный теплопровод; 12 –насос.

В последние годы широко применяют однотрубные системы отопления с нижней прокладкой магистралей горячей и охлажденной воды (рис.4.8) с искусственной циркуляцией воды.

Стояки систем по схемам б разделяются на подъемные и опускные. Стояки систем по схемам а ,в иг состоят из подъемного и опускного участков, по верхней части, обычно под полом верхнего этажа, они соединяются горизонтальным участком. Стояки прокладывают на расстоянии 150 мм от края оконного проема. Длина подводок к нагревательным приборам принимается стандартной - 350 мм; отопительные приборы смещены от оси окна в сторону стояка.


Рис 4.8.Разновидности (в, б, в, е) однотрубных систем водяного отопления с нижней разводкой

Для регулирования теплопередачи отопительных приборов устанавливают трехходовые краны типа КРТП, а при смещенных замыкающих участках - шиберные краны пониженного гидравлического сопротивления типа КРПШ.

Однотрубная система с нижней разводкой удобна для зданий с бесчердачным перекрытием, она обладает повышенной гидравлической и тепловой устойчивостью. Преимущества однотрубных систем отопления заключаются в меньшем диаметре труб, благодаря большему давлению, создаваемому насосом; большем радиусе действия; более простом монтаже, и большей возможности унификации деталей теплопроводов, приборных узлов.

К недостаткам систем относится перерасход отопительных приборов по сравнению с двухтрубными системами отопления.

Область применения однотрубных систем отопления разнообразная: жилые и общественные здания с числом этажей более трех, производственные предприятия и т.д.

4.2. ВЫБОР СИСТЕМЫ ОТОПЛЕНИЯ

Систему отопления выбирают в зависимости от назначения и режима эксплуатации здания. Учитывают требования, предъявляемые к системе. Принимают во внимание категории пожаровзрывоопасности помещений.

Главным фактором, определяющим выбор системы отопления, является тепловой режим основных помещений здания.

Учитывая экономические, заготовительно-монтажные и некоторые эксплуатационные преимущества, СНиП 2.04.05-86, п.3.13 рекомендует проектировать, как правило, однотрубные системы водяного отопления из унифицированных узлов и деталей; при обосновании допускается применение двухтрубных систем.

Тепловой режим помещений одних зданий необходимо поддерживать неизменным в течение всего отопительного сезона, других зданий -можно изменять для сокращения трудозатрат с суточной и недельной периодичностью, на время праздников, проведения наладочных, ремонтных и других работ.

Гражданские, производственные и сельскохозяйственные здания с постоянным тепловым режимом можно разделить на 4 группы:

1) здания больниц, родильных домов и тому подобных лечебно-профи-лактических учреждений круглосуточного использования (кроме психиатрических больниц), к помещениям которых предъявляются повышенные санитарно-гигиенические требования;

2) здания детских учреждений, жилые, общежития, гостиницы, дома отдыха, санатории, пансионаты, поликлиники, амбулатории, аптеки, психиатрические больницы, музеи, выставки, библиотеки, бани, книгохранилища;

3) здания плавательных бассейнов, вокзалов, аэропортов;

4) здания производственные и сельскохозяйственные при непрерывном технологическом процессе.

Например, в зданиях второй группы предусматривают водяное отопление с радиаторами и конвекторами (кроме больниц и бань). Предельную температуру теплоносителя воды принимают в двухтрубных.системах равной 95°С, в однотрубных системах зданий (кроме бань, больниц и детских учреждений) -105°С (при конвекторах с кожухом до 130°С). Для отопления лестничных клеток возможно повышение расчетной температуры до 150°С. В зданиях с круглосуточной действующей приточной вентиляцией, в первую очередь в зданиях музеев, картинных галерей, книгохранилищ, архивов (кроме больниц и детских учреждений) устраивают центральное воздушное отопление.

Системы отопления следует проектировать с насосной циркуляцией, нижней разводкой, тупиковые с открытой прокладкой стояков в первую очередь.

Остальные системы принимаются в зависимости от местных условий: архитектурно-планировочного решения, требуемого теплового режима, вида и параметров теплоносителя в наружной тепловой сети и т.д.

(для разницы температур улица-помещение 30°С)

Необходимая тепловая мощность, кВт

Объем отапливаемого помещения в новом здании
(хорошая теплоизоляция), м³

Объем отапливаемого помещения в старом здании
(средняя теплоизоляция), м³

5

Формула расчета тепловой мощности

Формула для расчета необходимой тепловой мощности:

V x T x K = ккал/ч

Перед выбором обогревателя воздуха необходимо рассчитать минимальную тепловую мощность, необходимую для Вашего конкретного пoмещения.

Обозначения:

  • V – объем обогреваемого помещения (ширина х длина х высота), м3
  • T – Разница между температурой воздуха вне помещения и необходимой температурой внутри помещения,.С
  • K – коэффициент рассеивания

K=3,0-4,0 Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа. Без теплоизоляции.
K=2,0-2,9 Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. Небольшая теплоизоляция.
K=1,0-1,9 Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. Средняя теплоизоляция.
K=0,6-0,9 Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала. Высокая теплоизоляция.

Пример:
V – Ширина 4 м, Длина 12 м, Высота 3 м. Объем обогреваемого помещения 144 м³
T– Температура воздуха снаружи -5ºC. Требуемая температура внутри помещения +18°C. Разница между температурами внутри и снаружи +23°C
K – Этот коэффициент зависит от типа конструкции и изоляции помещения
требуемая тепловая мощность:
144 x 23 x 4 = 13 248 ккал/ч (Vx TxK = ккал/ч)

1 кВт = 860 ккал/ч
1 ккал = 3,97 БTe
1 кВт = 3412 БTe
1 БTe = 0,252 ккал/ч