ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Особенности кругооборота воды и некоторых веществ в биосфере. Как происходит круговорот углерода в природе, и почему он для нас важен Круговорот углерода в природе интересные задания

Является выдающийся русский ученый академик В.И. Вернадский.

Биосфера — сложная наружная оболочка Земли, в которой содержится вся совокупность живых организмов и та часть вещества планеты, которая находится в процессе непрерывного обмена с этими организмами. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.

Земля состоит из концентрических оболочек (геосфер) как внутренних, так и внешних. К внутренним относятся ядро и мантия, а к внешним: литосфера - каменная оболочка Земли, включая земную кору (рис. 1) толщиной от 6 км (под океаном) до 80 км (горные системы); гидросфера - водная оболочка Земли; атмосфера — газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли.

На высоте от 10 до 50 км расположен слой озона, с максимальной его концентрацией на высоте 20-25 км, защищающий Землю от чрезмерного ультрафиолетового излучения, гибельного для организма. Сюда же (к внешним геосферам) относится и биосфера.

Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км

Рис. 1. Схема строения земной коры

(рис. 2). Особенность этих частей состоит в том, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы — воздуха, воды, горных пород и органического вещества - биоты обусловило формирование почв и осадочных пород.

Рис. 2. Структура биосферы и соотношение поверхностей, занятых основными структурными единицами

Круговорот веществ в биосфере и экосистемах

Все доступные для живых организмов химические соединения в биосфере ограничены. Исчерпаемость пригодных для усвоения химических веществ часто тормозит развитие тех или иных групп организмов в локальных участках суши или океана. По выражению академика В.Р. Вильямса, единственный способ придать конечному свойства бесконечного состоит в том, чтобы заставить его вращаться по замкнутой кривой. Следовательно, устойчивость биосферы поддерживается благодаря круговороту веществ и потокам энергии. Имеются два основных круговорота веществ: большой — геологический и малый — биогеохимический.

Большой геологический круговорот (рис. 3). Кристаллические горные породы (магматические) под воздействием физических, химических и биологических факторов преобразуются в осадочные породы. Песок и глина — типичные осадки, продукты преобразования глубинных пород. Однако формирование осадков происходит не только за счет разрушения уже существующих пород, но также и путем синтеза биогенных минералов — скелетов микроорганизмов — из природных ресурсов — вод океана, морей и озер. Рыхлые водянистые осадки по мере их изоляции на дне водоемов новыми порциями осадочного материала, погружения на глубину, попадания в новые термодинамические условия (более высокие температуры и давления) теряют воду, отвердевают, преобразуясь при этом в осадочные горные породы.

В дальнейшем эти породы погружаются в еше более глубокие горизонты, где и протекают процессы их глубинного преобразования к новым температурным и барическим условиям, — происходят процессы метаморфизма.

Под воздействием потоков эндогенной энергии глубинные породы переплавляются, образуя магму — источник новых магматических пород. После поднятия этих пород на поверхность Земли, под действием процессов выветривания и переноса снова происходит их трансформация в новые осадочные породы.

Таким образом, большой круговорот обусловлен взаимодействием солнечной (экзогенной) энергии с глубинной (эндогенной) энергией Земли. Он перераспределяет вещества между биосферой и более глубокими горизонтами нашей планеты.

Рис. 3. Большой (геологический) круговорот веществ (тонкие стрелки) и изменение разнообразия в земной коре (сплошные широкие стрелки — рост, прерывистые — уменьшение разнообразия)

Большим круговоротом называется и круговорот воды между гидросферой, атмосферой и литосферой, который движется энергией Солнца. Вода испаряется с поверхности водоемов и суши и затем вновь поступает на Землю в виде осадков. Над океаном испарение превышает осадки, над сушей наоборот. Эти различия компенсируют речные стоки. В глобальном круговороте воды немаловажную роль играет растительность суши. Транспирация растений на отдельных участках земной поверхности может составить до 80-90% выпадающих здесь осадков, а в среднем по всем климатическим поясам — около 30%. В отличие от большого малый круговорот веществ происходит лишь в пределах биосферы. Взаимосвязь большого и малого круговорота воды показана на рис. 4.

Круговороты планетарного масштаба создаются из бесчисленных локальных циклических перемещений атомов, движимых жизнедеятельностью организмов в отдельных экосистемах, и тех перемещений, которые вызваны действием ландшафтных и геологических причин (поверхностный и подземный сток, ветровая эрозия, движение морского дна, вулканизм, горообразование и т.п.).

Рис. 4. Взаимосвязь большого геологического круговорота (БГК) воды с малым биогеохимическим круговоротом (МБК) воды

В отличие от энергии, которая однажды использована организмом, превращается в тепло и теряется, вещества в биосфере циркулируют, создавая биогеохимические круговороты. Из девяноста с лишним элементов, встречающихся в природе, живым организмам нужно около сорока. Наиболее важные для них требуются в больших количествах — углерод, водород, кислород, азот. Круговороты элементов и веществ осуществляются за счет саморегулирующих процессов, в которых участвуют все составные части . Эти процессы являются безотходными. Существует закон глобального замыкания биогеохимического круговорота в биосфере , действующий на всех этапах ее развития. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимичес
кого круговорота. Еще большее влияние на биогеохимический круговорот оказывает Человек. Но его роль проявляется в противоположном направлении (круговороты становятся незамкнутыми). Основу биогеохимического круговорота вешеств составляют энергия Солнца и хлорофилл зеленых растений. Другие наиболее важные круговороты — воды, углерода, азота, фосфора и серы — связаны с биогеохимическим и способствуют ему.

Круговорот воды в биосфере

Растения используют водород воды при фотосинтезе в построении органических соединений, выделяя молекулярный кислород. В процессах дыхания всех живых существ, при окислении органических соединений вода образуется вновь. В истории жизни вся свободная вода гидросферы многократно прошла циклы разложения и новообразования в живом веществе планеты. В круговорот воды на Земле ежегодно вовлекается около 500 000 км 3 воды. Круговорот воды и ее запасы показаны на рис. 5 (в относительных величинах).

Круговорот кислорода в биосфере

Своей уникальной атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. С круговоротом кислорода тесно связано образование озона в высоких слоях атмосферы. Кислород освобождается из молекул воды и является по сути побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемых фотосинтезом. Между содержанием кислорода в атмосфере и гидросфере существует подвижное равновесие. В воде его примерно в 21 раз меньше.

Рис. 6. Схема круговорота кислорода: полужирные стрелки — основные потоки поступления и расхода кислорода

Выделившийся кислород интенсивно расходуется на процессы дыхания всех аэробных организмов и на окисление разнообразных минеральных соединений. Эти процессы происходят в атмосфере, почве, воде, илах и горных породах. Показано, что значительная часть кислорода, связанного в осадочных породах, имеет фотосинтетическое происхождение. Обменный фонд О, в атмосфере составляет не более 5% общей продукции фотосинтеза. Многие анаэробные бактерии также окисляют органические вещества в процессе анаэробного дыхания, используя для этого сульфаты или нитраты.

На полное разложение органического вещества, создаваемого растениями, требуется точно такое же количество кислорода, которое выделилось при фотосинтезе. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда кислорода в атмосфере. Весь имеющийся в ней кислород проходит полный цикл через живые организмы примерно за 2000 лет.

В настоящее время значительная часть кислорода атмосферы связывается в результате работы транспорта, промышленности и других форм антропогенной деятельности. Известно, что человечество тратит уже более 10 млрд т свободного кислорода из общего его количества в 430-470 млрд т, поставляемого процессами фотосинтеза. Если учесть, что в обменный фонд поступает лишь небольшая часть фотосинтетического кислорода, деятельность людей в этом отношении начинает приобретать угрожающие масштабы.

Круговорот кислорода теснейшим образом сопряжен с углеродным циклом.

Круговорот углерода в биосфере

Углерод как химический элемент является основой жизни. Он может разными способами соединяться со многими другими элементами, образуя простые и сложные органические молекулы, входящие в состав живых клеток. По распространению на планете углерод занимает одиннадцатое место (0,35% веса земной коры), но в живом веществе он в среднем составляет около 18 или 45% сухой биомассы.

В атмосфере углерод входит в состав углекислого газа С0 2 , в меньшей мере — в состав метана СН 4 . В гидросфере С0 2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО 2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Некоторая часть молекул С0 2 реагирует с водой, образуя угольную кислоту, которая затем диссоциирует на ионы НСО 3 - и СО 2- 3 " Эти ионы реагируют с катионами кальция или магния с выпадением в осадок карбонатов. Подобные реакции лежат в основе буферной системы океана, поддерживающей постоянство рН воды.

Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли. Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов — бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества.

Рис. 7. Круговорот углерода

Особенно активно происходит возврат в атмосферу С0 2 из почвы, где сосредоточена деятельность многочисленных групп организмов, разлагающих остатки отмерших растений и животных и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда С0 2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус — богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус почв является одним из важных резервуаров углерода на суше.

В условиях, где деятельность деструкторов тормозят факторы внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода, надолго выключаясь из биологического круговорота. Углерод временно депонируется также в живой биомассе, в мертвом опаде, в растворенном органическом веществе океана и т.п. Однако основным резервным фондом углерода на пишете являются не живые организмы и не горючие ископаемые, а осадочные породы — известняки и доломиты. Их образование также связано с деятельностью живого вещества. Углерод этих карбонатов надолго захоронен в недрах Земли и поступает в круговорот лишь в ходе эрозии при обнажении пород в тектонических циклах.

В биогеохимическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4-5 лет, запасы в почвенном гумусе — за 300-400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая его часть (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов.

В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых.

Круговорот азота в биосфере

В атмосфере и живом веществе содержится менее 2% всего азота на Земле, но именно он поддерживает жизнь на планете. Азот входит в состав важнейших органических молекул — ДНК, белков, липопротеидов, АТФ, хлорофилла и др. В растительных тканях его соотношение с углеродом составляет в среднем 1: 30, а в морских водорослях I: 6. Биологический цикл азота поэтому также тесно связан с углеродным.

Молекулярный азот атмосферы недоступен растениям, которые могут усваивать этот элемент только в виде ионов аммония, нитратов или из почвенных или водных растворов. Поэтому недостаток азота часто является фактором, лимитирующим первичную продукцию — работу организмов, связанную с созданием органических веществ из неорганических. Тем не менее атмосферный азот широко вовлекается в биологический круговорот благодаря деятельности особых бактерий (азотфиксаторов).

В круговороте азота большое участие также принимают аммонифицирующие микроорганизмы. Они разлагают белки и другие содержащие азот органические вещества до аммиака. В аммонийной форме азот частью вновь поглощается корнями растений, а частью перехватывается нитрифицирующими микроорганизмами, что противоположно функциям группы микроорганизмов — денитрификаторов.

Рис. 8. Круговорот азота

В анаэробных условиях в почвах или водах они используют кислород нитратов для окисления органических веществ, получая энергию для своей жизнедеятельности. Азот при этом восстанавливается до молекулярного. Азотфиксация и денитрификация в природе приблизительно уравновешены. Цикл азота, таким образом, зависит преимущественно от деятельности бактерий, тогда как растения встраиваются в него, используя промежуточные продукты этого цикла и намного увеличивая масштабы циркуляции азота в биосфере за счет продуцирования биомассы.

Роль бактерий в круговороте азота настолько велика, что если уничтожить только 20 их видов, жизнь на нашей планете прекратится.

Небиологическая фиксация азота и поступление в почвы его окислов и аммиака происходит также с дождевыми осадками при ионизации атмосферы и грозовых разрядах. Современная промышленность удобрений фиксирует азот атмосферы в размерах, превышающих природную фиксацию азота, в целях увеличения продукции сельскохозяйственных растений.

В настоящее время деятельность человека все сильнее влияет на круговорот азота, в основном в сторону превышения перевода его в связанные формы над процессами возврата в молекулярное состояние.

Круговорот фосфора в биосфере

Этот элемент, необходимый для синтеза многих органических веществ, включая АТФ, ДНК, РНК, усваивается растениями только в виде ионов ортофосфорной кислоты (Р0 3 4 +). Он относится к элементам, лимитирующим первичную продукцию и на суше, и особенно в океане, поскольку обменный фонд фосфора в почвах и водах невелик. Круговорот этого элемента в масштабах биосферы незамкнут.

На суше растения черпают из почвы фосфаты, освобожденные редуцентами из разлагающихся органических остатков. Однако в щелочной или кислой почве растворимость фосфорных соединений резко падает. Основной резервный фонд фосфатов содержится в горных породах, созданных на дне океана в геологическом прошлом. В ходе выщелачивания пород часть этих запасов переходит в почву и в виде взвесей и растворов вымывается в водоемы. В гидросфере фосфаты используются фитопланктоном, переходя по цепям питания в другие гидробионты. Однако в океане большая часть фосфорных соединений захоранивается с остатками животных и растений на дне с последующим переходом с осадочными породами в большой геологический круговорот. На глубине растворенные фосфаты связываются с кальцием, образуя фосфориты и апатиты. В биосфере, по сути, происходит однонаправленный поток фосфора из горных пород суши в глубины океана, следовательно, обменный фонд его в гидросфере очень ограничен.

Рис. 9. Круговорот фосфора

Наземные залежи фосфоритов и апатитов используются при производстве удобрений. Попадание фосфора в пресные водоемы является одной из главных причин их «цветения».

Круговорот серы в биосфере

Круговорот серы, необходимой для построения ряда аминокислот, отвечает за трехмерную структуру белков, поддерживается в биосфере широким спектром бактерий. В отдельных звеньях этого цикла участвуют аэробные микроорганизмы, окисляющие серу органических остатков до сульфатов, а также анаэробные редукторы сульфата, восстанавливающие сульфаты до сероводорода. Кроме перечисленных группы серобактерий окисляют сероводород до элементарной серы и далее до сульфатов. Растения усваивают из почвы и воды только ионы SO 2- 4 .

Кольцо в центре иллюстрирует процесс окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках.

Рис. 10. Круговорот серы. Кольцо в центре иллюстрирует процесс окисления (0) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках

Основное накопление серы происходит в океане, куда ионы сульфатов непрерывно поступают с суши с речным стоком. При выделении из вод сероводорода сера частично возвращается в атмосферу, где окисляется до диоксида, превращаясь в дождевой воде в серную кислоту. Промышленное использование большого количества сульфатов и элементарной серы и сжигание горючих ископаемых поставляют в атмосферу большие объемы диоксида серы. Это вредит растительности, животным, людям и служит источником кислотных дождей, усугубляющих отрицательные эффекты вмешательства человека в круговорот серы.

Скорость круговорота веществ

Все круговороты веществ происходят с различной скоростью (рис. 11)

Таким образом, круговороты всех биогенных элементов на планете поддерживаются сложным взаимодействием разных частей . Они формируются деятельностью разных по функциям групп организмов, системой стока и испарения, связывающих океан и сушу, процессами циркуляции вод и воздушных масс, действием сил гравитации, тектоникой литосферных плит и другими масштабными геологическими и геофизическими процессами.

Биосфера действует как единая сложная система, в которой происходят различные круговороты веществ. Главным двигателем этихкруговоротов является живое вещество планеты, все живые организмы, обеспечивающие процессы синтеза, трансформации и разложения органического вещества.

Рис. 11. Темпы циркуляции веществ (П. Клауд, А. Джибор, 1972)

В основе экологического взгляда на мир лежит представление о том, что каждое живое существо окружено множеством влияющих на него различных факторов, образующих в комплексе его место обитания — биотоп. Следовательно, биотоп — участок территории, однородный по условиям жизни для определенных видов растений или животных (склон оврага, городской лесопарк, небольшое озеро или часть большого, но с однородными условиями — прибрежная часть, глубоководная часть).

Организмы, характерные для определенного биотопа, составляют жизненное сообщество, или биоценоз (животные, растения и микроорганизмы озера, луга, береговой полосы).

Жизненное сообщество (биоценоз) образует со своим биотопом единое целое, которое называется экологической системой (экосистемой). Примером естественных экосистем могут служить муравейник, озеро, пруд, луг, лес, город, ферма. Классическим примером искусственной экосистемы является космический корабль. Как видно, здесь нет строгой пространственной структуры. Близким к понятию экосистемы является понятие биогеоценоза.

Основными компонентами экосистем являются:

  • неживая (абиотическая) среда. Это вода, минеральные вещества, газы, а также органические вещества и гумус;
  • биотические компоненты. К ним относятся: продуценты или производители (зеленые растения), консументы, или потребители (живые существа, питающиеся продуцентами), и редуценты, или разлагатели (микроорганизмы).

Природа действует в высшей степени экономно. Так, созданная организмами биомасса (вещество тел организмов) и содержащаяся в них энергия передаются другим членам экосистемы: животные поедают растения, этих животных поедают другие животные. Этот процесс называют пищевой, или трофической, цепью. В природе пищевые цепи зачастую перекрещиваются, образуя пищевую сеть.

Примеры пищевых цепей: растение — растительноядное животное — хищник; злак — полевая мышь — лиса и др. и пищевая сеть показаны на рис. 12.

Таким образом, состояние равновесия в биосфере основано на взаимодействии биотических и абиотических факторов среды, которое поддерживается благодаря непрерывному обмену веществом и энергией между всеми компонентами экосистем.

В замкнутых круговоротах естественных экосистем наряду с другими обязательно участие двух факторов: наличие редуцентов и постоянное поступление солнечной энергии. В городских и искусственных экосистемах мало или совсем нет редуцентов, поэтому жидкие, твердые и газообразные отходы накапливаются, загрязняя окружающую среду.

Рис. 12. Пищевая сеть и направление потока вещества

Есть на Земле несколько химических элементов, без которых жизнь была бы невозможна. Один из них - это углерод. Он содержится в каждой органической молекуле и выступает в качестве ее строительной основы. Схема круговорота углерода в природе - постоянный процесс взаимного перехода из органического состояния в неорганическое, который обеспечивает жизнедеятельность всех организмов.

Основной принцип естественного круговорота

Все соединения на земле делятся на два класса: органические и неорганические. Первые - это следствие жизнедеятельности живых организмов. Вторые могут возникать и без живых форм вследствие химических реакций.

Переход из одного состояния в другое получил название «круговорот веществ». Углерод в данной системе занимает лидирующее место.

В атмосфере, воде и почве есть неорганические соединения, которые поглощаются живыми организмами. Чаще всего это растения, простейшие животные и грибы. Они образуют новые органические соединения, которые поглощаются высшими животными. После их смерти микроорганизмы снова перерабатывают соединения с углеродом в неорганические. Так в общих чертах можно описать круговорот углерода в биосфере. Но есть здесь немало частных нюансов.

Фотосинтез и дыхание

Чаще всего углерод в природе встречается в форме углекислого газа. Он образуется вследствие процессов дыхания и горения. Именно в форме газов растениям проще всего его усваивать. За тысячелетия существования флора научилась перерабатывать углекислоту в органические соединения. С помощью хлорофилла в листьях при наличии солнечного света происходит сложная химическая реакция. В ее результате получаются кислород, моно- и полиуглеводы. Уже само название говорит о том, что в состав указанных веществ входит углевод.

Те же растения могут дышать, когда солнечного света недостаточно. В процессе этого явления расходуется кислород и образуется углекислый газ. Вот так происходит простейший круговорот углерода в природе. Но это только на примере растений. А есть еще и микроорганизмы, грибы и животные, которые также включаются в движение рассматриваемого элемента в биосфере.

Микроорганизмы и круговорот углерода в экосистеме

Самые маленькие организмы на Земле могут смело называться началом и концом пищевой цепи. Именно благодаря им многие органические соединения попадают к высшим растениям и животным.

Отмирая и переставая функционировать, живые организмы попадают в почву или на дно Мирового океана. Они бы так и остались там лежать, если бы не бактерии и простейшие, начинающие перерабатывать органические соединения, выделяя углекислый газ или делая сложные углеводы более простыми. Новые соединения используются для питания живыми организмами, соответственно, углерод начинает новый круг движения в природе.

Не всем бактериям нужен кислород для того, чтобы расщеплять органические молекулы. Некоторые из них отлично справляются с заданием и без него.

Благодаря микроорганизмам круговорот углерода в природе происходит и в форме симбиоза. К примеру, клетчатка - это сложный углевод, который содержится во всех растениях. Желудок животного не может ее расщепить и усвоить. Но парнокопытные научились существовать в симбиозе с некоторыми бактериями. Последние находятся в желудке животного и расщепляют целлюлозу до более простых углеводов, которые далее легко усваиваются организмом парнокопытного.

Движение углерода на суше

В атмосфере находится около 0,33% углекислого газа. Этого более чем достаточно для того, чтобы его усвоили зеленые растения. На суше именно с них и начинается схема круговорота углерода в природе.

Растения выступают начальной ступенькой пищевой цепи. Их поедают травоядные животные, которые, как правило, становятся жертвами хищников. После смерти последних органические вещества попадают в почву, где перерабатываются насекомыми и микроорганизмами. Процессы их жизнедеятельности чаще всего выделяют неорганические соединения. Органика, которая усваивается, также может стать пищей для животных, стоящих выше в пищевой цепи.

Очень редко органические вещества надолго консервируются в таком виде. Нам они известны как полезные ископаемые: торф, уголь, нефть, метан. Углекислый газ из этих соединений освобождается в процессе горения, чем и обеспечивается круговорот углерода в природе.

Круговорот углерода в воде

Мировой океан также является средой, в которой происходит круговорот углерода в биосфере. Но здесь этот процесс немного сложнее. Все дело в том, что в воде углекислый газ плохо растворяется, поэтому его ассимиляция немного затруднительна. В верхних слоях океана всегда есть планктон, который и перерабатывает углекислоту. Это начало пищевой цепочки в воде. Далее все идет так же, как и на суше. Высшие организмы поедают низших. В итоге они погибают, опускаются на дно, где их перерабатывают другие микроорганизмы.

В некоторых случаях круговорот углерода в природе может смешиваться на суше и в море. Но такие движения - не настолько частое явление, чтобы его рассматривать в отдельности. Просто есть некоторое количество животных, обитающих в обеих стихиях.

Жизнедеятельность человека

Выше мы рассмотрели классическое описание круговорота углерода в природе. Но в этот процесс включается человек, который уже давно вышел за пределы жизнедеятельности животного. Он начал перестраивать природу под собственные нужды, используя ее ресурсы.

Из-за человека ежегодно уменьшается количество зеленых насаждений, которые неорганический углекислый газ перерабатывают в органические углеводы. В то же время он сжигает полезные ископаемые, увеличивая концентрацию углекислоты в атмосфере. Это приводит к дисбалансу круговорота данного вещества. Продолжение устоявшейся стратегии деятельности может стать причиной настоящей экологической катастрофы.

Парниковый эффект

Углекислый газ в атмосфере обуславливает своеобразный парниковый эффект. Он удерживает тепловую энергию недалеко от поверхности планеты. Повышение средней температуры воздуха на полградуса-градус станет причиной таяния ледниковых шапок.

Вслед за этим увеличится площадь Мирового океана, погибнет значительное количество животных и растений. Постепенно концентрация углекислоты в атмосферном воздухе уменьшится, вода снова замерзнет на полюсах.

Таким образом, экосистема «перезагрузится», чтобы нормализировать оптимальный круговорот углерода.

Процентные соотношения

За миллиарды лет существования Земли на ней появлялись и исчезали многие виды живых организмов. Все они как-то влияли на круговорот углерода в природе. За эти годы в органических соединениях накопилось 6000000 млрд. тонн этого элемента. Сюда относятся как ныне живущие организмы, так и ископаемые углеродные вещества.

По оценкам ученых, это примерно 1/5 всего углерода на планете. Если бы не происходил его круговорот, то со временем жизнь на Земле стала бы не возможной.

Вследствие этого процесса живые организмы накапливают около 400 млрд. тонн углерода, который частично возвращается в неживую природу. Остаток же продолжает циркулировать внутри живого мира, поддерживая существование этих организмов.

Роль углеродных соединений в природе

Ученые уже давно оценили, насколько велико значение углерода в природе. Именно первые его соединения со временем дали начало жизни на планете. Сегодня он является главным строительным элементом всех живых молекул.

Первые в этом списке - углеводы. Они образуются вследствие процесса фотосинтеза. Они играют роль своеобразного строительного материала для растений и источника энергии для животных. Науке известен один нерастительный углевод - гликоген. Он образуется в печени млекопитающих и выступает в качестве запасного источника энергии.

В организме животных углеводы распадаются на воду и энергию, но могут быть основой для синтеза жиров. Это своеобразная животная батарейка, которая накапливается для возможности использования в будущем, когда почувствуется нехватка энергии. Также это теплоизоляция для животных, которые обитают в холодном климате.

Основой животной клетки является белок. Это самая большая молекула на Земле, которая состоит из цепочки аминокислот. Строительным материалом для последних также выступает углерод, поэтому очень сложно переоценить роль данного элемента для жизни на нашей планете.

Круговорот веществ в биосфере – это «путешествие» определённых химических элементов по пищевой цепи живых организмов, благодаря энергии Солнца. В процессе «путешествия» некоторые элемент, по разным причинам, выпадают и остаются как правила, в земле. Их место занимают такие же, которые, обычно, попадают из атмосферы. Это максимально упрощенное описание того, что является гарантией жизни на планете Земля. Если такое путешествие почему-то прервется, то и существование всего живого прекратится.

Чтобы описать кратко круговорот веществ в биосфере необходимо поставить несколько отправных точек. Во-первых, из более чем девяноста химических элементов, известных и встречающихся в природе, для живых организмов, необходимо около сорока. Во-вторых, количество этих веществ ограничено. В-третьих, речь идет только о биосфере, то есть о жизнь содержащей оболочке земли, а, значит, о взаимодействиях между живыми организмами. В-четвертых, энергией, которая способствует круговороту, является энергия, поступающая от Солнца. Энергия, рождающаяся в недрах Земли в результате различных реакций, в рассматриваемом процессе участия не принимает. И последнее. Необходимо опередить точку отсчета этого «путешествия». Она условна, так как не может быть конца и начала у круга, но это необходимо для того, чтобы с чего-то начать описывать процесс. Начнем с самого нижнего звена трофической цепи – с редуцентов или могильщиков.

Ракообразные, черви, личинки, микроорганизмы, бактерии и прочие могильщики, потребляя кислород и используя энергию, перерабатывают неорганические химические элементы в органическую субстанцию, пригодную для питания живыми организмами и дальнейшего ее движения по пищевой цепи. Далее эти, уже органические вещества, едят консументы или потребители, к которым относятся не только животные, птицы, рыбы и тому подобное, но и растения. Последние являются продуцентами или производителями. Они, используя эти питательные вещества и энергию, вырабатывают кислород, который является основным элементом, пригодным для дыхания всего живого на планете. Консументы, продуценты и, даже редуценты погибают. Их останки, вместе с органическими веществами, находящимися в них, «падают» в распоряжение могильщиков.

И все повторяется вновь. Например, весь кислород, существующий в биосфере, делает свой оборот за 2000 лет, а углекислый газ за 300. Такой кругооборот принято называть биогеохимическим циклом.

Некоторые органические вещества в процессе своего «путешествия» вступают в реакции и взаимодействия с другими веществами. В результате образуются смеси, которые в том виде, в каком они есть, не могут быть переработаны редуцентами. Такие смеси остаются «храниться» в земле. Не все органические вещества, попадающие на «стол» могильщиков, не могут ими переработаться. Не все могут перегнить при помощи бактерий. Такие неперегнившие остатки попадают на хранение. Все, что остается на хранении или в резерве, выбывает из процесса и в круговорот веществ в биосфере не входят.

Таким образом, в биосфере круговорот веществ, движущей силой которого является деятельность живых организмов, можно разделить на две составляющие. Одна – резервный фонд – это часть вещества, которая не связана с деятельностью живых организмов и до времени в обороте не участвует. И вторая – это оборотный фонд. Он представляет собой лишь небольшую часть вещества, которая активно используется живыми организмами.

Атомы каких основных химических элементов столь необходимы для жизни на Земле? Это: кислород, углерод, азот, фосфор и некоторые другие. Из соединений, основным в кругообороте, можно назвать воду.

Кислород

Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.

Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.

И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.

Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.

Если результатом фотосинтеза является кислород, то его сырьем – углерод.

Азот

Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами — это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.

Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.

Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.

Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.

И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.

Углерод

Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.

В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.

Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.

Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.

Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.

Круговорот углерода в биосфере основывается на наличии в атмосфере и гидросфере углекислого газа, который является своеобразным обменным фондом. Пополняется он за счет дыхания живых организмов. Бактерии, грибы и другие микроорганизмы, принимающие участие в процессе разложения органических остатков в почве, также участвуют в пополнении углекислым газом атмосферы.Углерод «консервируется» в минерализованных неперегнивших органических остатках. В каменном и буром угле, торфе, горючих сланцах и тому подобных отложениях. Но основным резервным фондом углерода являются известняки и доломиты. Содержащийся в них углерод «надежно спрятан» в глубине планеты и высвобождается лишь при тектонических сдвигах и выбросах вулканических газов при извержениях.

Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.

В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» — угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.

Фосфор

Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.

В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.

Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.

Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.

Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.

Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.

Сера

В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO 2- 4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.

Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.

Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».

Вода

В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.

Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.

Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.

Кругооборот воды имеет под собой в большей степени физический процесс. Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды.

Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.

В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.

Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?

Видео — Круговорот веществ в биосфере

Из всех биогеохимических циклов круговорот углекислого газа один из самых интенсивных. Основными хранилищами этого вещества являются:

гидросфера (1,3∙1014 т),

атмо-сфера (2,3∙1012 т)

биосфера (2,0∙1012т углерода) (в пересчёте на углерод).

Источником первичной углекислоты биосферы является вулканическая деятельность, связанная вековой дегазацией мантии и нижних горизонтов земной коры. Миграция СО2 в биосфере протекает двумя путями.

Первый путь заключается в поглощении его в процессе фотосинтеза с образованием глюкозы и других органических веществ, из которых построены все растительные ткани. Растения извлекают в процессе фотосинтеза из атмосферы и гидросферы около 150 млрд. т углерода в год в виде СО2 . Далее возможно несколько вариантов:

дыхание растений;

    растения могут быть съедены травоядными животными. В этом случае углерод либо вернется в атмосферу (в процессе дыхания животных и при их разложении после смерти), либо травоядные животные будут съедены плотоядными (и тогда углерод опять же вернется в атмосферу теми же путями);

    углерод может оставаться в растениях, пока растения не погибнут. Тогда их молекулы пойдут в пищуредуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений), таким как грибы и термиты. В конце концов углерод вернется в атмосферу в качестве CO 2 ;

растения могут погибнуть и оказаться под землей. Тогда в конечном итоге они превратятся в ископаемое топливо - например, в уголь.

Второй путь - растворение в морской воде. Углекислый газ СО2 обладает свойствами летучести и легкой растворимости - 0,88 объёма в 1 объёме воды, особенно в морской воде. Из атмосферы СO2 (30%) адсорбируется гидросферой. Примерно 100 млрд т СО2 находится в непрерывном круговороте между атмосферой и океаном.

Диоксид углерода участвует в реакциях, протекающих в гидро-сфере:

СО2+Н2О  Н2СО3  Н+ + НСО3-

В случае же растворения исходной молекулы CO 2 в морской воде также возможно несколько вариантов:

    углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно);

углерод может войти в ткани морских растений или животных. Тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк или из отложений вновь перейдет в морскую воду.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где СО2 переходит в Н2СО3, НСО13, СО23. С помощью растворенного в воде кальция (или магния) происходит осаждение карбонатов (СаСО3) биогенным и абиогенным путями. Образуются мощные толщи известняков. По А. Б. Ронову, отношение захороненного углерода в продуктах фотосинтеза к углероду в карбонатных породах составляет 1:4.

Существует наряду с большим круговоротом углерода и ряд малых его круговоротов на поверхности суши и в океане.

Содержание СО2, определяющего кислотность морской воды, остается постоянной благодаря карбонатно-бикарбонатному буферу. Этот буфер действует следующим образом: углекислый газ водорастворим, и в океанах его растворено около 140 трлн. т (против 2,6 трлн. т в атмосфере). При избытке СО2нерастворимый карбонат (СаСО3) переходит в растворимый бикарбонат Са (НСО3)2. При недостатке СО2 растворимый бикарбонат переходит в нерастворимый карбонат.

Общее количество СО2, связываемое ежегодно при выветривании горных пород, достигает 2 млрд. т углерода.. Диоксид углерода атмосферы расходуется также на процесс выветривания горных пород, превращая последние сначала в средние, а за-тем в гидрокарбонаты, которые вымываются водой и накапливаются в океане. Например, при выветривании полевых шпатов, в частности анортита, образуется гидрокарбонат кальция:

Са (Al2 Si2 O8) +CO2 = CaCO3+Al2 O3+2SiO2

СаСО3+СО2+Н2О = Са (НСО3)2

Таким образом, главную роль в круговороте углерода играет атмосферный и гидросферный фонды углекислого газа. Этот фонд пополняется при дыхании растений и животных, а также при разложении мертвой органики. Некоторая часть углерода ускользает из круговорота в захоронения. Если углерод вошел в состав осадочных отложений или ископаемого топлива, он изымается из атмосферы. На протяжении существования Земли изъятый таким образом углерод замещался углекислым газом, попадавшим в атмосферу при вулканических извержениях и других геотермальных процессах.

С наступлением научно-технического прогресса появился ещё один важный поток - обогащение атмосферы углекислым газом в результате сжигания ископаемого топлива.

В целом же без антропогенного вмешательства содержание углерода в биогеохимических резервуарах: биосфере (биомасса+почва и детрит), осадочных породах, атмосфере и гидросфере, - сохраняется с высокой степенью постоянства благодаря высоко сбалансированным потокам. По Т.А. Акимовой, В.В. Хаскину (1994), постоянный обмен углеродом, с одной стороны, между биосферой, а с другой - между атмосферой и гидросферой, обусловлен газовой функцией живого вещества - процессами фотосинтеза, дыхания и деструкции, и составляет около 60 млрд т/год. Общая масса углерода в ископаемом топливе (нефть, газ, уголь и др.) оценивается в 3,2 тлрд т, что соответствует средней скорости накопления 7 млн т/год. Это количество по сравнению с массой циркулирующего углерода незначительное и как бы выпадало из круговорота, терялось в нем. Отсюда степень разомкну-гости (несовершенства) круговорота составляет 10-4, или 0,01%, а соответственно степень замкнутости - 99,99% - потоки синтеза и распада органических веществ в биосфере с очень высокой точностью подогнаны друг к другу. Скоррелированность потоков синтеза и распада с указанной точностью доказывает наличие биологической регуляции окружающей среды, ибо случайная связь величин с такой точностью в течение миллионов лет невероятна».

Мы не беремся однозначно утверждать, что деятельность человека является основной причиной глобального изменения климата, но также глупо было бы утверждение того, что человек не влияет на окружающую среду. Мы стараемся рассматривать имеющиеся у нас факты и знания, и делиться ими с нашими читателями. Разные существуют мнения по поводу влияния парниковых газов на повышение средней годовой температуры на Земле. Кто-то считает это всемирным заговором , целью которого является передел сфер влияния на рынке энергоресурсов и в целом промышленности, кто-то видит в этом испытания метеорологического оружия. Наша задача донести до Вас различные мнения и фактическую информацию, чтобы Вы самостоятельно могли формировать свое мнение.

Одно остается неоспоримым: мы влияем на нашу планету и жизнь на Земле сильно и непосредственно, и в наших руках менять силу и направление этого воздействия - сделать эту планету цветущим оазисом или малопригодной для жизни пустыней. На мой взгляд, современный уровень технологий вполне позволяет каждому из нас включиться в процесс создания экологически дружественного общества и начать, как это обычно бывает, необходимо с себя.

В этой статье мы расскажем про углерод – основной строительный кирпичик жизни. И почему нас так пугают, тем из чего состоят все живые формы на Земле.

Глобальный круговорот углерода в природе можно разделить на две основные категории: геологический, временной цикл которого исчисляется миллионами лет, и значительно более быстрый – биологический с временным циклом от нескольких дней до нескольких тысячелетий. Мы, люди, имеем влияние на обе эти категории.

Глобальный углеродный круговорот являет собой перемещение углерода между различными «резервуарами», и происходит благодаря множеству различных химических, физических, геологических и биологических процессов. Поверхность современного океана является наиболее активным буфером обмена углерода на Земле, однако на больших глубинах такого быстрого обмена с атмосферой происходить не может.

На диаграмме Вы можете проследить основные направления движения и места залегания углерода в экосистеме Земли. Обычно принято выделять четыре основных места концентрации углерода, это:

  • · Атмосфера
  • · Наземная биосфера, включающая неживой органический материал, такой как почва и осадочные породы
  • · Океаны, которые содержат углерод в растворенном виде и живую и неживую морскую органику
  • · Ископаемые ресурсы органического происхождения.

В атмосфере Земли углерод преимущественно существует в виде диоксида (CO2). И хотя его содержание кажется ничтожно малым (около 0.04% и по утверждениям ученых продолжает расти), он играет важнейшую роль в поддержании жизни на Земле. Существует еще несколько газов, таки как, например метан, содержащих углерод, которые также играют свою роль в углеродном обмене. В концепции теории глобального потепления эти газы называют парниковыми, и считается, что именно повышение концентрации этих газов приводит к парниковому эффекту и как следствие к глобальному повышению температуры.

Углерод. Куда он девается?

1. Солнечный свет позволяет растениям поглощать углекислый газ из атмосферы благодаря явлению фотосинтеза, выделяя в атмосферу кислород. Наиболее активными, эффективными и долговечными «хранителями» углерода являются деревья. В процессе развития и роста деревья очень быстро поглощают и накапливают углерод, а в зрелом возрасте способны хранить его сотни лет. Поэтому сохранение и умножение лесов – одна из важнейших задач сохранения и поддержания глобального углеродного баланса.

2. Ближе к полюсам поверхность океанов становится прохладнее, а CO2 более растворимым. В холодных водах океана углекислый газ поглощается, а при повышении температуры воды у поверхности приводит к выделению излишков газа в атмосферу. Вот почему повышение средней глобальной температуры может ускорить процесс нарушения природного баланса углерода в атмосфере.

3. В верхних слоях океана находятся наиболее продуктивные живые организмы, чьи ткани, органы и раковины строятся на основе углерода, и тем самым абсорбируют атмосферный углерод, растворенный в верхних слоях воды. Наряду с лесами на суше, морские живые организмы - это важнейшие «утилизаторы» атмосферного углерода. Мировой океан содержит около 36000 гигатонн углерода. Потепление же морской воды препятствует привычному формированию живых организмов, тем самым снижая темпы поглощения углерода.

4. По мере того как морские обитатели погибают, твердые части их тел, такие как раковины, клешни и кости оседают на морское дно, формируя залежи осадочных пород – своего рода долгосрочный углеродный депозит.

Углерод. Откуда он берется?

Углерод возвращается в оборот несколькими различными способами.

1. Дыхание животных и растений.

2. Разложение животных и растений. Этим занимаются бактерии, превращая части мертвых организмов животных и растений в углекислый газ в присутствии кислорода или метан в противном случае.

3. Ну и кончено, сжигание ископаемого органического топлива: нефть, уголь, торф и природный газ. За эту часть выбросов несет ответственность человечество и наша с Вами цивилизация. И именно этой части экологи приписывают все возможные грехи. С доводами экологов трудно не согласится, особенно, учитывая масштабы этого действа . Добавьте к этому лесные пожары, причиной которых тоже зачастую становятся люди.

4. Производство цемента приводит к выбросу углерода в атмосферу при нагревании карбоната кальция (известняка, CaCO3).

5. Нагревание поверхности океанов приводит дополнительному выделению углекислого газа из морской воды.

6. Ну и конечно, вулканическая деятельность – неотъемлемая часть углеродного цикла. Вулканы выбрасывают пар, углекислый газ и диоксид серы.

Ну углерод, и что?

Как мы видим углекислый газ это не яд , не загрязняющий фактор, а естественная и необходимая часть жизненного цикла нашей планеты. Почему же нас беспрерывно пугают этим страшным CO2, используя практически все источники информации? Мы не собираемся здесь разоблачать мировой заговор правящей верхушки, но я думаю, сможем объяснить, почему именно углекислый газ выбран в качестве фактора «устрашения». Уровень влияния человека, предприятия, страны, цивилизации на природу необходимо как-то измерять, так как это влияние не может более оставаться незамеченным и не учтенным. А уровень выбросов углекислого газа и является той удобной и универсальной мерой. Мы можем измерить, сколько энергии затрачивается на производство товара или услуги, но на сколько чистой была эта энергия нам помогает определить именно количество углерода выброшенного в атмосферу при получении конечного продукта.

Для этой цели и был введен термин углеродного следа (carbon footprint), показывающий, сколько стоит экологии тот или иной продукт, услуга или иная человеческая деятельность.Например, доставка почты с помощью электромобиля , почтальона на велосипеде или грузовика с двигателем внутреннего сгорания для конечного получателя закончится одинаково – конвертом в почтовом ящике, но результат для экологии в целом будет отличаться в десятки, а, то и в сотни раз. Когда Вы выйдете забирать почту доставленную классическим грузовиком, Вы будете вдыхать уже совершенно другой воздух, и с каждой следующей доставкой он не будет становиться лучше. Так что, по возможности используйте электронную почту. Ибо доставка электронного письма оставляет наименьший экологический след .