ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Как сделать график в матлаб. Построение графиков matlab

Отображение функции в виде таблицы удобно, если имеется сравнительно небольшое число значений функции. Пусть требуется вывести в командное окно таблицу значений функции

в точках 0.2, 0.3, 0.5, 0.8, 1.3, 1.7, 2.5.
Задача решается в два этапа.
1. Создается вектор-строка х, содержащая координаты заданных точек.
2. Вычисляются значения функции y (х )от каждого элемента вектора х и записываются полученные значения в вектор-строку у.
Значения функции необходимо найти для каждого из элементов вектор-строки х, поэтому операции в выражении для функции должны выполняться поэлементно .

» х =
х =
0.2000 0.3000 0.5000 0.8000 1.3000 1.7000 2.5000 » у = sin(x).^2./(l+cos(x))+exp(-x).*log(x)
У =

Обратите внимание, что при попытке использования операций возведения в степень ^, деления / и умножения * (которые не относятся к поэлементным) выводится сообщение об ошибке уже при возведении sin(x) в квадрат:

» у = sin(х)^2/(1+соз(х))+exp(-x)*log(x)
??? Error using ==> ^
Matrix must be square.

Дело в том, что в MatLab операции * и ^ применяются для перемножения матриц соответствующих размеров и возведения квадратной матрицы в степень.
Таблице можно придать более удобный для чтения вид, расположив значения функции непосредственно под значениями аргумента:

» х
х =
0.2000 0.3000 0.5000 0.8000 1.3000 1.7000 2.5000 » у
у =
-1.2978 -0.8473 -0.2980 0.2030 0.8040 1.2258 1.8764

Часто требуется вывести значение функции в точках отрезка, отстоящих друг от друга на равное расстояние (шаг). Предположим, что необходимо вывести таблицу значений функции y (х )наотрезке с шагом 0.2. Можно, конечно, ввести вектор-строку значений аргумента х= из командной строки и вычислить все значения функции так, как описано выше. Однако, если шаг будет не 0.2, а, например 0.01, то предстоит большая работа по вводу вектора х.
В MatLab предусмотрено простое создание векторов, каждый элемент которых отличается от предшествующего на постоянную величину, т.е. на шаг. Для ввода таких векторов служит двоеточие (не путайте с индексацией при помощи двоеточия). Следующие два оператора приводят к формированию одинаковых вектор-строк. Условно можно записать

» х =
х =
» х =
х =
1.0000 1.2000 1.4000 1.6000 1.8000 2.0000

Условно можно записать

х = [начальное значение: шаг: конечное значение]

Необязательно заботиться о том, чтобы сумма предпоследнего значения шага равнялась бы конечному значению, например, при выполнении следующего оператора присваивания

» х =
х =
1.0000 1.2000 1.4000 1.6000 1.8000

Вектор-строка заполнится до элемента, не превосходящего определенное нами конечное значение. Шаг может быть и отрицательным:

» х =
х =
1.9000 1.7000 1.5000 1.3000 1.1000

В случае отрицательного шага для получения непустой вектор-строки начальное значение должно быть больше конечного.
Для заполнения вектор-столбца элементами, начинающимися с нуля и заканчивающимися 0.5 с шагом 0.1, следует заполнить вектор-строку, а затем использовать операцию транспонирования:

» х = "
х =
0
0.1000
0.2000
0.3000
0.4000
0.5000

Обратите внимание, что элементы вектора, заполняемого при помощи двоеточия, могут быть только вещественными, поэтому для транспонирования можно использовать апостроф вместо точки с апострофом.
Шаг, равный единице, допускается не указывать при автоматическом заполнении:

» х =
х =
1 2 3 4 5

Пусть требуется вывести таблицу значений функции

на отрезке с шагом 0.05,
Для выполнения этого задания необходимо произвести следующие действия:
1. Сформировать вектор-строку х при помощи двоеточия.
2. Вычислить значения у (х )отэлементов х .
3. Записать результат в вектор-строку y.
4. Вывести х и у.

» х = ;
» у = ехр(-х).*sin(10*x);
» х
х =
Columns 1 through 7
О 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000
Columns 8 through 14
0.3500 0.4000 0.4500 0.5000 0.5500 0.6000 0.6500
Columns 15 through 21
0.7000 0.7500 0.8000 0.8500 0.9000 0.9500 1.0000
» у
У =
Columns 1 through 7
0 0.4560 0.7614 0.8586 0.7445 0.4661 0.1045
Columns 8 through 14
-0.2472 -0.5073 -0.6233 -0.5816 -0.4071 -0.1533 0.1123
Columns 15 through 21
0.3262 0.4431 0.4445 0.3413 0.1676 -0.0291 -0.2001

Вектор-строки x и y состоят из двадцати одного элемента, и не помещается на экране в одну строку, поэтому выводятся по частям. Так как х иy хранятся в двумерных массивах размерностью один на двадцать один, то выводятся по столбцам, каждый из которых состоит из одного элемента. Сначала выводятся столбцы с первого по седьмой (columns 1 through 7), затем - с восьмого по четырнадцатый (columns 8 through 14), и, наконец, - с пятнадцатого по двадцать первый (columns 15 through 21). Более наглядным и удобным является графическое представление функции.

2. Построение графиков функции одной переменной

2.1. Графики функций в линейном масштабе

MatLab обладает хорошо развитыми графическими возможностями для визуализации данных. Рассмотрим в начале построение простейшего графика функции одной переменной на примере функции

,

определенной на отрезке . Вывод функции в виде графика состоит из следующих этапов:
1. Задание вектора значений аргумента х.
2. Вычисление вектора у значений функции y (х ).
3. Вызов команды plot для построения графика.
Команды для задания вектора х и вычисления функции лучше завершать точкой с запятой для подавления вывода в командное окно их значений (после команды plot точку с запятой ставить необязательно, т. к. она ничего не выводит в командное окно).

» х = ;
» у = ехр(-х).*sin(10*x);
» plot(x, у)

После выполнения команд на экране появляется окно Figure No. 1 с графиком функции. Окно содержит меню, панель инструментов и область графика. В дальнейшем будут описаны команды, специально предназначенные для оформления графика. Сейчас нас интересует сам принцип построения графиков и некоторые простейшие возможности визуализации функций.
Для построения графика функции в рабочей среде MatLab должны быть определены два вектора одинаковой размерности, например х и у. Соответствующий массив х содержит значения аргументов, а у - значения функции от этих аргументов. Команда plot соединяет точки с координатами (x(i), y(i)) прямыми линиями, автоматически масштабируя оси для оптимального расположения графика в окне. При построении графиков удобно расположить на экране основное окно MatLab и окно с графиком рядом так, чтобы они не перекрывались.
Построенный график функции имеет изломы. Для более точного построения графика функцию необходимо вычислить y (х ) в большем числе точек на отрезке , т.е. задать меньший шаг при вводе вектора х :

» х = ;
» у = ехр(-х).*sin(10*x);
» plot(x, у)

В результате получается график функции в виде более плавной кривой.
Сравнение нескольких функций удобно производить, отобразив их графики на одних осях. Например, построим на отрезке [-1, -0.3] графики функций
,

при помощи следующей последовательности команд:

» х = [-1:0.005:-0.3];
» f = sin(x.^-2);
» g = sin(1.2*x.^-2);
» plot(x, f, x, g)

Функции необязательно должны быть определены на одном и том же отрезке. В этом случае при построении графиков MatLab выбирает максимальный отрезок, содержащий остальные. Важно только в каждой паре векторов абсцисс и ординат указать соответствующие друг другу вектора, например:

» х1 = [-1:0.005:-0.3];
» f = sin(x1.^-2);
» х2 = [-1:0.005:0.3];
» g = sin(1.2*x2.^-2);
» plot(x1, f, x2, g)

Аналогичным образом при помощи задания в plot через запятую пар аргументов вида: вектор абсцисс, вектор ординат, осуществляется построение графиков произвольного числа функций.

Замечание 1

Использование plot с одним аргументом - вектором - приводит к построению "графика вектора", т.е. зависимости значений элементов вектора от их номеров. Аргументом plot может быть и матрица, в этом случае на одни координатные оси выводятся графики столбцов.
Иногда требуется сравнить поведение двух функций, значения которых сильно отличаются друг от друга. График функции с небольшими значениями практически сливается с осью абсцисс, и установить его вид не удается. В этой ситуации помогает функция plotyy, которая выводит графики в окно с двумя вертикальными осями, имеющими подходящий масштаб.
Сравните, например, две функции: и

» х = ;
» f = х.^-3;
» F = 1000*(х+0.5).^-4;
» plotyy(x, f, x, F)

При выполнении этого примера обратите внимание, что цвет графика совпадает с цветом соответствующей ему оси ординат.
Функция plot использует линейный масштаб по обеим координатным осям. Однако MatLab предоставляет пользователю возможность строить графики функций одной переменной в логарифмическом или полулогарифмическом масштабе.

2.2. Графики функций в логарифмических масштабах

Для построения графиков в логарифмическом и полулогарифмическом масштабах служат следующие функции:
- loglog (логарифмический масштаб по обеим осям);
- semilogx (логарифмический масштаб только по оси абсцисс);
-semilogy (логарифмический масштаб только по оси ординат).

Аргументы loglog, semilogx и semilogy задаются в виде пары векторов значений абсцисс и ординат так же, как для функции plot, описанной в предыдущем пункте. Построим, например, графики функций и на отрезке в логарифмическом масштабе по оси х :

» х = ;
» f = log(0.5*x);
» g = sin(log(x));
» semilogx(x, f, x ,g)

2.3. Задание свойств линий на графиках функций

Построенные графики функций должны быть максимально удобными для восприятия. Часто требуется нанести маркеры, изменить цвет линий, а при подготовке к монохромной печати - задать тип линии (сплошная, пунктирная, штрих-пунктирная и т.д.). MatLab предоставляет возможность управлять видом графиков, построенных при помощи plot, loglog, semilogx и semilogy, для чего служит дополнительный аргумент, помещаемый за каждой парой векторов. Этот аргумент заключается в апострофы и состоит из трех символов, которые определяют: цвет, тип маркера и тип линии. Используется одна, две или три позиции, в зависимости от требуемых изменений. В таблице приведены возможные значения данного аргумента с указанием результата.

Тип маркера

Тип линии

сплошная

пунктирная

штрих-пунктирная

знак "плюс"

штриховая

звездочка

Треугольник вершиной вниз

Треугольник вершиной вверх

Треугольник вершиной влево

треугольник вершиной вправо

пятиконечная звезда

шестиконечная звезда

Если, например, необходимо построить первый график красными точечными маркерами без линии, а второго график - черной пунктирной линией, то следует использовать команду plot(x, f, "r.", х, g, "k:").

2.4. Оформление графиков функций

Удобство использования графиков во многом зависит от дополнительных элементов оформления: координатной сетки, подписей к осям, заголовка и легенды. Сетка наносится командой grid on, подписи к осям размещаются при помощи xlabel, ylabel, заголовок дается командой title. Наличие нескольких графиков на одних осях требует помещения легенды командой legend с информацией о линиях. Все перечисленные команды применимы к графикам как в линейном, так и в логарифмическом и полулогарифмическом масштабах. Следующие команды выводят графики изменения суточной температуры, которые снабжены всей необходимой информацией.

» time = ;
» temp1 = ;
» temp2 = ;
» plot(time, temp1, "ro-", time, temp2, "go-")
» grid on
» title("Суточные температуры")
» xlabel("Время (час.)")
» ylabel("Температура (С)")
» legend("10 мая, 11 мая")

При добавлении легенды следует учесть, что порядок и количество аргументов команды legend должны соответствовать линиям на графике. Последним дополнительным аргументом может быть положение легенды в, графическом окне:

* -1 - вне графика в правом верхнем углу графического окна;
* 0 - выбирается лучшее положение в пределах графика так, чтобы как можно меньше перекрывать сами графики;
* 1 - в верхнем правом углу графика (это положение используется по умолчанию);
* 2 - в верхнем левом углу графика;
* 3 - в нижнем левом углу графика;
* 4 - в нижнем правом углу графика.

В заголовке графика, легенде и подписях осей допускается добавление формул и изменение стилей шрифта при помощи формата ТеХ.
MatLab выводит графики разным цветом. Монохромный принтер напечатает графики различными оттенками серого цвета, что не всегда удобно. Команда plot позволяет легко задать стиль и цвет линий, например

» plot(x,f,"k-",x,g,"k:")

осуществляет построение первого графика сплошной черной линией, а второго - черной пунктирной. Аргументы "k-" и "k:" задают стиль и цвет первой и второй линий. Здесь k означает черный цвет, а дефис или двоеточие - сплошную или пунктирную линию. Окно с графиком можно закрыть, нажав на кнопку с крестиком в правом верхнем углу.

3. Построение графиков функций двух переменных

Построение графика функции двух переменных в MatLab на прямоугольной области определения переменных включает два предварительных этапа:
1. Разбиение области определения прямоугольной сеткой.
2. Вычисление значений функции в точках пересечения линий сетки и запись их в матрицу.
Построим график функции z (x , у )= х 2 + у 2 на области определения в виде квадрата х принадлежит , y - . Необходимо разбить квадрат равномерной сеткой (например, с шагом 0.2) и вычислить значения функций в узлах, обозначенных точками.
Удобно использовать два двумерных массива х и у, размерностью шесть на шесть для хранения информации о координатах узлов. Массив х состоит из одинаковых строк, в которых записаны координаты x 1, х 2, ..., х 6, а массив у содержит одинаковые столбцы с y1 , у 2, ..., у 6. Значения функции в узлах сетки запишем в массив z такой же размерности (6 x 6), причем для вычисления матрицы Z используем выражение для функции, но с поэлементными матричными операциями. Тогда, например z (3,4) как раз будет равно значению функции z (x,y )в точке (х3, у 4). Для генерации массивов сетки х и у по координатам узлов в MatLab предусмотрена функция meshgrid, для построения графика в виде каркасной поверхности - функция mesh. Следующие операторы приводят к появлению на экране окна с графиком функции (точка с запятой в конце операторов не ставится для того, чтобы проконтролировать генерацию массивов):

» = meshgrid(0:0.2:1,0:0.2:1)
X =

0 0.2000 0.4000 0.6000 0.8000 1.0000
0 0.2000 0.4000 0.6000 0.8000 1.0000
0 0.2000 0.4000 0.6000 0.8000 1.0000
0 0.2000 0.4000 0.6000 0.8000 1.0000
0 0.2000 0.4000 0.6000 0.8000 1.0000
y =
0 0 0 0 0 0
0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
0.6000 0.6000 0.6000 0.6000 0.6000 0.6000
0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

» Z = X.^2+Y.^2

Z =
0 0.0400 0.1600 0.3600 0.6400 1.0000
0.0400 0.0800 0.2000 0.4000 0.6800 1.0400
0.1600 0.2000 0.3200 0.5200 0.8000 1.1600
0.3600 0.4000 0.5200 0.7200 1.0000 1.3600
0.6400 0.6800 0.8000 1.0000 1.2800 1.6400
1.0000 1.0400 1.1600 1.3600 1.6400 2.0000

Какие недостатки имеет построенный график? И как их устранить? Построенный график и новый привести в электронном отчете по лабораторной работе.

MatLab позволяет наносить на график дополнительную информацию, в частности, соответствие цветов значениям функции. Сетка генерируется при помощи команды meshgrid, вызываемой с двумя аргументами. Аргументами являются векторы, элементы которых соответствуют сетке на прямоугольной области построения функции. Можно использовать один аргумент, если область построения функции - квадрат. Для вычисления функции следует использовать поэлементные операции.

Рассмотрим основные возможности, предоставляемые MatLab для визуализации функций двух переменных, на примере построения графика функции

на прямоугольной области определения х принадлежит [-1, 1], y .
Подготовим матрицы с координатами узлов сетки и значениями функции:

» = meshgrid(-1:0.05:1, 0:0.05:1);
» Z = 4*sin(2*pi*X).*cos(1.5*pi*Y).*(1-Х.^2).*Y.*(1-Y);

Для построения каркасной поверхности используется функция mesh, вызываемая с тремя аргументами:

Цвет линий поверхности соответствует значениям функции. MatLab рисует только видимую часть поверхности.

При помощи команды hidden off можно сделать каркасную поверхность "прозрачной", добавив скрытую часть. Команда hidden on убирает невидимую часть поверхности, возвращая графику прежний вид.

Функция surf строит каркасную поверхность графика функции и заливает каждую клетку поверхности определенным цветом, зависящим от значений функции в точках, соответствующих углам клетки. В пределах каждой клетки цвет постоянный. Посмотрите результаты выполнения команды

Команда shading flat позволяет убирать каркасные линии. Для получения поверхности, плавно залитой цветом, зависящим от значений функции, предназначена команда shading interp.
При помощи shading faceted можно вернуться к поверхности с каркасными линиями.
Трехмерные графики, получаемые с помощью описанных выше команд, удобны для получения представления о форме поверхности, однако по ним трудно судить о значениях функции. В MatLab определена команда colorbar, которая выводит рядом с графиком столбик, устанавливающий соответствие между цветом и значением функции. Постройте при помощи surf график поверхности и дополните его информацией о цвете.

» surf(X,Y,Z)
» colorbar

Команду colorbar можно применять в сочетании со всеми функциями, строящими трехмерные объекты.

Пользуясь цветной поверхностью, трудно сделать вывод о значении функции в той или иной точке плоскости xy. Команды meshc или surfc позволяют получить более точное представление о поведении функции. Эти команды строят каркасную поверхность или залитую цветом каркасную поверхность и размещают на плоскости xy линии уровня функции (линии постоянства значений функции):

» surfc(X,Y,Z)
» colorbar

MatLab позволяет построить поверхность, состоящую из линий уровня, при помощи функции contour3. Эту функцию можно использовать так же, как и описанные выше mesh, surf, meshc и surfc с тремя аргументами. При этом число линий уровня выбирается автоматически. Имеется возможность задать четвертым аргументом в contour3 либо число линий уровня, либо вектор, элементы которого равны значениям функции, отображаемым в виде линий уровня. Задание вектора (четвертого аргумента levels) удобно, когда требуется исследовать поведение функции в некоторой области ее значений (срез функции). Постройте, например поверхность, состоящую из линий уровня, соответствующих значениям функции от 0 до 0.5 с шагом 0.01:

» levels = ;
» contour3(X, Y, Z, levels)
» colorbar

4. Построение контурных графиков функций двух переменных

MatLab предоставляет возможность получать различные типы контурных графиков при помощи функций contour и contourf. Рассмотрим их возможности на примере функции

Использование contour с тремя аргументами

» contour(X,Y,Z)

приводит к графику, на котором показаны линии уровня на плоскости xy , но без указания числовых значений на них. Такой график является малоинформативным, он не позволяет узнать значения функции на каждой из линий уровня. Использование команды colorbar также не позволит точно определить значения функции. Каждую линию уровня можно снабдить значением, которое принимает на ней исследуемая функция, при помощи определенной в MatLab функции clabel. Функция clabel вызывается с двумя аргументами: матрицей, содержащей информацию о линиях уровня и указателем на график, на котором следует нанести разметку. Пользователю не нужно самому создавать аргументы clabel. Функция contour, вызванная с двумя выходными параметрами, не только строит линии уровня, но и находит требуемые для clabel параметры. Используйте contour с выходными аргументами CMatr и h (в массиве CMatr содержится информация о линиях уровня, а в массиве h - указатели). Завершите вызов contour точкой с запятой для подавления вывода на экран значений выходных параметров и нанесите на график сетку:

» = contour(X, Y, Z);
» clabel(CMatr, h)
» grid on

Дополнительным аргументом функции contour (так же, как и contour3, описанной выше) может быть или число линий уровня, или вектор, содержащий значения функции, для которых требуется построить линии уровня.
Наглядную информацию об изменении функции дает заливка прямоугольника на плоскости xy цветом, зависящим от значения функции в точках плоскости. Для построения таких графиков предназначена функция contourf, использование которой не отличается от применения contour. В следующем примере выводится график, который состоит из двадцати линий уровня, а промежутки между ними заполнены цветами, соответствующими значениям исследуемой функции:

» contourf(X, Y, Z, 20)
» colorbar

5. Оформление графиков функций

Простым и эффективным способом изменения цветового оформления графика является установка цветовой палитры при помощи функции colormap. Следующий пример демонстрирует подготовку графика функции для печати на монохромном принтере, используя палитру gray.

» surfc(X, Y, Z)
»colorbar
» colormap(gray)
» title("График функции z(x,y)")
» xlabel("x")
» ylabel("у")
» zlabel("z")

Обратите внимание, что команда colormap(gray) изменяет палитру графического окна, т.е. следующие графики будут выводиться в этом окне также в серых тонах. Для восстановления первоначального значения палитры следует применить команду colormap("default"). Цветовые палитры, доступные в MatLab, приведены в табл. 2.

Таблица 2


Палитра

Изменение цвета

Плавное изменение красный - оранжевый - желтый.

Похожа на палитру gray, но с легким оттенком синего цвета.

Каждый цвет изменяется от темного к яркому.

Оттенки голубого и пурпурного цветов.

Оттенки медного цвета.

Циклическое изменение красный - белый - синий - черный.

Оттенки серого.

Плавное изменение черный - красный - оранжевый - желтый - белый.

Плавное изменение как цветов радуги.

Плавное изменение синий - голубой - красный - зеленый - желтый - красный.

Похожа на палитру gray, но с легким оттенком коричневого цвета

Циклическое изменение красный - оранжевый - желтый - зеленый - синий - фиолетовый.

Оттенки пурпурного и желтого.

Оттенки зеленого и желтого.

Палитра Windows из шестнадцати цветов.

Один белый цвет.

Оттенок синего и зеленого.

6. Вывод нескольких графиков на одни оси

Для отображения нескольких графиков функций одной переменной на одних осях использовались возможности функций plot, plotyy, semilogx, semilogy, loglog . Они позволяют выводить графики нескольких функций, задавая соответствующие векторные аргументы парами, например plot(x,f,x,g). Однако для объединения трехмерных графиков их использовать нельзя. Для объединения таких графиков предназначена команда hold on, которую нужно задать перед построением графика. В следующем примере объединение двух графиков (плоскости и конуса) приводит к их пересечению. Конус задается параметрически следующими зависимостями:

, , , .

Для графического отображения конуса сначала необходимо сгенерировать с помощью двоеточия вектор-столбец и вектор-строку, содержащие значения параметров на заданном интервале (важно, что u М. Вектор-столбец и вектор-строка есть матрицы, у которых один из размеров равен единице. Фактически, С = abT , где умножение происходит по правилу матричного произведения. Для вычисления матричного произведения в MatLab используется оператор "звездочка". Определим внешнее произведение для двух векторов:

» a = ;
» b = ;
» C = a*b"
C =
5 6 7
10 12 14
15 18 21

Сформируем матрицы X ,Y , необходимые для графического отображения конуса:

» X = 0.3*u*cos(v);
» Y = 0.3*u*sin(v);

Матрица Z должна быть того же размера, что и матрицы X иY . Кроме того, она должна содержать значения, соответствующие значениям параметров. Если бы в функцию входило произведение и и v , то матрицу Z можно было заполнить аналогично матрицам X и Y при помощи внешнего произведения. С другой стороны, функцию z (u,v )можно представить в виде , где . Поэтому для вычисления Z можно применить внешнее произведение векторов и , где вектор-строка имеет ту же размерность, что v, но состоит из единиц:

» Z = 0.6*u*ones(size(v));

Все требуемые матрицы для отображения конуса созданы. Задание плоскости выполняется следующим образом:

» = meshgrid(-2:0.1:2);
» Z = 0.5*X+0.4*Y;

Теперь не сложно записать и полную последовательность команд для построения пересекающихся конуса и плоскости:

» u = [-2*pi:0.1*pi:2*pi]";
» v = [-2*pi:0.1*pi:2*pi];
» X = 0.3*u*cos(v);
» Y = 0.3*u*sin(v);
» Z = 0.6*u*ones(size(v));
» surf(X, Y, Z)
» = meshgrid(-2:0.1:2);
» Z = 0.5*X+0.4*Y;
» hold on
» mesh(X, Y, Z)
» hidden off

Команда hidden off применена для того, чтобы показать часть конуса, находящуюся под плоскостью.
Обратите внимание, что команда hold on распространяется на все последующие выводы графиков в текущее окно. Для размещения графиков в новых окнах следует выполнить команду hold off. Команда hold on может применяться и для расположения нескольких графиков функций одной переменной, например,

» plot(x,f,х,g)

эквивалентно последовательности

» plot(х,f)
» hold on
» plot(x,g)

Результаты работы, полученные мною:

2. Оформление графиков функций .

Сейчас рассмотрим ряд вопросов, связанных с внешним видом графиков функций - цветом и стилем линий, которым проведены сами графики, а также различными надписями в пределах графического окна.

Например, следущие команды

x = 0: 0.1: 3; y = sin(x);

plot(x, y, "r-", x, y, "ko")

позволяют придать графику вид красной сплошной линии, на которой в дискретных

вычисляемых точках проставляются чёрные окружности. Здесь функция plot дважды строит график одной и той же функции, но в двух разных стилях. Первый из этих стилей отмечен как "r-", что означает проведение линии красным цветом (буква r), а штрих означает проведение сплошной линии. Второй стиль, помеченный как "ko" означает проведение чёрным цветом (буква k) окружностей (буква o) на месте вычисляемых точек.

В общем случае, функция

plot(x1, y1, s1, x2, y2, s2, …)

позволяет объединить несколько графиков функций y1(x1), y2(x2),…, проведя их со стилями s1, s2, …

В случае функции вида

plot(x1, y1, s1, x1, y1, s2)

мы можем провести линию графика единственной функции y1(x1) одним цветом, а точки на нём (вычисляемые точки) - другим цветом.

Стили s1, s2,… задаются в виде набора трёх символьных маркеров, заключенных в одиночные кавычки. Первый (не обязательно по порядку) из этих маркеров задаёт тип линии:

Второй маркер задаёт цвет:

Последний маркер задаёт тип проставляемых "точек":

Можно указывать не все три маркера. Тогда используются необходимые маркеры, установленные "по умолчанию". Порядок, в котором указываются маркеры, не является существенным, то есть "r+-" и "-+r" приводят к одинаковому результату.

Если в строке стиля поставить маркер типа точки, но не проставить маркер на тип линии, то тогда отображаются только вычисляемые точки, а непрерывной линией они не соединяются.

Наиболее мощным способом оформления графиков функций (и выполнения других графических работ) является дескрипторный метод, полное изучение которого относится к так называемой низкоуровневой графике системы MATLAB и выходит за рамки настоящего пособия. Мы, однако, приведём сейчас (и позже) некоторые простые примеры.

Выше мы оформляли график функции sin с помощью непрерывной красной линии и чёрных кружков. Теперь попробуем ограничиться лишь непрерывной линией, но очень толстой. Как это можно сделать? Вот простое решение на базе дескрипторной графики:

x = 0: 0.1: 3; y = sin(x);

hPlot = plot(x, y);

set(hPlot, "LineWidth", 7);

Функция plot через опорные (вычисленные) точки с координатами x, y проводит отрезки прямых линий. Прямые линии в системе MATLAB представляют собой графические объекты типа Line. Эти объекты имеют огромное число свойств и характеристик, которые можно менять. Доступ к этим объектам осуществляется по их описателям (дескрипторам; handles).

Описатель объекта Line, использованного для построения нашего графика, возвращается функцией plot. Мы его запоминаем для дальнейшего использования в переменной hPlot. Затем этот описатель предлагается функции set для опознания конкретного графического объекта. Именно для такого опознанного объекта функция set изменяет характеристики, которые указаны в других аргументах при вызове функции set. В нашем примере мы указали свойство "LineWidth" (толщина линии), для которого задали новое значение 7 (а по умолчанию - 0.5). В результате получается следующая картина:

Текущее значение любого параметра (атрибута; характеристики) графического объекта можно узнать с помощью функции get. Например, если после получения показанного на рисунке графика ввести и исполнить команду

width = get(hPlot, "LineWidth")

то для переменной width будет получено значение 7.

Теперь от оформления непосредственно линий перейдём к оформлению осей системы координат, к надписям на осях и так далее. MATLAB выбирает пределы на горизонтальной оси равными указанным для независимой переменной. Для зависимой переменной по вертикальной оси MATLAB вычисляет диапазон изменения значений функции. Затем этот вычисленный диапазон приписывается вертикальной оси системы координат, так что график функции оказывается как бы вписанным в прямоугольник.

Если мы хотим отказаться от этой особенности масштабирования при построении графиков в системе MATLAB, то мы должны явным образом навязать свои пределы изменения переменных по осям координат. Это делается с помощью функции

axis([ xmin, xmax, ymin, ymax ])

причём команду на выполнение этой функции можно вводить с клавиатуры сколько угодно раз уже после построения графика функции, чтобы, глядя на получающиеся визуальные изображения, добиться наилучшего восприятия. Такое масштабирование позволяет получить подробные изображения тех частей графика, которые вызывают наибольший интерес в конкретном исследовании. Например, для ранее полученного графика функции sin, можно сузить пределы по осям координат

axis([ 1.5, 2.5, 0.5, 2 ])

чтобы получше разглядеть вершину синусоиды:

Чаще всего этот приём увеличения масштаба изображения применяют при графическом решении уравнений с тем, чтобы получить более высокую точность приближения к корню.

Теперь изменим количество числовых отметок на осях. Их может показаться недостаточно (на горизонтальной оси последнего рисунка их всего три - для значений 1.5 , 2 и 2.5).

Изменить отметки на осях координат можно с помощью функции set, обрабатывающей графический объект Axes. Это объект, который содержит оси координат и белый прямоугольник, внутри которого и проводится сам график функции. Для получения описателя такого объекта применяют функцию gca, которую вызывают без параметров.

В итоге, следующий фрагмент кода

hAxes = gca;

set(hAxes, "xtick", [ 1.5, 1.75, 2.0, 2.25, 2.5 ])

выполняющийся после построения графика, устанавливает новые метки на горизонтальной оси координат (пять штук).

Для проставления различных надписей на полученном рисунке применяют функции xlabel, ylabel, title и text. Функция xlabel предназначена для проставления названия горизонтальной оси, функция ylabel - то же для вертикальной оси (причём эти надписи ориентированы вдоль осей координат).

Если требуется разместить надпись в произвольном месте рисунка - применяем функцию text:

text(x, y, "some text")

Общий заголовок для графика проставляется функцией title. Кроме того, используя команду

grid on

можно нанести измерительную сетку на всю область построения графика. Применяя все эти средства

title("Function sin(x) graph");

xlabel("x coordinate"); ylabel("sin(x)");

text(2.1, 0.9, "\leftarrowsin(x)"); grid on;

придаём графику функции следующий вид:

Надпись функцией text помещается, начиная от точки с координатами, указанными первыми двумя аргументами. Специальные символы вводятся внутри текста после символа \ ("обратная косая черта"). В примере мы ввели таким образом специальный символ "стрелка влево". Обозначения для специальных символов совпадают с таковыми в системе подготовки научных текстов TeX.

Начиная с версии 4.0 в состав системы MATLAB входит мощная графическая подсистема, которая поддерживает как средства визуализации двумерной и трехмерной графики на экран терминала, так и средства презентационной графики. Следует выделить несколько уровней работы с графическими объектами. В первую очередь это команды и функции, ориентированные на конечного пользователя и предназначенные для построения графиков в прямоугольных и полярных координатах, гистограмм и столбцовых диаграмм, трехмерных поверхностей и линий уровня, анимации. Графические команды высокого уровня автоматически контролируют масштаб, выбор цветов, не требуя манипуляций со свойствами графических объектов. Соответствующий низкоуровневый интерфейс обеспечивается дескрипторной графикой, когда каждому графическому объекту ставится в соответствие графическая поддержка (дескриптор), на который можно ссылаться при обращении к этому объекту. Используя дескрипторную графику, можно создавать меню, кнопки вызова, текстовые панели и другие объекты графического интерфейса.

Из-за ограниченного объема данного справочного пособия в него включены только графические команды и функции с минимальными элементами дескрипторной графики. Заинтересованному читателю следует обратиться к документации по системе MATLAB, и в первую очередь к только что вышедшей из печати книге “Using MATLAB Graphics” (Natick, 1996).

Элементарные графические функции системы MATLAB позволяют построить на экране и вывести на печатающее устройство следующие типы графиков: линейный, логарифмический, полулогарифмический, полярный.

Для каждого графика можно задать заголовок, нанести обозначение осей и масштабную сетку.

Двумерные графики

  • PLOT - график в линейном масштабе
  • LOGLOG - график в логарифмическом масштабе
  • SEMILOGX, SEMILOGY - график в полулогарифмическом масштабе
  • POLAR - график в полярных координатах

Трехмерные графики

В системе MATLAB предусмотрено несколько команд и функций для построения трехмерных графиков. Значения элементов числового массива рассматриваются как z-координаты точек над плоскостью, определяемой координатами x и y. Возможно несколько способов соединения этих точек. Первый из них - это соединение точек в сечении (функция plot3), второй - построение сетчатых поверхностей (функции mesh и surf). Поверхность, построенная с помощью функции mesh, - это сетчатая поверхность, ячейки которой имеют цвет фона, а их границы могут иметь цвет, который определяется свойством EdgeColor графического объекта surface. Поверхность, построенная с помощью функции surf, - это сетчатая поверхность, у которой может быть задан цвет не только границы, но и ячейки; последнее управляется свойством FaceColor графического объекта surface. Уровень изложения данной книги не требует от читателя знания объектно-ориентированного программирования. Ее объем не позволяет в полной мере описать графическую подсистему, которая построена на таком подходе. Заинтересованному читателю рекомендуем обратиться к документации по системе MATLAB, и в первую очередь к только что вышедшей из печати книге Using MATLAB Graphics (Natick, 1996).

  • PLOT3 - построение линий и точек в трехмерном пространстве
  • MESHGRID - формирование двумерных массивов X и Y
  • MESH, MESHC, MESHZ - трехмерная сетчатая поверхность
  • SURF, SURFC - затененная сетчатая поверхность
  • SURFL - затененная поверхность с подсветкой
  • AXIS - масштабирование осей и вывод на экран
  • GRID - нанесение сетки
  • HOLD - управление режимом сохранения текущего графического окна
  • SUBPLOT - разбиение графического окна
  • ZOOM - управление масштабом графика
  • COLORMAP - палитра цветов
  • CAXIS - установление соответствия между палитрой цветов и масштабированием осей
  • SHADING - затенение поверхностей
  • CONTOURC - формирование массива описания линий уровня
  • CONTOUR - изображение линий уровня для трехмерной поверхности
  • CONTOUR3 - изображение трехмерных линий уровня

Надписи и пояснения к графикам

  • TITLE - заголовки для двух- и трехмерных графиков
  • XLABEL, YLABEL, ZLABEL - обозначение осей
  • CLABEL - маркировка линий уровня
  • TEXT - добавление к текущему графику текста
  • GTEXT - размещает заданный текст на графике с использованием мыши
  • LEGEND - пояснение к графику
  • COLORBAR - шкала палитры

Специальная графика

Раздел специальной графики включает графические команды и функции для построения столбцовых диаграмм, гистограмм, средств отображения векторов и комплексных элементов, вывода дискретных последовательностей данных, а также движущихся траекторий как для двумерной, так и для трехмерной графики. Этот раздел получил свое дальнейшее развитие в версии системы MATLAB 5.0, где специальные графические средства улучшены и существенно расширены.

Пакет MatLab позволяет отображать графики с разным цветом и типом линий, показывать или скрывать сетку на графике, выполнять подпись осей и графика в целом, создавать легенду и многое другое. В данном параграфе рассмотрим наиболее важные функции, позволяющие делать такие оформления на примере двумерных графиков.

Функция plot() позволяет менять цвет и тип отображаемой линии. Для этого, используются дополнительные параметры, которые записываются следующим образом:

plot(, , <’цвет линии, тип линии, маркер точек’>);

Обратите внимание, что третий параметр записывается в апострофах и имеет обозначения, приведенные в таблицах 3.1-3.3. Маркеры, указанные ниже записываются подряд друг за другом, например,

‘ko’ – на графике отображает черными кружками точки графика,
‘ko-‘ – рисует график черной линией и проставляет точки в виде кружков.

Табл. 3.1. Обозначение цвета линии графика

Цвет линии

фиолетовый

Табл. 3.2. Обозначение типа линии графика

Цвет линии

непрерывная

штриховая

пунктирная

штрих-пунктирная

Табл. 3.3. Обозначение типа точек графика

Цвет линии

звездочка

Ниже показаны примеры записи функции plot() с разным набором маркеров.

x = 0:0.1:2*pi;
y = sin(x);

subplot(2,2,1); plot(x,y,"r-");
subplot(2,2,2); plot(x,y,"r-",x,y,"ko");
subplot(2,2,3); plot(y,"b--");
subplot(2,2,4); plot(y,"b--+");

Результат работы фрагмента программы приведен на рис. 3.7. Представленный пример показывает, каким образом можно комбинировать маркеры для достижения требуемого результата. А на рис. 3.7 наглядно видно к каким визуальным эффектам приводят разные маркеры, используемые в программе. Следует особо отметить, что в четвертой строчке программы по сути отображаются два графика: первый рисуется красным цветом и непрерывной линией, а второй черными кружками заданных точек графика. Остальные варианты записи маркеров очевидны.

Рис. 3.7. Примеры отображения графиков с разными типами маркеров

Из примеров рис. 3.7 видно, что масштаб графиков по оси Ox несколько больше реальных значений. Дело в том, что система MatLab автоматически масштабирует систему координат для полного представления данных. Однако такая автоматическая настройка не всегда может удовлетворять интересам пользователя. Иногда требуется выделить отдельный фрагмент графика и только его показать целиком. Для этого используется функция axis() языка MatLab, которая имеет следующий синтаксис:

axis([ xmin, xmax, ymin, ymax ]),

где название указанных параметров говорят сами за себя.

Воспользуемся данной функцией для отображения графика функции синуса в пределах от 0 до :

x = 0:0.1:2*pi;
y = sin(x);

subplot(1,2,1);
plot(x,y);
axis();

subplot(1,2,2);
plot(x,y);
axis();

Из результата работы программы (рис. 3.8) видно, что несмотря на то, что функция синуса задана в диапазоне от 0 до , с помощью функции axis() можно отобразить как весь график, так и его фрагмент в пределах от 0 до .

Рис. 3.8. Пример работы функции axis()

В заключении данного параграфа рассмотрим возможности создания подписей графиков, осей и отображения сетки на графике. Для этого используются функции языка MatLab, перечисленные в табл. 3.4.

Таблица 3.4. Функции оформления графиков

Название

Описание

Включает/выключает сетку на графике

title(‘заголовок графика’)

Создает надпись заголовка графика

xlabel(‘подпись оси Ox’)

Создает подпись оси Ox

ylabel(‘подпись оси Oy’)

Создает подпись оси Oy

text(x,y,’текст’)

Создает текстовую надпись в координатах (x,y).

Рассмотрим работу данных функций в следующем примере:

x = 0:0.1:2*pi;
y = sin(x);

plot(x,y);
axis();
grid on;
title("The graphic of sin(x) function");
xlabel("The coordinate of Ox");
ylabel("The coordinate of Oy");
text(3.05,0.16,"\leftarrow sin(x)");

Из результата работы данной программы, представленного на рис. 3.9, видно каким образом работают функции создания подписей на графике, а также отображение сетки графика.

Таким образом, используя описанный набор функций и параметров, можно достичь желаемого способа оформления графиков в системе MatLab.

Рис. 3.9. Пример работы функций оформления графика

Построение графического интерфейса в системе Matlab


Введение

Matlab – это система инженерных и научных вычислений. Она обеспечивает математические вычисления, визуализацию научной графики программирование и моделирование процессов с использованием интуитивно понятной среды окружения, когда задачи и их решения могут быть представлены в нотации, близкой к математической. Наиболее известные области применения системы Matlab :

· математика и вычисления;

· разработка алгоритмов;

· вычислительный эксперимент, имитационное моделирование, макетирование;

· анализ данных, исследование и визуализация результатов;

· научная и инженерная графика;

· разработка приложений, включая графический интерфейс пользователя.

Основным объектом при программировании в среде Matlab является массив, для которого не требуется указывать размерность явно. Это позволяет решать многие вычислительные задачи, связанные с векторно-матричными формулировками.

Система Matlab – это одновременно и операционная среда и язык программирования. Пользователь может написать специализированные функции и программы, которые оформляются в виде М-файлов. По мере увеличения количества созданных программ возникают проблемы их классификации и тогда можно попытаться собрать родственные функции в специальные папки. Это приводит к концепции пакетов прикладных программ, которые представляют собой коллекции М-файлов для решения определенной задачи или проблемы.


C реда системы Matlab

Среда системы Matlab это совокупность интерфейсов, через которые пользователь поддерживают связь этой системой. Это: диалог посредством командной строки или графического интерфейса, просмотр рабочей области, редактор и отладчик М-файлов, работа с файлами и оболочкой DOS, экспорт и импорт данных, интерактивный доступ к справочной информации, динамическое взаимодействие с внешними системами Microsoft Word , Microsoft Excel и др. Реализуются эти интерфейсы через командное окно, инструментальную панель, системы просмотра рабочей области и путей доступа, редактор / отладчик М-файлов, специальные меню.

Пользовательский интерфейс носит дружественный характер и построен с учетом устоявшихся принципов программного обеспечения, разрабатываемого для операционной системы Windows .

В системе Matlab существует два вида м-файлов:

Скрипты – представляют последовательности команд (представляют собой процедуры);

Function– представляют собой функции с входными аргументами и выходными параметрами (значениями функции).

Но далее возникает необходимость многократного запуска файла программы при других, изменённых параметрах решаемой задачи. Возникает неудобство: в постоянном редактировании исходного текста программы и повторном или очередном её запуске. При этом важен механизм управления переменными, который бы обеспечивал удобный интерфейс между программой и пользователем. При решении других задач могут возникнуть трудности с визуализацией какого-либо процесса, то есть некоторая переменная изменяться динамически в процессе решения поставленной задачи.

Все эти и другие трудности, возможно, решить при использовании графического интерфейса пользователя. (GUI– GraphicalUserInterface)

Основные принципы построения графического интерфейса

Использование графического интерфейса позволяет пользователю сделать программу более универсальной.

Как и любой процесс проектирования, процесс построения графического интерфейса пользователя можно разбить на следующие этапы:

1. Постановка задачи,

2. Создание формы интерфейса и создание на неё элементов управления.

3. Написание кода программы и кода обработки событий.

Этапы построения графического интерфейса пользователя

1. На первом этапе проводиться анализ поставленной задачи и определяется количество и состав элементов управления необходимых для решения задачи.

2. На втором этапе создаётся форма графического интерфейса и на ней создаются и размещаются элементы управления. Здесь же описываются их свойства.

Задавать расположение и выравнивать элементы на форме описывать их свойства можно "вручную", но для удобства и быстроты используют редактор выравнивания объектов (TheAlignmentTool) и редактора свойств (ThePropertyEditor).

Существует два способа создания формы и элементов управления, а так же задания или изменения их свойств:

Использование команды WORKSPACE (то есть использование команды операционной среды MATLAB).

Использование средств панели инструментов – совокупности средств для быстрого создания GUI (TheControlPanel).

При построении элементов управления первым способом удобно использовать скрипт-файл, в котором последовательно с помощью команд WARKSPACE описывается создание элементов управления и устанавливаются их свойства.

Эти команды можно использовать как для написания кода, создающего графический интерфейс пользователя, так и использовать для управления свойствами элементов управления из тела m-файлов. Благодаря чему мы можем получить визуализацию нашего процесса вычисления.

На практике всё более склоняются ко второму способу создания графического интерфейса с элементами управления. Это объясняется тем, что при использовании панели управления с её редакторами свойств, событий, выравнивания очень удобно работать, и создавать GUI значительно быстрее, чем в первом случае.

3. На третьем этапе создания графического интерфейса пользователя (GUI) пишется код основной программы вычисления и код для обработки событий.

Код основной программы вычисления, пишется на языке программирования операционной среды Matlab, в виде m-файла. Созданные m-файлы закрепляются за событием какого-нибудь элемента управления или формы.

При описании свойств элементов управления события описываются в m-файле:

а) либо при создании каждого элемента управления описываем его свойства и сразу описываем действие событие;

б) либо описываем обработку события для каждого элемента при помощи редактора событий (ThePropertyEditor).

Начало выполнения действий по созданию графического интерфейса

Редактор GUIDE (руководство) вызывается командой guideиз командного окна или путем выполнения цепочки команд главного меню File (Файл) – New (Новый) – GUI (Графический Интерфейс).

Две странички, присутствующие на стартовой заставке (рис. 1), позволяют начать проектирование нового интерфейса (вкладка – CreateNewGUI, (Создать новый интерфейс)) или воспользоваться ранее созданным интерфейсом (вкладка – OpenExistingGUI (Открыть существующий интерфейс)). Дело в том, что описание формы приложения вместе с расположенными на ней интерфейсными компонентами может быть сохранено в файле с расширением fig. Если на диске хранится нечто похожее на наше будущее приложение, существующим файлом можно воспользоваться с целью экономии времени.

Начальная конструктора графического интерфейса (GUIDE) (рис. 1)

Мне было предложено рассмотреть приложение, воспроизводящее график одной из пяти функций в зависимости от выбранной строки раскрывающегося меню.

Окно редактирования формы (рис. 2)


Окно редактирования m-кода формы (рис. 3)

Это код, описывающий поведение сохраненной нами формы. В нем содержатся процедуры и функции, которые позволяют форме быть работоспособной.


Окно программы, запущенной на выполнение (рис. 4)

Вот получена работоспособная программа, которая выполняет выведение различных графических зависимостей на координатной плоскости.

Выбирая различные пункты в выпадающем меню, а затем, нажимая кнопку, вы увидите различные варианты получаемых графиков.

Алгоритм создания интерфейса

1. Вызвать панель управления.

1) Создать новую форму интерфейса или загрузить существующую.

2) Перейти в режим редактирования формы.

3) Натаскать на форму необходимые элементы управления.

2. Вызвать редактор свойств.

2) Выбрать нужное свойство и изменить его.

3. Вызвать редактор событий.

1) Выбрать элемент управления.

2) Написать код обработки события.

4. Вызвать редактор выравнивания объектов.

1) Выбрать элемент управления иди группу элементов.

2) Выбрать метод выравнивания.

5. Перейти в окно панели управления и активизировать интерфейс.

Литература

1. Дьяконов, В.П. MATLAB 6.5 SP1/7 + Simulink 5/6 в математике и моделировании / В.П. Дьяконов. – М.: СОЛОН-Пресс, 2005. – 576 с.

2. Дьяконов, В.П. MATLAB 6.5 SP1/7 + Simulink 5/6. Основы применения / В.П. Дьяконов – М.: СОЛОН-Пресс, 2005. – 800 с.

3. Дьяконов, В.П. MATLAB 6.5 SP1/7 + Simulink 5/6. Работа с изображениями и видеопотоками / В.П. Дьяконов. – М.: СОЛОН-Пресс, 2005. – 400 с.

4. Ермачкова Ю.А. Проектирование интерфейса в среде GUIDEMATLAB / Ю.А. Ермачкова // Современные информационные технологии в экономике, управлении и образовании. Сборник материалов межвузовской научно-практической конференции, посвященной 175 – летию потребительской кооперации России и 5 – летию филиала. – М.: Информационно-внедренческий центр «Маркетинг», 2006. – С. 35–37.


Приложение

function varargout = kursovaya(varargin)

% KURSOVAYA M-file for kursovaya.fig

% KURSOVAYA, by itself, creates a new KURSOVAYA or raises the existing

% H = KURSOVAYA returns the handle to a new KURSOVAYA or the handle to

% the existing singleton*.

% KURSOVAYA ("CALLBACK", hObject, eventData, handles,…) calls the local

% function named CALLBACK in KURSOVAYA.M with the given input arguments.

% KURSOVAYA ("Property", "Value",…) creates a new KURSOVAYA or raises the

% existing singleton*. Starting from the left, property value pairs are