ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Печи для меди. Огнеупорным материалом. Для плавки медных сплавов используют шамотно-графитовые. Печь для плавки металла на сварочном инверторе

Медь и медные сплавы можно приготовить во всех печах, обеспечивающих получение температур 1000-1300°С. Однако предпочтительнее использовать агрегаты, в которых перегрев до этих температур осуществляется в более короткое время. В этом отношении применяемые в современной практике печи для плавки меди и медных сплавов можно расположить в следующей последовательности: электрические индукционные (высокочастотные, низкочастотные и на промышленной частоте) печи, электродуговые с косвенной дугой (ДМ), тигельные и отражательные (пламенные) печи, отапливаемые мазутом или газом. Выбор печи обусловлен типом сплава, потребностью в металле, требованиями, предъявляемыми к отливкам, территориальными условиями производства, экономическими соображениями и др. В меднолитейных цехах поэтому можно встретить и допотопные горны, отапливаемые коксом, и современные электрические печи. Наилучшее качество металла получается при плавке в индукционных печах, но при правильном ведении плавки хороших результатов можно добиться, используя любой из перечисленных печной агрегат.

Плавка меди, бронз и латуней в различных печах в основном похожа, но имеются специфические особенности в зависимости от конструкции печей, времени плавки, возможности применения флюсов, разнообразия шихты и др. Общим является требование, чтобы время плавки металла было минимальным, металл был чистым от окислов, газов и вредных примесей, безвозвратные потери металла были небольшими; технология была проста и надежна, а затраты на материалы и обслуживание были минимальными.

Чистая медь применяется в технике в основном в виде проката (проволока, листы, прутки и др.). Фасонные литые изделия из меди трудно получить из-за низких литейных свойств ее. Слитки под прокатку получают отливкой в водоохлаждаемые изложницы или непрерывным методом.

Плавку меди, если необходимо сразу большое количество металла, производят в пламенных отражательных печах емкостью до 50 т и выше. При небольшом производстве медь можно плавить в электрических, а также в тигельных печах. Особо чистую бескислородную медь плавят в вакуумных индукционных печах или в печах с контролируемой атмосферой, исключающей контакт с кислородом.

Плавка меди заключается либо в простом расплавлении и перегреве ее до нужных температур с последующим раскислением, либо одновременно в процессе плавки производят рафинирование (очистку) ее от примесей, если применяемая шихта содержит значительное количество примесей (5-10%).

Рафинировочная плавка проводится в отражательных пламенных печах, где можно легко изменять атмосферу. Процесс окислительно-рафинировочной плавки состоит последовательно из окисления примесей, удаления образовавшихся окислов примесей и восстановления растворенной закиси меди.

Окисление происходит с начала плавки и в течение всего периода расплавления шихты, для этого в печи поддерживают сильно окислительную атмосферу. Окисляются цинк, железо и Другие примеси. Естественно, одновременно окисляется также и медь. Для более полного удаления вредных примесей ванну расплавленной меди продувают сжатым воздухом или кислородом. Окисление примесей происходит в последовательности, соответствующей упругости диссоциации их окислов, как в результате прямой реакции между кислородом и примесью, так и благодаря взаимодействию закиси меди Cu 2 O с примесями, обладающими большим, чем у меди, химическим сродством к кислороду:

Cu 2 O + Me = MeО + 2Cu .

По закону действующих масс наибольшая часть примесей окисляется через посредство Cu 2 O, кроме того, Cu 2 O хорошо растворяется в меди и обеспечивает удобные условия окисления примесей по всему объему металла. Последовательность окисления примесей, присутствующих в меди, следующая: цинк, железо, сера, олово, свинец, мышьяк, сурьма и т. д. Если имеются примеси алюминия, магния, кремния, то они окисляются в первую очередь, как обладающие более высоким сродством к кислороду.

Образующиеся окислы, имеющие основной характер, всплывают и ошлаковываются кремнеземом шлака:

ZnO + SiO 2 → (ZnO SiO 2) ,

FeO + SiO 2 → (FeO SiO 2)

Вместе с примесями в шлак переходит также и Cu 2 O в количествах, определяемых химическим равновесием между металлом и шлаком:

+ (SiO 2) → (Cu 2 O SiO 2) .

Реакция эта нежелательна: она увеличивает потери меди. Поэтому шлак подбирают таким образом, чтобы в его состав входили окислы, у которых основность выше, чем у закиси меди, и они вытесняли бы Cu 2 O из шлака в металл по реакции

(Cu 2 O SiO 2) + (Me`O) → (Me`O SiO 2) + .

Такими окислами могут быть CaO, MnO, FeO и др. На практике для этой цели находит применение основной мартеновский шлак состава: 24-40% СаО, 10-15% FeO, 10-15% Аl 2 О 3 , 8-12% MnО и 25-30% SiO 2 . Шлак наводят на поверхность меди при плавке в количестве 1,5-2% от массы шихты. Для разжижения шлака в него дополнительно добавляют плавиковый шпат CaF 2 , криолит Na 3 AlF 6 , кальцинированную соду Na 2 CO 3 и др.

Ошлакование примесей ускоряют перемешиванием металла со шлаком. Перемешивание металла облегчает также удаление из меди свинца, так как он вследствие большей плотности оседает на дне. Сера удаляется в окислительный период в виде газообразного продукта SO 2 по реакции:

Cu 2 S + 2Cu 2 O ↔ 6Cu + SO 2 .

Во время удаления серы наблюдается «кипение» металла.

Полноту окисления расплава определяют путем взятия проб на излом. Плотный, неноздреватый грубокристаллический излом коричневого цвета свидетельствует об окончании окислительного периода плавки. С поверхности жидкого металла снимают шлак и приступают к восстановлению закиси меди, которой содержится в растворе после снятия шлака до 10%. Такая медь в твердом состоянии хрупкая и без раскисления непригодна для отливки слитков. Атмосферу печи делают восстановительной, т. е.

горение факела происходит с избытком топлива и недостатком воздуха (коптящее пламя). Восстановление меди из закиси усиливается операцией, которую принято называть «дразнением» металла. Дразнение производится погружением в расплав сырых осиновых или березовых бревен. При сгорании дерева выделяются водяные пары и продукты перегонки древесины (водород и углеводороды), вследствие чего металл бурно кипит, хорошо перемешивается и более активно взаимодействует с восстановительной атмосферой печи.

Поверхность ванны на этот период покрывают древесным углем для усиления восстановительной атмосферы. Закись меди, растворенная в металле, соприкасаясь с такой атмосферой, восстанавливается: Cu 2 O + CO = 2Cu + CO 2 .

Поскольку медь в этот момент содержит большое количество кислорода, погружение сырых бревен относительно неопасно в отношении возможности насыщения металла водородом, так как его растворимость в меди при значительном количестве кислорода очень мала.

Проба на излом хорошо раскисленной меди имеет плотный, мелкозернистый излом светло-розового цвета. Металл считается готовым к разливке, когда содержание закиси меди доводится примерно до 0,4%, дальнейшее уменьшение содержания Cu 2 O не считается желательным, так как с этого момента возрастает опасность насыщения меди водородом, который при последующей кристаллизации разлитой меди способен взаимодействовать с кислородом с образованием пузырьков паров воды, снижающих плотность и свойства меди.

Плавка меди из чистой шихты состоит из расплавления, перегрева, раскисления и разливки. Для этой цели в заготовительных цехах применяют электрические индукционные печи. Плавку ведут обычно под защитным покровом прокаленного древесного угля, который предохраняет металл от окисления. После расплавления шихты в ванну вводят раскислитель - фосфористую медь в количестве 0,1-0,3% от массы шихты. Затем расплав тщательно перемешивают, контролируют по излому, выдерживают в течение 3-5 мин, а затем по достижении температуры 1150-1200°С разливают.

Для удаления кислорода применяется также литий, который является хорошим раскислителем меди. Иногда применяют комплексный раскислитель из лития и фосфора (когда надо получить особо чистый металл), а также магний.

Однако почти все раскислители, оставаясь в меди, снижают ее важнейшее свойство - электропроводность, поэтому стремятся, чтобы их количество в меди было минимальным, а наиболее качественную бескислородную медь плавят в печах со специальной защитной атмосферой в виде генераторного газа или же в вакууме, при котором не требуется раскисления.

Бескислородная медь содержит не менее 99,97% Cu - она пластичнее меди обычного состава, более коррозионноустойчива и имеет высокую электропроводность.

Несмотря на плохие литейные свойства меди, в частности низкую жидкотекучесть, из нее можно получить довольно сложные пустотелые отливки литьем в песчаные или металлические формы. Медь в этом случае должна быть очень хорошо раскислена и очищена от водорода (продувкой азотом). Для улучшения ее литейных свойств вводят до 1,0% Sn + Zn + Pb. Чем при меньших количествах этих элементов возможно получение фасонной отливки, тем выше ее свойства (электропроводность и теплопроводность). Из такой меди отливают фурмы доменных печей, задвижки, кольца и другие детали.

24 ..

Литейные печи по виду используемой энергии делятся на две основные группы:

· топливные печи, работающие на горючем углеродистом топливе (чаще жидком или газообразном, реже твердом);

· электрические печи (сопротивления, дуговые, индукционные и др.).

По конструкции печи делятся на тигельные, отражательные, шахтные, специальных конструкций; стационарные, поворотные или наклоняющиеся.

Топливные печи. Тигельные печи стационарного типа(рис.35 ) используют при небольшом масштабе производства для плавки медных сплавов и других легкоплавких сплавов. Тигель для легкоплавких сплавов, не взаимодействующих с металлом, может быть чугунным или стальным без внутренней футеровки. Если металл взаимодействует с железом, то необходима внутренняя футеровка тигля огнеупорным материалом. Для плавки медных сплавов используют шамотно-графитовые (графитовые) тигли. При плавке алюминиевых и магниевых сплавов верхняя часть тигля изолируется от топочных газов огнеупорной кладкой и выходит из топочной части наружу. Емкость тиглей по металлу 100- 250 кг. После окончания плавки тигель извлекают из горна и н аправляют на разливку.

Рис.35. Стационарный газовый горн

1 – вытяжной зонт; 2 – крышка; 3 – горн;

4 – тигель; 5 – горелка

Поворотная пламенная печь для плавки медных сплавов емкостью по сплаву 300-1000 кг представляет собой стальной барабан, футерованный огнеупорным кирпичом. Внутреннее пространство печи разделено перегородкой на форкамеру и рабочую часть. Для плавки медных сплавов используется также поворотная печь емкостью 15 т. Стационарные печи отражательного типа для производства медных сплавов имеют емкость 11-36 т. Такого же типа печи используются для производства алюминиевых и магниевых сплавов.

Электрические печи. Тигельные электрические печи сопротивления с выемным тиглем используют для плавки алюминиевых и магниевых сплавов при небольших масштабах производства. Тигель чугунный емкостью 25-250 кг (реже 350-500 кг). Нагреватели расположены в углублениях кладки по боковым сторонам. Печи такого типа могут быть и поворотными.

Для плавки алюминиевых сплавов используют печи сопротивления типа САН (сопротивления, алюминиевая, наклоняющаяся) и САК (сопротивления, алюминиевая, камерная стационарного типа) емкостью 0,3-20 т. Нагреватели в печах типа САК (рис.36 ) сделаны из нихрома и расположены под сводом печи. Чушки металла загружают на наклонный под форкамеры печи, где и происходит их плавление.

Индукционные электропечи канального типа работают на частоте промышленного тока (50 Гц). Печи могут быть одно- и трехфазными с числом индукторов от одного до шести. Индукторы могут быть расположены внизу (вертикально или под углом) или сбоку (в горизонтальной плоскости). Мощность печей 400- 2000 кВт. Индукторы имеют железный сердечник и представляют собой трансформатор, первичная обмотка которого сделана из меди и состоит из большого числа витков. Вторичная обмотка представляет собой кольцевой канал, заполненный расплавленным металлом, в котором происходит преобразование электрической энергии в тепловую. Канал связан с основной ванной. Циркуляция металла по каналу обеспечивает передачу тепла металлу, находящемуся в ванне.

Печи с расположением индукторов снизу используют для плавки в основном медных, алюминиевых и никелевых сплавов. Печи этого типа делают наклоняющимися или поворотными вокруг горизонтальной оси для слива металла.

Печи с горизонтальным расположением индукторов используют, например, для переплавки катодного цинка. Эти печи стационарного типа.

Примером печей канального типа является печь ИЛК-6 (индукционная, латунная, канальная), используемая для получения отливок из медных сплавов. Емкость печи по меди 5-6 т, мощность 1600 кВт. Печь имеет четыре индуктора, расположенных под углом с двух сторон внизу.

Тигельные индукционные печи не имеют замкнутого магнитопровода. Они работают обычно на токах высокой частоты (до 440 кГц). Емкость печей этого типа от нескольких десятков килограммов до нескольких десятков тонн. Тигли могут быть графитовые, из жаропрочного чугуна (для алюминиевых сплавов), железные (для магниевых сплавов) и из других материалов. Индуктор сделан из водоохлаждаемых медных трубок, расположенных по наружной поверхности тигля в виде непрерывной спирали. В металле, находящемся в тигле, создаются токи Фуко, в результате чего электрическая энергия преобразуется в тепловую. Печи этого типа могут работать как при атмосферном давлении, так и в вакууме.

Дуговые печи используют для плавки относительно тугоплавких металлов и сплавов (медных, никелевых и др.) и тугоплавких (титана, молибдена, циркония и др.). Для плавки меди, бронзы и других металлов и сплавов часто применяют печи барабанного вида с независимой дугой типа ДМ (дуговая, медная) емкостью по меди 100-1000 кг. В крупных литейных цехах обычны круглые трехэлектродные поворотные печи с зависимой дугой большой мощности типа ДСП.

Муфельная печь - специализированная конструкция, позволяющая нагревать различные металлы до необходимой температуры.

Муфель обладает свойством сохранять металл от прямого контакта с топливом или газами. Печи со стационарной нагревательной камерой и сменными муфелями работают по схожему принципу.

Методы для закалки металла

Существует несколько способов обработки металлов с помощью данного устройства:

  • Термообработка: отжиг, закалка, отпуск, состаривание.
  • Работа с ценными материалами , переплавка металлов, когда использование открытого огня недопустимо.
  • Для получения ровного тона поверхности , особенно при обработке керамики(высокохудожественной) используется муфельная печь.
  • Сушка диэлектриков.
  • Кремация , сжигание до минеральных компонентов.

Как работает муфельная печь?

Для того, чтобы понять, как работает устройство для закалки металла, происходит процесс взаимодействия различных элементов, рассмотрим внимательно ее строение:

  • Корпус печи . Если осталась старая газовая плита, с встроенным духовым шкафом, то она прекрасно подойдет для основы устройства. Лучший размер для такого духового шкафа: 70см-50см-60см. Такие габариты удобны для работы с термообработкой.

Внимание! Если вы решились использовать как основную конструкцию бывшую газовую плиту, то произведите демонтаж пластиковых составляющих . Иначе произойдет расплавление всех материалов.

  • Внутренний слой . Непосредственный контакт с поверхностью топки. Коэффициент полезных действий зависит от этой части конструкции, поэтому использовать следует огнеупорный шамотный кирпич.

Фото 1. Огнеупорный шамотный кирпич - обязательный элемент для внутреннего слоя при изготовлении печи своими руками.

  • Внешний слой . Его цель - сокращение потерь передачи тепла. Широко используются перелит и базальтовая вата для достижения эффекта.

Совет! Не используйте асбест как внешний слой. Нагреваясь, этот материал выделяет канцерогены.

  • Нагрев рабочего пространства. Спирали, созданные из нихромовой или фехралевой проволоки, отвечают за процесс нагревания всей газовой плиты. Лучше использовать фехралевые, так как они более пластичны, но нихромовые - дешевле.

Устройство для плавки алюминия и меди

Легкоплавкие металлы отличаются хрупкостью. Важно соблюдать схемы работы с данным типом металлов.

Так, например, для плавления меди или алюминия, муфельная печь должна разогреться до 1083 , а для плавления бронзы - 930 по Цельсию.

Эти материалы среди остальных легкоплавких имеют самые высокие показатели температуры плавления.

Значит, напрашивается вывод: для работы с легкоплавкими металлами необходима печь, разогревающаяся максимум до 1100 градусов.

Нюанс! Для крупного литья при работе с легкоплавкими металлами устанавливается горн. А плавить металл можно в емкости с «носиком» (тигель). Так легче всего предать ему в последующем форму.

Этапы работы с легкоплавкими материалами

  1. Прокалка печи для заливки на температуре 600 градусов .
  2. Погружение формы .
  3. Нагревание температуры до 900 градусов.
  4. Засекаем время пребывания формы в печи - 120 минут.
  5. Вынимаем форму и остужаем до 500 градусов.
  6. Легкоплавкий материал помещается в форму.

Плавка золота

Тугоплавкие металлы, например, золото, в работе отличаются высокой температурой плавления. Так, для успешного решения задачи, необходимо будет разогреть печь до 1300 градусов , при условии того, что мы работаем со сталью (по другим материалами надо смотреть коэффициент тугоплавкости).

Необходимо учитывать фактор материалов растопки . Так, протопить печь можно всеми бытовыми ненужными материалами, исключая токсичные, то есть выделяющие ядовитые вещества в процессе горения.

Вам также будет интересно:

Этапы работы с тугоплавкими материалами


Индукционная муфельная печь своими руками

Муфельные печи - это конструкция, необходимая для творчества ювелиров, кузнецов , других мастеров, работающих с керамикой, с закалкой стали. Обычно индукционная муфельная печь для плавки дорогостоящая, но есть возможность сделать ее своими руками.

Необходимые материалы и инструменты


Изготовление конструкции

  • Монтаж основной части. На внутренних сторонах шамотных кирпичей выпиливаем поперечные отверстия. Они служат для установки нагревательной спирали. Такие пазы увеличивают объем печи, то есть внутреннего пространства, с которым работать эффективнее. Кирпичи складываем и закрепляем в форме призмы. Ликвидируем щели.​
  • Изготовление стенок. Используемые материалы: кантал, фехраль, нихром. Устанавливать материалы можно совершенно любым способом, но лучше сложить их кругом. Так, не будет перепада температур, так негативно влияющих на процесс термической обработки.

Фото 2. Основная часть муфельной печи собирается из шамотных кирпичей, в которых выпиливаются отверстия.

  • Установление теплоизоляции. Эффективность зависит от степени удерживания температуры внутри конструкции. Сама теплоизоляция - это смесь, состоящая из 0,8 частей цемента и 0,2 частей перлита . Смесь между призмой и стенками должна настояться около 48 часов .
  • Изготовление дна. Создаем изогнутую заготовку для нижней части изделия, прикрепляем четыре маленьких кусочка стальной трубы - это ножки, на которые будет опираться печь. Внутрь изделия наливаем цементную смесь, после застывания прикладываем проволоку в виде сетки, для создания ровного и одномерного слоя. В конце наносим тальк.
  • Изготовление крышки. Одного размера с дном создаем заготовку, прикрепляем к нему ручки. Крышку заполняем раствором с цементом и перелитом.
  • Изготовление спирали. Нихромовую проволоку с сечением 0,1 см и прут из железа радиусом 3 мм . После снятия с прута проволоки получаем спираль. Витки не должны соприкасаться. Готовая спираль помещается в прорези, сделанные на первых этапах производства.

Фото 3. Спираль из нихромовой проволоки помещается в специальные прорези в огнеупорных кирпичах таким образом, чтобы витки не соприкасались.

В настоящее время в промышленности очень широко используется печное оборудование. В таких важных отраслях, как черная и цветная металлургия, машиностроение, производство строительных материалов, легкая и даже пищевая промышленность, эксплуатируется большое число различных печей и нагревательных установок. Развитие и совершенствование печного оборудования происходило по мере возникновения и развития всех важных отраслей промышленности.

По технологическому назначению металлургические печи делят на плавильные и нагревательные.

Плавильные печи предназначены для получения металлов из руд и переплавки металла с целью предания ему необходимых свойств. В этих печах металлы изменяют свое агрегатное состояние.

Нагревательные печи применяют для нагрева материала материалов с целью обжига и сушки, а также для придания металлу пластических свойств перед обработкой давлением, для термической обработки, чтобы изменить внутреннее строение и структуру металла. В нагревательных печах металлы и материалы не изменяют своего агрегатного состояния.

По схеме работы печи делятся на печи-теплообменники, усвоение тепла обрабатываемым материалом в зоне технологического процесса зависит от теплопередачи из зоны теплогенерации; и печи-теплогенераторы, тепло как возникает, так и усваивается непосредственно в зоне технологического процесса.

В цветной металлургии все более широко используются печи-теплогенераторы, в которых осуществляется теплогенерация за счет выгорания серы, содержащейся в размельченных шихтовых материалах, выдуваемых в рабочее пространство печи. Протекающие при этом процессы называются автогенными.

1.1 Общие сведения

Автогенными принято называть технологические процессы, идущие за счет химической энергии сырьевых материалов. Тради­ционным является, например, использование этой энергии на на­грев воздушного дутья и расплавление холодных присадок при конвертировании штейнов, а также при протекании процессов обжига сульфидов в кипящем слое. Многолетние работы по рас­ширению области применения химической энергии сульфидов в производстве меди привели в начале пятидесятых годов к созда­нию принципиально новых промышленных агрегатов для плавки на штейн. Эти агрегаты имеют ряд существенных преимуществ перед топливными и электрическими печами аналогичного назна­чения, которые заключаются в значительном (примерно в два раза) сокращении энергозатрат на переработку шихты и полной ликви­дации выбросов сернистого газа в атмосферу. Вместе с тем опыт работы печей для автогенной плавки показал, что принцип их работы, а также конструктивные и режимные параметры во/многом зависят от состава перерабатываемого сырья. Чрезвычайное разнообразие применяемых в металлургии меди шихтовых мате­риалов, состав которых может изменяться даже в условиях одного

По принципу работы различают три основных типа агрегатов для автогенной плавки на штейн:

1) печи для плавки концентратов во взвешенном состоянии в потоке предварительно нагретого воздуха или дутья, обогащен­ного кислородом, именуемые печами взвешенной плавки (ПВП);

2) печи для плавки концентратов во взвешенном состоянии в потоке технически чистого кислорода, которые иногда называют печами кислородно-взвешенной плавки (КВП);

3) печи для плавки шихтовых материалов в среде барботируемого газообразным окислителем шлакового расплава, более из­вестные под названием печей для плавки в жидкой ванне (ПЖВ).

Печи для взвешенной плавки имеют различное конструктивное оформление, зависящее от характера применяемого окислителя и состава сырья. Использование предварительно нагретого воз­душного дутья позволяет варьировать в широком диапазоне соотношение между интенсивностями протекающих в печи тепло-генерационных и теплообменных процессов и тем самым создает возможность перерабатывать в ней шихтовые материалы различ­ного состава. В этом случае в печи образуется большое количество технологических газов, движущихся в рабочем пространстве агре­гата g высокими скоростями. Поэтому с целью снижения пыле-выноса в печах взвешенной плавки на воздушном и обогащенном кислородом дутье обычно применяют вертикальное расположение технологического факела, заключая его в специальную реакцион­ную камеру, С той же целью отвод газов из печи осуществляется через вертикальный газоход шахтного типа.

При использовании кислородного дутья возможности агрегата с точки зрения изменения его теплотехнических параметров в ходе плавки значительно ниже, чем при воздушном дутье. Однако сравнительно небольшое количество технологических газов, образующихся в процессе окисления сульфидов, дает возможность применить более компактную конструкцию агрегата о горизонтальным расположением технологического факела.

1.2 Принцип работы печей для плавки на штейн

В печи для плавки шихты в жидкой ванне. Техноло­гический процесс осуществляется за счет тепловой энергии, выде­ляемой непосредственно в среде бар вотируемого газообразным окислителем шлак-штейнового расплава. В качестве окислителя в печи в зависимости от состава сырья используются воздух, дутье, обогащенное кислородом, или технически чистый кисло­род. Дутье подается в расплав через специальные фурмы, располо­женные по обе стороны ванны в боковых стенках печи. Образую­щиеся в результате протекания технологического процесса газы всплывают на поверхность ванны, способствуя ее интенсивному перемешиванию, и удаляются через вертикальный газоход, уста­новленный в центре печи. Перерабатываемая шихта без предвари­тельной подготовки (тонкий помол, глубокая сушка и т. п.) по­дается в печь сверху через загрузочное устройство. Попав на по­верхность ванны, шихта перемещается вглубь расплава, энергично перемешивается с ним и расплавляется под действием высоких температур. Жидкие продукты плавки в подфурменной зоне делятся на штейн и шлак, которые по мере накопления выво­дятся из агрегата через отстойники сифонного типа, расположен­ные с торцевых сторон печи.

1 - фурмы; 2 - устройство для загрузки шихты; 3 - вертикальный газоход; 4 - свод; 5 - устройство для выпуска штейна; 6 - устройство для выпуска шлака

Рисунок 2 – Схема печи для плавки в жидкой ванне

1.3 Тепловой и температурный режимы работы печей для плавки на штейн

По энергетическому признаку агрегаты для автогенной плавки на штейн относятся к печам смешанного типа, так как в них газо­образной окислитель и компоненты шихты, участвующие в экзо­термических реакциях, нагреваются непосредственно в процессе теплогенерации, тогда как остальные продукты плавки получают тепло за счет теплообмена. Тепловая работа печей такого типа во многом зависит от характера распределения тепла между продук­тами плавки, т. е. от соотношения интенсивности протекающих в них процессов теплогенерации и теплообмена. Как теплогенераторы они относятся к печам с массообменньм режимом работы, в которых интенсификация массообменных процессов достигается за счет максимального увеличения реакционной поверхности суль­фидов.

При анализе работы этих агрегатов в качестве печей-теплооб­менников необходимо учитывать, что в той части рабочего про­странства печи, где происходит интенсивное окисление сульфидов кислородом дутья, преобладают процессы переноса тепла конвек­цией и излучением. В ванне, где происходит завершение процессов формирования расплава и его разделение на штейн и шлак, пере­дача тепла осуществляется в основном теплопроводностью через шлак и конвекцией за счет осаждения штейна.

Закономерность тепло- и массопереноса в печах для автоген­ной плавки отличаются крайним разнообразием и сложностью. К сожалению, из-за относительной новизны процесса пока отсут­ствуют надежные экспериментальные данные о тепловой работе рассматриваемых печей, что в значительной степени затрудняет теоретические расчеты в этой области. В реальной практике оценка режимных параметров агрегата осуществляется, как правило, на основе анализа материального и теплового балансов протекающего в нем технологического процесса.

Печи для автогенной плавки являются агрегатами непрерыв­ного действия с относительно неизменными во времени параме­трами теплового и температурного режимов работы. При состав­лении теплового баланса протекающего в печи технологического процесса могут быть использованы понятия тепловых эквивален­тов сырьевых материалов и продуктов плавки. В этом случае урав­нение теплового баланса плавки приобретает вид

(1)

где А - производительность агрегата по проплавляемой шихте, т/ч;

- соответственно теплогенерационные и теплообменные составляющие тепловых эквивалентов шихтовых материалов и продуктов плавки, кДж/кг;