บ้าน วีซ่า วีซ่าไปกรีซ วีซ่าไปกรีซสำหรับชาวรัสเซียในปี 2559: จำเป็นหรือไม่ต้องทำอย่างไร

ลอการิทึมของลอการิทึมที่มีฐานเท่ากัน ลอการิทึม. คุณสมบัติของลอการิทึม (การบวกและการลบ)

ตามมาจากคำจำกัดความของมัน แล้วก็ลอการิทึมของจำนวนนั้น ขึ้นอยู่กับ ถูกกำหนดให้เป็นเลขชี้กำลังที่ต้องยกจำนวนขึ้น เพื่อรับหมายเลข (ลอการิทึมมีอยู่เฉพาะสำหรับจำนวนบวกเท่านั้น)

จากสูตรนี้จึงเป็นไปตามการคำนวณ x=ล็อก ก ขเทียบเท่ากับการแก้สมการ ก x =ขตัวอย่างเช่น, บันทึก 2 8 = 3เพราะ 8 = 2 3 - การกำหนดลอการิทึมทำให้สามารถพิสูจน์ได้ว่าถ้า ข=คแล้วตามด้วยลอการิทึมของตัวเลข ขึ้นอยู่กับ เท่ากับ กับ- เป็นที่ชัดเจนว่าหัวข้อลอการิทึมมีความเกี่ยวข้องอย่างใกล้ชิดกับหัวข้อเรื่องกำลังของตัวเลข

ด้วยลอการิทึมเช่นเดียวกับตัวเลขอื่นๆ คุณสามารถทำได้ การดำเนินการบวก ลบและเปลี่ยนแปลงในทุกวิถีทางที่เป็นไปได้ แต่เนื่องจากลอการิทึมไม่ใช่ตัวเลขธรรมดาทั้งหมด จึงมีการใช้กฎพิเศษของตัวเองซึ่งเรียกว่า คุณสมบัติหลัก.

การบวกและการลบลอการิทึม

ลองใช้ลอการิทึมสองตัวที่มีฐานเดียวกัน: เข้าสู่ระบบ xและ เข้าสู่ระบบ y- จากนั้นจึงเป็นไปได้ที่จะดำเนินการบวกและการลบ:

บันทึก x+ บันทึก a y= บันทึก a (x·y);

บันทึก a x - บันทึก a y = บันทึก a (x:y)

เข้าสู่ระบบ(x 1 . x 2 . x 3 ... เอ็กซ์ เค) = เข้าสู่ระบบ x 1 + เข้าสู่ระบบ x 2 + เข้าสู่ระบบ x 3 + ... + เข้าสู่ระบบ x k.

จาก ทฤษฎีบทผลหารลอการิทึมสามารถรับคุณสมบัติของลอการิทึมได้อีกหนึ่งรายการ เป็นความรู้ทั่วไปที่บันทึก 1= 0 ดังนั้น

บันทึก 1 /=บันทึก 1 - บันทึก = -ล็อก .

ซึ่งหมายความว่ามีความเท่าเทียมกัน:

บันทึก a 1 / b = - บันทึก a b

ลอการิทึมของจำนวนกลับกันสองตัวด้วยเหตุผลเดียวกันจะแตกต่างกันโดยสัญญาณเท่านั้น ดังนั้น:

บันทึก 3 9= - บันทึก 3 1/9 ; บันทึก 5 1/125 = -บันทึก 5 125

ลอการิทึมของตัวเลข เอ็น ขึ้นอยู่กับ เรียกว่าเลขชี้กำลัง เอ็กซ์ ที่คุณต้องสร้าง เพื่อรับหมายเลข เอ็น

โดยมีเงื่อนไขว่า
,
,

จากคำจำกัดความของลอการิทึมจะได้ดังนี้
, เช่น.
- ความเท่าเทียมกันนี้คืออัตลักษณ์ลอการิทึมพื้นฐาน

ลอการิทึมถึงฐาน 10 เรียกว่าลอการิทึมทศนิยม แทน
เขียน
.

ลอการิทึมถึงฐาน เรียกว่าเป็นธรรมชาติและถูกกำหนดไว้
.

คุณสมบัติพื้นฐานของลอการิทึม

    ลอการิทึมของ 1 เท่ากับศูนย์สำหรับฐานใดๆ

    ลอการิทึมของผลิตภัณฑ์เท่ากับผลรวมของลอการิทึมของปัจจัย

3) ลอการิทึมของผลหารเท่ากับผลต่างของลอการิทึม


ปัจจัย
เรียกว่าโมดูลัสของการเปลี่ยนผ่านจากลอการิทึมเป็นฐาน เป็นลอการิทึมที่ฐาน .

การใช้คุณสมบัติ 2-5 มักจะเป็นไปได้ที่จะลดลอการิทึมของนิพจน์ที่ซับซ้อนให้เหลือผลลัพธ์ของการดำเนินการทางคณิตศาสตร์อย่างง่ายกับลอการิทึม

ตัวอย่างเช่น,

การแปลงลอการิทึมดังกล่าวเรียกว่าลอการิทึม การแปลงผกผันกับลอการิทึมเรียกว่าศักยภาพ

บทที่ 2 องค์ประกอบของคณิตศาสตร์ชั้นสูง

1. ข้อจำกัด

ขีดจำกัดของฟังก์ชัน
เป็นจำนวนจำกัด A ถ้า เช่น xx 0 สำหรับแต่ละที่กำหนดไว้ล่วงหน้า
มีจำนวนดังกล่าว
ทันทีที่
, ที่
.

ฟังก์ชันที่มีขีดจำกัดจะแตกต่างจากฟังก์ชันนี้ด้วยจำนวนที่น้อยมาก:
ที่ไหน- b.m.v. เช่น
.

ตัวอย่าง. พิจารณาฟังก์ชัน
.

เมื่อมุ่งมั่น
, การทำงาน มีแนวโน้มที่จะเป็นศูนย์:

1.1. ทฤษฎีบทพื้นฐานเกี่ยวกับขีดจำกัด

    ขีดจำกัดของค่าคงที่เท่ากับค่าคงที่นี้

.

    ขีดจำกัดของผลรวม (ผลต่าง) ของจำนวนฟังก์ชันที่มีจำกัดจะเท่ากับผลรวม (ผลต่าง) ของขีดจำกัดของฟังก์ชันเหล่านี้

    ขีดจำกัดของผลคูณของฟังก์ชันจำนวนจำกัดจะเท่ากับผลคูณของขีดจำกัดของฟังก์ชันเหล่านี้

    ขีดจำกัดของผลหารของสองฟังก์ชันจะเท่ากับผลหารของขีดจำกัดของฟังก์ชันเหล่านี้ ถ้าขีดจำกัดของตัวส่วนไม่เป็นศูนย์

ขีดจำกัดอันมหัศจรรย์

,
, ที่ไหน

1.2. ตัวอย่างการคำนวณขีดจำกัด

อย่างไรก็ตาม ไม่ใช่ทุกขีดจำกัดจะคำนวณได้ง่ายนัก บ่อยครั้งที่การคำนวณขีดจำกัดลงมาเพื่อเผยให้เห็นความไม่แน่นอนของประเภท: หรือ .

.

2. อนุพันธ์ของฟังก์ชัน

ให้เรามีหน้าที่
ต่อเนื่องในส่วนนี้
.

การโต้แย้ง เพิ่มขึ้นบ้าง
- จากนั้นฟังก์ชันจะได้รับการเพิ่มขึ้น
.

ค่าอาร์กิวเมนต์ สอดคล้องกับค่าฟังก์ชัน
.

ค่าอาร์กิวเมนต์
สอดคล้องกับค่าฟังก์ชัน

เพราะฉะนั้น, .

ให้เราหาลิมิตของอัตราส่วนนี้กันที่
- หากมีขีดจำกัดนี้จะเรียกว่าอนุพันธ์ของฟังก์ชันที่กำหนด

คำจำกัดความ 3 อนุพันธ์ของฟังก์ชันที่กำหนด
โดยการโต้แย้ง เรียกว่าขีดจำกัดของอัตราส่วนของการเพิ่มขึ้นของฟังก์ชันต่อการเพิ่มขึ้นของอาร์กิวเมนต์ เมื่อการเพิ่มขึ้นของอาร์กิวเมนต์มีแนวโน้มเป็นศูนย์โดยพลการ

อนุพันธ์ของฟังก์ชัน
สามารถกำหนดได้ดังนี้:

; ; ; .

คำจำกัดความที่ 4 เรียกว่าการดำเนินการหาอนุพันธ์ของฟังก์ชัน ความแตกต่าง

2.1. ความหมายทางกลของอนุพันธ์

ลองพิจารณาการเคลื่อนที่เป็นเส้นตรงของวัตถุแข็งเกร็งหรือจุดวัสดุ

ปล่อยให้ ณ จุดใดจุดหนึ่ง จุดเคลื่อนที่
อยู่ในระยะไกล จากตำแหน่งเริ่มต้น
.

หลังจากนั้นช่วงระยะเวลาหนึ่ง
เธอขยับไปไกล
- ทัศนคติ =- ความเร็วเฉลี่ยของจุดวัสดุ
- ให้เราหาขีดจำกัดของอัตราส่วนนี้โดยคำนึงถึงสิ่งนั้น
.

ดังนั้น การกำหนดความเร็วทันทีของการเคลื่อนที่ของจุดวัสดุจะลดลงเหลือเพียงการค้นหาอนุพันธ์ของเส้นทางตามเวลา

2.2. ค่าเรขาคณิตของอนุพันธ์

ขอให้เรามีฟังก์ชันที่กำหนดไว้แบบกราฟิก
.

ข้าว. 1. ความหมายทางเรขาคณิตของอนุพันธ์

ถ้า
แล้วชี้
,จะเคลื่อนที่ไปตามโค้งเข้าใกล้จุดนั้น
.

เพราะฉะนั้น
, เช่น. มูลค่าของอนุพันธ์สำหรับมูลค่าที่กำหนดของการโต้แย้ง เป็นตัวเลขเท่ากับค่าแทนเจนต์ของมุมที่เกิดจากแทนเจนต์ ณ จุดที่กำหนดโดยมีทิศทางบวกของแกน
.

2.3. ตารางสูตรหาอนุพันธ์พื้นฐาน

ฟังก์ชั่นพลังงาน

ฟังก์ชันเลขชี้กำลัง

ฟังก์ชันลอการิทึม

ฟังก์ชันตรีโกณมิติ

ฟังก์ชันตรีโกณมิติผกผัน

2.4. กฎของความแตกต่าง

อนุพันธ์ของ

อนุพันธ์ของผลรวม (ผลต่าง) ของฟังก์ชัน


อนุพันธ์ของผลิตภัณฑ์ของสองฟังก์ชัน


อนุพันธ์ของผลหารของสองฟังก์ชัน


2.5. อนุพันธ์ของฟังก์ชันเชิงซ้อน

ปล่อยให้ฟังก์ชันได้รับ
จึงสามารถแสดงออกมาเป็นรูปร่างได้

และ
โดยที่ตัวแปร ก็เป็นข้อโต้แย้งระดับกลางแล้ว

อนุพันธ์ของฟังก์ชันเชิงซ้อนเท่ากับผลคูณของอนุพันธ์ของฟังก์ชันที่กำหนด เทียบกับอาร์กิวเมนต์ตัวกลางและอนุพันธ์ของอาร์กิวเมนต์ตัวกลางเทียบกับ x

ตัวอย่างที่ 1

ตัวอย่างที่ 2

3. ฟังก์ชันดิฟเฟอเรนเชียล

ให้มี
, หาอนุพันธ์ได้ในบางช่วง
ปล่อยมันไป ที่ ฟังก์ชันนี้มีอนุพันธ์

,

แล้วเราก็สามารถเขียนได้

(1),

ที่ไหน - ปริมาณที่ไม่มีที่สิ้นสุด

ตั้งแต่เมื่อไหร่

คูณเงื่อนไขความเท่าเทียมกันทั้งหมด (1) ด้วย
เรามี:

ที่ไหน
- บีเอ็มวี การสั่งซื้อสินค้าที่สูงขึ้น.

ขนาด
เรียกว่าดิฟเฟอเรนเชียลของฟังก์ชัน
และถูกกำหนดไว้

.

3.1. ค่าเรขาคณิตของส่วนต่าง

ปล่อยให้ฟังก์ชันได้รับ
.

รูปที่ 2. ความหมายทางเรขาคณิตของดิฟเฟอเรนเชียล

.

แน่นอนว่าดิฟเฟอเรนเชียลของฟังก์ชัน
เท่ากับการเพิ่มขึ้นของพิกัดของแทนเจนต์ ณ จุดที่กำหนด

3.2. อนุพันธ์และส่วนต่างของคำสั่งต่างๆ

ถ้ามี
, แล้ว
เรียกว่าอนุพันธ์อันดับหนึ่ง

อนุพันธ์ของอนุพันธ์อันดับ 1 เรียกว่าอนุพันธ์อันดับ 2 และเขียนเป็นลายลักษณ์อักษร
.

อนุพันธ์ลำดับที่ n ของฟังก์ชัน
เรียกว่าอนุพันธ์ลำดับที่ (n-1) และเขียนว่า:

.

ดิฟเฟอเรนเชียลของดิฟเฟอเรนเชียลของฟังก์ชันเรียกว่าดิฟเฟอเรนเชียลอันดับสองหรือดิฟเฟอเรนเชียลลำดับที่สอง

.

.

3.3 การแก้ปัญหาทางชีววิทยาโดยใช้ความแตกต่าง

ภารกิจที่ 1 การศึกษาพบว่าการเจริญเติบโตของอาณานิคมของจุลินทรีย์เป็นไปตามกฎหมาย
, ที่ไหน เอ็น – จำนวนจุลินทรีย์ (เป็นพัน) ที – เวลา (วัน)

b) ประชากรในอาณานิคมจะเพิ่มขึ้นหรือลดลงในช่วงเวลานี้?

คำตอบ. ขนาดของอาณานิคมจะเพิ่มขึ้น

ภารกิจที่ 2 น้ำในทะเลสาบได้รับการทดสอบเป็นระยะเพื่อติดตามปริมาณแบคทีเรียที่ทำให้เกิดโรค ผ่าน ที วันหลังการทดสอบ ความเข้มข้นของแบคทีเรียจะถูกกำหนดโดยอัตราส่วน

.

ทะเลสาบจะมีความเข้มข้นของแบคทีเรียขั้นต่ำเมื่อใดและจะสามารถว่ายน้ำได้หรือไม่?

วิธีแก้ไข: ฟังก์ชันถึงค่าสูงสุดหรือต่ำสุดเมื่ออนุพันธ์ของฟังก์ชันเป็นศูนย์

,

มาดูกันว่าค่าสูงสุดหรือต่ำสุดจะอยู่ที่ 6 วัน เมื่อต้องการทำเช่นนี้ ลองใช้อนุพันธ์อันดับสองกัน


คำตอบ: หลังจากผ่านไป 6 วัน แบคทีเรียจะมีความเข้มข้นน้อยที่สุด

เมื่อสังคมพัฒนาและการผลิตมีความซับซ้อนมากขึ้น คณิตศาสตร์ก็พัฒนาขึ้นด้วย การเคลื่อนไหวจากง่ายไปสู่ซับซ้อน จากการบัญชีธรรมดาโดยใช้วิธีการบวกและการลบด้วยการทำซ้ำซ้ำ ๆ เรามาถึงแนวคิดของการคูณและการหาร การลดการดำเนินการคูณซ้ำๆ กลายเป็นแนวคิดเรื่องการยกกำลัง ตารางแรกของการพึ่งพาตัวเลขบนฐานและจำนวนการยกกำลังถูกรวบรวมในศตวรรษที่ 8 โดย Varasena นักคณิตศาสตร์ชาวอินเดีย จากนั้นคุณสามารถนับเวลาที่เกิดลอการิทึมได้

ภาพสเก็ตช์ประวัติศาสตร์

การฟื้นตัวของยุโรปในศตวรรษที่ 16 ยังช่วยกระตุ้นการพัฒนากลศาสตร์อีกด้วย ต ต้องใช้การคำนวณจำนวนมากเกี่ยวข้องกับการคูณและการหารตัวเลขหลายหลัก โต๊ะโบราณก็บริการดีมาก พวกเขาทำให้สามารถแทนที่การดำเนินการที่ซับซ้อนด้วยการดำเนินการที่ง่ายกว่า - การบวกและการลบ ก้าวสำคัญไปข้างหน้าคือผลงานของนักคณิตศาสตร์ Michael Stiefel ซึ่งตีพิมพ์ในปี 1544 ซึ่งเขาตระหนักถึงความคิดของนักคณิตศาสตร์หลายคน สิ่งนี้ทำให้สามารถใช้ตารางได้ไม่เพียง แต่สำหรับกำลังในรูปแบบของจำนวนเฉพาะเท่านั้น แต่ยังรวมถึงค่าตรรกยะตามอำเภอใจด้วย

ในปี 1614 ชาวสก็อต จอห์น เนเปียร์ ซึ่งพัฒนาแนวคิดเหล่านี้ ได้แนะนำคำศัพท์ใหม่ว่า "ลอการิทึมของตัวเลข" เป็นครั้งแรก มีการรวบรวมตารางที่ซับซ้อนใหม่เพื่อคำนวณลอการิทึมของไซน์และโคไซน์ รวมถึงแทนเจนต์ สิ่งนี้ทำให้การทำงานของนักดาราศาสตร์ลดลงอย่างมาก

ตารางใหม่เริ่มปรากฏขึ้นซึ่งนักวิทยาศาสตร์ใช้สำเร็จมาเป็นเวลาสามศตวรรษ เวลาผ่านไปนานมากก่อนที่การดำเนินการใหม่ในพีชคณิตจะได้รูปแบบที่เสร็จสมบูรณ์ ให้คำจำกัดความของลอการิทึมและศึกษาคุณสมบัติของลอการิทึม

เฉพาะในศตวรรษที่ 20 เท่านั้นที่มีการถือกำเนิดขึ้นของเครื่องคิดเลขและคอมพิวเตอร์ มนุษยชาติจึงละทิ้งโต๊ะโบราณที่ทำงานอย่างประสบความสำเร็จตลอดศตวรรษที่ 13

วันนี้เราเรียกลอการิทึมของ b ว่าเป็นฐานของ x ซึ่งเป็นกำลังของ a ที่ทำให้ b เขียนเป็นสูตร: x = log a(b)

ตัวอย่างเช่น บันทึก 3(9) จะเท่ากับ 2 ซึ่งจะชัดเจนหากคุณปฏิบัติตามคำจำกัดความ ถ้าเรายก 3 ยกกำลัง 2 เราจะได้ 9

ดังนั้น คำจำกัดความที่จัดทำขึ้นจึงกำหนดข้อจำกัดเพียงข้อเดียว คือ ตัวเลข a และ b ต้องเป็นจำนวนจริง

ประเภทของลอการิทึม

คำจำกัดความแบบคลาสสิกเรียกว่าลอการิทึมจริง และจริงๆ แล้วคือคำตอบของสมการ a x = b ตัวเลือก a = 1 ถือเป็นเส้นเขตแดนและไม่เป็นที่สนใจ ข้อควรสนใจ: 1 กำลังใด ๆ เท่ากับ 1

มูลค่าที่แท้จริงของลอการิทึมกำหนดเฉพาะเมื่อฐานและอาร์กิวเมนต์มากกว่า 0 และฐานต้องไม่เท่ากับ 1

สถานที่พิเศษในสาขาคณิตศาสตร์เล่นลอการิทึม ซึ่งจะตั้งชื่อตามขนาดของฐาน:

กฎและข้อจำกัด

คุณสมบัติพื้นฐานของลอการิทึมคือกฎ: ลอการิทึมของผลิตภัณฑ์เท่ากับผลรวมลอการิทึม บันทึก abp = บันทึก ก(b) + บันทึก ก(p)

รูปแบบหนึ่งของข้อความนี้จะเป็น: log c(b/p) = log c(b) - log c(p) ฟังก์ชันผลหารจะเท่ากับผลต่างของฟังก์ชัน

จากกฎสองข้อก่อนหน้านี้ จะสังเกตได้ง่ายว่า: log a(b p) = p * log a(b)

คุณสมบัติอื่น ๆ ได้แก่ :

ความคิดเห็น อย่าทำผิดพลาดทั่วไป เพราะลอการิทึมของผลรวมไม่เท่ากับผลรวมของลอการิทึม

เป็นเวลาหลายศตวรรษแล้วที่การค้นหาลอการิทึมเป็นงานที่ค่อนข้างใช้เวลานาน นักคณิตศาสตร์ใช้สูตรที่รู้จักกันดีของทฤษฎีลอการิทึมของการขยายตัวพหุนาม:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n) โดยที่ n คือจำนวนธรรมชาติที่มากกว่า 1 ซึ่งกำหนดความแม่นยำของการคำนวณ

ลอการิทึมที่มีฐานอื่นคำนวณโดยใช้ทฤษฎีบทเกี่ยวกับการเปลี่ยนจากฐานหนึ่งไปอีกฐานหนึ่งและคุณสมบัติของลอการิทึมของผลิตภัณฑ์

เนื่องจากวิธีนี้ใช้แรงงานมากและ เมื่อแก้ไขปัญหาเชิงปฏิบัติยากต่อการนำไปใช้ เราใช้ตารางลอการิทึมที่คอมไพล์ไว้ล่วงหน้า ซึ่งทำให้งานทั้งหมดเร็วขึ้นอย่างเห็นได้ชัด

ในบางกรณีมีการใช้กราฟลอการิทึมที่รวบรวมเป็นพิเศษซึ่งให้ความแม่นยำน้อยกว่า แต่ช่วยเร่งการค้นหาค่าที่ต้องการได้อย่างมาก เส้นโค้งของฟังก์ชัน y = log a(x) ซึ่งสร้างขึ้นบนหลายจุด ทำให้คุณสามารถใช้ไม้บรรทัดธรรมดาเพื่อค้นหาค่าของฟังก์ชันที่จุดอื่นได้ เป็นเวลานานแล้วที่วิศวกรใช้สิ่งที่เรียกว่ากระดาษกราฟเพื่อจุดประสงค์เหล่านี้

ในศตวรรษที่ 17 เงื่อนไขการคำนวณแอนะล็อกเสริมครั้งแรกปรากฏขึ้น ซึ่งในศตวรรษที่ 19 ได้รับรูปแบบที่สมบูรณ์ อุปกรณ์ที่ประสบความสำเร็จสูงสุดเรียกว่ากฎสไลด์ แม้จะมีความเรียบง่ายของอุปกรณ์ แต่รูปลักษณ์ภายนอกของมันช่วยเร่งกระบวนการคำนวณทางวิศวกรรมทั้งหมดได้อย่างมาก และนี่เป็นเรื่องยากที่จะประเมินค่าสูงไป ปัจจุบันมีเพียงไม่กี่คนที่คุ้นเคยกับอุปกรณ์นี้

การถือกำเนิดขึ้นของเครื่องคิดเลขและคอมพิวเตอร์ทำให้การใช้อุปกรณ์อื่นๆ ไร้จุดหมาย

สมการและอสมการ

ในการแก้สมการและอสมการต่างๆ โดยใช้ลอการิทึม จะใช้สูตรต่อไปนี้:

  • การย้ายจากฐานหนึ่งไปอีกฐานหนึ่ง: log a(b) = log c(b) / log c(a);
  • อันเป็นผลมาจากตัวเลือกก่อนหน้า: log a(b) = 1 / log b(a)

เพื่อแก้ความไม่เท่าเทียมกัน จะมีประโยชน์ที่จะรู้:

  • ค่าลอการิทึมจะเป็นค่าบวกก็ต่อเมื่อฐานและอาร์กิวเมนต์มีค่ามากกว่าหรือน้อยกว่าหนึ่งเท่านั้น หากมีการละเมิดเงื่อนไขอย่างน้อยหนึ่งข้อ ค่าลอการิทึมจะเป็นลบ
  • หากใช้ฟังก์ชันลอการิทึมกับด้านขวาและด้านซ้ายของอสมการ และฐานของลอการิทึมมากกว่า 1 แสดงว่าสัญญาณของอสมการยังคงอยู่ ไม่อย่างนั้นมันจะเปลี่ยนไป

ปัญหาตัวอย่าง

ลองพิจารณาหลายตัวเลือกสำหรับการใช้ลอการิทึมและคุณสมบัติต่างๆ ตัวอย่างที่มีการแก้สมการ:

พิจารณาตัวเลือกในการวางลอการิทึมลงในกำลัง:

  • ปัญหาที่ 3 คำนวณ 25^log 5(3) วิธีแก้ไข: ในเงื่อนไขของปัญหา รายการจะคล้ายกับรายการต่อไปนี้ (5^2)^log5(3) หรือ 5^(2 * log 5(3)) ลองเขียนให้แตกต่างออกไป: 5^log 5(3*2) หรือกำลังสองของตัวเลขเป็นอาร์กิวเมนต์ของฟังก์ชันสามารถเขียนเป็นกำลังสองของฟังก์ชันได้ (5^log 5(3))^2 การใช้คุณสมบัติของลอการิทึม นิพจน์นี้จะเท่ากับ 3^2 คำตอบ: จากการคำนวณเราได้ 9

การใช้งานจริง

เนื่องจากเป็นเครื่องมือทางคณิตศาสตร์ล้วนๆ ดูเหมือนว่าลอการิทึมจะมีความสำคัญอย่างยิ่งในการอธิบายวัตถุในโลกแห่งความเป็นจริงอยู่ห่างไกลจากชีวิตจริง เป็นการยากที่จะหาวิทยาศาสตร์ที่ไม่ได้ใช้ สิ่งนี้ไม่เพียงนำไปใช้กับความรู้ทางธรรมชาติเท่านั้น แต่ยังรวมถึงสาขาความรู้ด้านมนุษยธรรมด้วย

การพึ่งพาลอการิทึม

นี่คือตัวอย่างบางส่วนของการขึ้นต่อกันของตัวเลข:

กลศาสตร์และฟิสิกส์

ในอดีต กลศาสตร์และฟิสิกส์ได้รับการพัฒนาโดยใช้วิธีการวิจัยทางคณิตศาสตร์มาโดยตลอด และในขณะเดียวกันก็ทำหน้าที่เป็นแรงจูงใจในการพัฒนาคณิตศาสตร์ รวมถึงลอการิทึมด้วย ทฤษฎีกฎฟิสิกส์ส่วนใหญ่เขียนด้วยภาษาคณิตศาสตร์ ขอให้เรายกตัวอย่างเพียงสองตัวอย่างในการอธิบายกฎฟิสิกส์โดยใช้ลอการิทึม

ปัญหาในการคำนวณปริมาณที่ซับซ้อนเช่นความเร็วของจรวดสามารถแก้ไขได้โดยใช้สูตร Tsiolkovsky ซึ่งวางรากฐานสำหรับทฤษฎีการสำรวจอวกาศ:

V = I * ln (M1/M2) โดยที่

  • V คือความเร็วสุดท้ายของเครื่องบิน
  • ฉัน – แรงกระตุ้นเฉพาะของเครื่องยนต์
  • M 1 – มวลเริ่มต้นของจรวด
  • M 2 – มวลสุดท้าย

อีกตัวอย่างที่สำคัญ- ใช้ในสูตรของนักวิทยาศาสตร์ผู้ยิ่งใหญ่อีกคนอย่าง Max Planck ซึ่งทำหน้าที่ประเมินสถานะสมดุลในอุณหพลศาสตร์

S = k * ln (Ω) โดยที่

  • S – คุณสมบัติทางอุณหพลศาสตร์
  • k – ค่าคงที่ของ Boltzmann
  • Ω คือน้ำหนักทางสถิติของสถานะต่างๆ

เคมี

ไม่ชัดเจนคือการใช้สูตรในวิชาเคมีที่มีอัตราส่วนของลอการิทึม ขอยกตัวอย่างเพียงสองตัวอย่าง:

  • สมการเนิร์สต์ คือสภาวะของศักย์รีดอกซ์ของตัวกลางที่สัมพันธ์กับแอคติวิตีของสารและค่าคงที่สมดุล
  • การคำนวณค่าคงที่เช่นดัชนีการสลายอัตโนมัติและความเป็นกรดของสารละลายก็ไม่สามารถทำได้หากไม่มีฟังก์ชันของเรา

จิตวิทยาและชีววิทยา

และยังไม่ชัดเจนว่าจิตวิทยาเกี่ยวข้องกับเรื่องนี้อย่างไร ปรากฎว่าฟังก์ชันนี้อธิบายความแรงของความรู้สึกได้ดีว่าเป็นอัตราส่วนผกผันของค่าความเข้มของการกระตุ้นต่อค่าความเข้มที่ต่ำกว่า

หลังจากตัวอย่างข้างต้น จึงไม่น่าแปลกใจอีกต่อไปที่หัวข้อลอการิทึมมีการใช้กันอย่างแพร่หลายในวิชาชีววิทยา ปริมาตรทั้งหมดสามารถเขียนเกี่ยวกับรูปแบบทางชีววิทยาที่สอดคล้องกับเกลียวลอการิทึม

พื้นที่อื่นๆ

ดูเหมือนว่าการดำรงอยู่ของโลกจะเป็นไปไม่ได้หากปราศจากความเกี่ยวข้องกับหน้าที่นี้ และมันจะควบคุมกฎทั้งหมด โดยเฉพาะอย่างยิ่งเมื่อกฎแห่งธรรมชาติเกี่ยวข้องกับความก้าวหน้าทางเรขาคณิต คุ้มค่าที่จะหันมาใช้เว็บไซต์ MatProfi และมีตัวอย่างมากมายในกิจกรรมต่อไปนี้:

รายการสามารถไม่มีที่สิ้นสุด เมื่อเข้าใจหลักการพื้นฐานของฟังก์ชันนี้แล้ว คุณสามารถดำดิ่งสู่โลกแห่งปัญญาอันไม่มีที่สิ้นสุด

ลอการิทึมคืออะไร?

ความสนใจ!
มีเพิ่มเติม
วัสดุเข้า ตอนพิเศษ 555.
สำหรับผู้ที่ "ไม่ค่อย..." มากนัก
และสำหรับผู้ที่ “มากๆ…”)

ลอการิทึมคืออะไร? วิธีการแก้ลอการิทึม? คำถามเหล่านี้ทำให้บัณฑิตหลายคนสับสน ตามเนื้อผ้า หัวข้อลอการิทึมถือว่าซับซ้อน เข้าใจยาก และน่ากลัว โดยเฉพาะ - สมการกับลอการิทึม

นี่ไม่เป็นความจริงอย่างแน่นอน อย่างแน่นอน! ไม่เชื่อฉันเหรอ? ดี. ตอนนี้ในเวลาเพียง 10 - 20 นาที คุณ:

1. คุณจะเข้าใจ ลอการิทึมคืออะไร.

2. เรียนรู้การแก้สมการเอ็กซ์โปเนนเชียลทั้งคลาส แม้ว่าคุณจะไม่ได้ยินอะไรเกี่ยวกับพวกเขาก็ตาม

3. เรียนรู้การคำนวณลอการิทึมอย่างง่าย

ยิ่งไปกว่านั้น สำหรับสิ่งนี้ คุณเพียงแค่ต้องรู้ตารางสูตรคูณและวิธีบวกเลขยกกำลังเท่านั้น...

ฉันรู้สึกเหมือนคุณมีข้อสงสัย... เอาล่ะ ทำเครื่องหมายเวลาไว้! ไป!

ขั้นแรก ให้แก้สมการนี้ในหัวของคุณ:

หากคุณชอบเว็บไซต์นี้...

ฉันมีเว็บไซต์ที่น่าสนใจอีกสองสามแห่งสำหรับคุณ)

คุณสามารถฝึกแก้ตัวอย่างและค้นหาระดับของคุณ การทดสอบด้วยการยืนยันทันที มาเรียนรู้กันเถอะ - ด้วยความสนใจ!)

คุณสามารถทำความคุ้นเคยกับฟังก์ชันและอนุพันธ์ได้