ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Полистирол листовой свойства. Разностороннее применение листового полистирола. Государственное образовательное учреждение высшего

Министерство образования Российской Федерации и науки

Российской Федерации

Государственное образовательное учреждение высшего

профессионального образования

“Алтайский Государственный Технический Университет

им. И.И. Ползунова”

Реферат.

По дисциплине «органическая химия» на тему:

«Полистирол (поливинилбензол)»

Выполнила студентка гр. ПКМ-71:

Бархатова Л. Н.

Проверила старший преподаватель

кафедры ФиТКМ: Арсентьева С.Н.

Барнаул 2008г.

Введение, общая характеристика и классификация полимеров

1. Историческая справка

2. Описание полистирола

3. Основные свойства

3.1.Физические свойства

3.2.Химические свойства

4. Получение

5. Надмолекулярная структура, конформация, конфигурация

6. Способы отверждения

7. Применение в промышленности

Заключение

Список литературы


Введение

Общая характеристика и классификация полимеров

Полимером называется органическое вещество, длинные молеку­лы которого построены из одинаковых многократно повторяю­щихся звеньев – мономеров.

Размер молекулы полимера определяется степенью полимери­зации n, т.е. числом звеньев в цепи. Если n= от 10 до 20, вещества представляют собой легкие масла. С возрастанием n увеличива­ется вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 10 4 , и тогда длина молекул достига­ет микрометров. Молекулярная масса полимера равна произве­дению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах от 10 3 до 3×10 5 . Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморф­ной до частично кристаллической. Доля кристалличности в зна­чительной мере определяется геометрией цепей. Чем ближе укла­дываются цепи, тем более кристалличным полимер становится. Кристалличность даже в лучшем случае оказывается несовершенной .

Аморфные полимеры плавятся в диапазоне температур, зави­сящем не только от их природы, но и от длины цепей; кристалли­ческие имеют точку плавления.

По происхождению полимеры делятся на три группы: синтетические полимеры (искусственные), природные органические и природные неорганические полимеры.

Синтетические полимеры получаются путем ступенчатой или цепной полимеризации низкомолекулярных полимеров.

Природные неорганические полимеры – это например расплав магмы, оксид кремния.

Природные органические полимеры образуются в результате жизнедеятельности рас­тений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза, крахмал, шеллак, лигнин, латекс.

Обычно природные полимеры подвергаются операциям выде­ления очистки, модификации, при которых структура основных цепей остается неизменной. Продуктом такой переработки явля­ются искусственные полимеры. Примерами являются натураль­ный каучук, изготовляемый из латекса, целлулоид, представляю­щий собой нитроцеллюлозу, пластифицированную камфарой для повышения эластичности.

Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются неза­менимыми и до сих пор, например в целлюлозно-бумажной про­мышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических поли­меров – материалов, полученных синтезом из низкомолекуляр­ных веществ и не имеющих аналогов в природе. Развитие хими­ческой технологии высокомолекулярных веществ – неотъемлемая и существенная часть современнойНТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой. По химической структуре полимеры делятся на линейные, разветв­ленные, сетчатые и пространственные. Молекулы линейных поли­меров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высокоэластическое, а затем и в вязкотекучее состояния (рисунок 1). Поскольку единственным следствием нагрева является изменение пластичности, линейные полимеры называют термопластичными. Не следует думать, что термин «ли­нейные» обозначает прямолинейные, наоборот, для них более ха­рактерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под дей­ствием реагентов.

Разветвленные (привитые) полимеры более прочны, чем ли­нейные. Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.

Сетчатая структура характерна тем, что цепи связаны друг с другом, а это сильно ограничивает движение и приводит к изме­нению как механических, так и химических свойств. Обычная ре­зина мягка, но при вулканизации серой образуются ковалентные связи типа S-ноль, и прочность растет. Полимер может приобрести сетчатую структуру и спонтанно, например, под действием света и кислорода произойдет старение с потерей эластичности и рабо­тоспособности. Наконец, если молекулы полимера содержат реакционноспособные группы, то при нагревании они соединяются множеством поперечных прочных связей, полимер оказывается сшитым, т. е. приобретает пространственную структуру. Таким образом, нагрев вызывает реакции, резко и необратимо изменяю­щие свойства материала, который приобретает прочность и вы­сокую вязкость, становится нерастворимым и неплавким. Вслед­ствие большой реакционной способности молекул, проявляющей­ся при повышении температуры, такие полимеры называют тер­мореактивными. Нетрудно представить, что их молекулы активны не только по отношению друг к другу, но и к поверхностям ино­родных тел. Поэтому термореактивные полимеры, в отличие от термопластичных, обладают высокой адгезионной способностью даже при низких температурах, что позволяет использовать их в качестве защитных покрытий, клеев и связующего в композици­онных материалах.

Термопластичные полимеры получают по реакции полимери­зации, протекающей по схеме (рисунок 2).

Рисунок 2 – Реакции образования полимеров: а) – полимеризация, б) - поликонденсация

При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы, реакция чувствительна к присутствию примесей и требует, как правило, высоких давлений. Неудивительно, что такой процесс в естествен­ных условиях невозможен, и все природные полимеры образова­лись иным путем. Современная химия создала новый инстру­мент - реакцию полимеризации, и благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализует­ся лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.

Реакционноспособные молекулы термореактивных полимеров могут образоваться более простым и естественным путем – посте­пенно от мономера к димеру, потом к тримеру, тетрамеру и т. д. Такое объединение мономеров, их «конденсацию», называют ре­акцией поликонденсации; она не требует ни высокой чистоты, ни давлений, но сопровождается изменением химического состава, а часто и выделением побочных продуктов (обычно водяного пара) (рисунок 2). Именно эта реакция реализуется в природе; она мо­жет быть легко осуществлена за счет лишь небольшого нагрева в самых простых условиях, вплоть до домашних. Такая высокая технологичность термореактивных полимеров предоставляет ши­рокие возможности изготовлять различные изделия на нехимиче­ских предприятиях, в том числе на радиозаводах .

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифици­ровать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.


1. Историческая справка

Промышленность ластмасс зародилась на рубеже XX века. Легко полимеризующийся стирол и его стеклообразный твердый полимер сразу же привлекли внимание. Основы химии и техноло­гии производства полистирола заложили Остромысленский и Штау-дингер. Последний предложил цепной механизм образования макромолекул полистирола.

Первый патент на получение полистирола (способом термической спонтанной полимеризации в массе) был взят в Германии в 1911г. Там же в 1920 г. началось промышленное производство полимера. В 1936г. уже производилось 6000 т/год.

За пределами Германии рост производства полистирола долгое время сдерживался высокой ценой на мономер. Стимулом к бурному развитию послужило создание в США во время второй мировой войны крупнотоннажного производства бутадиен-стирольного каучукачто, естественно, привело к снижению цен на стирол. После Войныпроизводство полистирола и сополимеров стирола, содержащихболее 50 процентов стирола по составу (в отличие от бутадиен-стирольного каучука, где стирола около 30 процентов), развивалось самостоятельно. Разработка таких эффективных продуктов; как пенополистирол, ударопрочные полимеры стирола, АБС-пластики, позволила полистирольным пластикам в целом занять третье место в мировом производстве пластмасс после полиэтилена и поливинилхлорида.

Читая различную информацию о современных строительных материалах, часто приходится сталкиваться со словом полистирол. Применяя новые технологии в процессах производства, из него получают пенопласты. Все эти материалы находят широкое применение во многих сферах жизнедеятельности, поэтому стоит узнать более подробно, что представляет собой полистирол и как он используется, о его свойствах и характеристиках.

Полистирол относится к группе синтетических полимеров класса термопластов, продукт получают в промышленности полимеризацией стирола. Полистирол - твердое и бесцветное стеклоподобное вещество, которое пропускает до 90% лучей видимого спектра, его плотность 1,05г/м 3 , имеет регулярную цепь строения.

Полимер обладает слабой полярностью, имея высокие диэлектрические свойства, они мало зависимы от частоты тока и температур. Он растворим в кетонах, ароматических углеводородах, альдегидах и эфирах, но не растворяется в спиртах, очень устойчив к кислотам, щелочам и воде. Полимер легко формируется и окрашивается, легко обрабатывается механическими способами, хорошо склеивается, он обладает высокой влагостойкостью и морозостойкостью, низким водопоглощением. В производстве его получают 3 способами:

  1. Эмульсионный
  2. Суспензионный
  3. Блочный.

Наиболее устаревший способ получения эмульсионный, поскольку он не нашел своего применения в производстве. Для того чтобы получить полистирол таким методом, необходимо иметь воду, стирол, инициатор полимеризации и эмульгатор, реакция которых происходит при температуре +85 +95 о С. Весь процесс заканчивается, когда свободного стирола остается меньше чем 0,5%. Такой метод дает возможность получить полистирол с повышенной молекулярной массой.

Метод суспензионный производится по периодической схеме в реакторах с теплоотводящей рубашкой и мешалкой, применяя эмульсию, стабилизатор и инициатор полимеризации. В ходе процесса температура постепенно повышается до +130 о С под давлением. Готовый продукт промывают и сушат. Этот метод также почти не используется, поскольку устарел, но его применяют для получения пенополистирола.

Наиболее эффективным является третий способ, он почти безотходный, поэтому нашел применение в производстве полистирола. Используются две схемы -полной и неполной конвенции для общего назначения полистирола. Полимеризация происходит в среде бензола постадийно, начиная с температуры +80 о С постепенно доведя массу до +220 о С, пока стирол не превратится в полистирол на 80-90%. Готовый продукт отличается стабильными параметрами и высокой чистотой.

Применение

Выпускается полимер в виде прозрачных гранул , которые имеют цилиндрическую форму. Они перерабатываются методом литься под давлением или экструзии, при температуре +190 +230 о С. На основе полистирола базируется огромное количество пластиков, благодаря простоте полимера, его невысокой цене, большому ассортименту марок.

Из полистирола научились изготавливать массу самых необходимых предметов, которые нашли применение в повседневной жизни. Все изделия совершенно безвредны для здоровья людей, в быту они нас постоянно окружают - одноразовая посуда игрушки для детей, упаковка.

В строительстве полистирол нашел очень большое применение, на его основе производятся теплоизоляционные материалы - плиты, сэндвич-панели, несъемная опалубка и др. Также производится и отделочный декоративный материал для облицовки - потолочный багет и плитка декоративная.

В медицинской промышленности полимер также применим, из него производят некоторые части в системах переливания крови, одноразовые инструменты. Вспененный полистирол также актуален для подготовки и очистке сточных вод.

В пищевой промышленности используется упаковочный материал , который также производится из полистирола. Есть и ударопрочный вид полимера, он стал незаменим для бытовой техники, электроники.

Физические свойства полистирола

  1. Плотность - 1050-1080кг/м 3
  2. Насыпная плотность гранул - 550-560кг/м 3
  3. Усадка линейная в форме - 0,4-0,8%
  4. Нижний предел рабочей температуры - (-40 о С), верхний предел - (+75 о С)
  5. Электрическая прочность с частотой 50Гц - 20-23кВ/мм
  6. Удельное электрическое сопротивление поверхностное - 10 16 Ом, объемное, под напряжением 1 мин - 10 17 Ом-см, под напряжением 15 мин - 10 15 Ом-см.
  7. Коэффициент линейного расширения термического - 6х10 -5 , 7х10 -5 градус -1
  8. Теплопроводность - 0,093-0,140Вт/м*К
  9. Теплоемкость - 34х10 3 Дж/кг*К
  10. Диэлектрическая проницаемость - 2,49-2, 6
  11. Тангенс угла при диэлектрических потерях с частотой 1МГц составляет - 3-4Х10-4.

Свойства полимера

Полистирол - термопластическая пластмасса в форме плит, может иметь гладкую поверхность или со штампованным рисунком. Полимер белого цвета можно назвать хорошей альтернативой пластику ПВХ, а прозрачный вариант - оргстеклу. Он стал популярным благодаря таким свойствам, как гибкость и легкость в обработке, он обладает также высокой ударопрочностью. Он отлично обрабатывается и формуется, препятствует потере тепла, но главным его достоинством является низкая стоимость.

Его можно также назвать идеальным заменителем стекла, поскольку он прозрачный и легкий в обработке. Он находит применение во внутренней и наружной частях помещений, благодаря своим физическим и химическим свойствам. Прозрачный полимер часто используется для остекления зданий, отлично пропускает свет, но боится прямых солнечных лучей. Со временем УФ приводит к разрушению материала, он желтеет, снижаются его характеристики прочности.

Полистирол стал уже давно применяться, как основа для производства пенопластов и других материалов на их основе, путем нагревания смеси материала с преобразователями. В процессе производства получается вспученный полистирол, а после остывания материал превращается во вспенено застывшую массу жесткой структуры с плотными ячейками, заполненными воздухом. 98% готового материала составляет воздух, а всего 2% приходится на сам полимер .

Такое качество, как низкая теплопроводность сделала вспененный полимер незаменимым материалом в строительных работах. Его стали широко использовать для утепления стен, кровли, пола и потолков в зданиях разного типа. С утеплителем просто работать, его можно порезать обычным острым ножом, легко монтировать, поскольку он имеет незначительный вес. Большинство потребителей оценили материал по достоинству, их привлекает его устойчивость к процессам гниения и образования грибков, стойкость к агрессивной среде, воздействию микроорганизмов.

Но у вспененного полистирола есть и минусы, о которых также нужно сказать - экологическая небезопасность, недолговечность и пожароопасность.

Заключение

Сам полистирол не наносит вреда окружающей среды, но некоторые виды материалов на его основе могут быть опасны для здоровья , он является горючим материалом. В зависимости от свойств и назначения полистирола, установлены марки для общего назначения, поэтому потребитель, пользуясь этими обозначениями, может узнать о характеристиках и применении определенной марки полимера.

Полистирол – синтетический термопластичный твердый, жесткий, аморфный полимер, представляющий собой продукт полимеризации стирола. Массово выпускается в форме полистирола общего назначения и ударопрочного полистирола. Мировое производство полистирола более 14 млн. тонн в год.

Полистирол (-C 6 H 5 -CH-CH-) n является продуктом полимеризации стирола, который представляет собой сочетание непредельного углеводорода этилена с ароматическим радикалом фенилом – C 6 H 5 (фенилэтилен):

СН 2 =СН-C 6 H 5

При полимеризации радикалы винила образуют полимерную цепь с боковыми фенильными группами (бензольными кольцами).

По характеру пространственного расположения фенильной группы относительно молекулярной цепи различают:

  • атактический полистирол – характеризуется тем, что в нем бензольные кольца расположены по обе стороны цепи совершенно неупорядоченно;
  • изотактический полистирол – в его макромолекуле все бензольные кольца расположены с одной стороны цепи;
  • синдиотактический полистирол – в его полимерной цепи бензольные кольца расположены строго альтернативно – поочередно слева и справа от центральной цепи, упорядоченность расположения боковых групп придает синдиотактическому полистиролу высокую твердость и термостойкость.

Наиболее широко применяется атактический полистирол.

Полистирол общего назначения – прозрачный, хорошо окрашиваемый, легко перерабатываемый материал, представляющий собой продукт полимеризации стирола в массе или в суспензии, или в эмульсии, и предназначенный для изготовления изделий различными методами термоформования.

В зависимости от свойств и назначения в соответствии с ГОСТ 20282-86 установлены следующие марки полистирола общего назначения:

  • получаемого полимеризацией в массе:
    • ПСМ-115 - для изготовления методом литья под давлением изделий технического назначения и товаров народного потребления;
    • ПСМ-111 - повышенной теплостойкости, для изготовления светотехнических изделий методом литья под давлением и товаров народного потребления;
    • ПСМ-118 - для изготовления методом литья под давлением изделий сложной конфигурации технического назначения и товаров народного потребления. Марка характеризуется высокой текучестью;
    • ПСМ-151 - повышенной теплостойкости и низкой текучести, для изготовления листов, профилей, пленок и нитей методом экструзии, товаров народного потребления; для производства нитей предназначен только высший сорт;
  • суспензионного:
    • ПСС - для изделий технического назначения и товаров народного потребления;
  • эмульсионного:
    • ПСЭ-1 - для получения пенопластов;
    • ПСЭ-2 - для продукции технического назначения; допускается применение для изготовления пеноплит.

Условное обозначение марок полистирола общего назначения состоит из сокращенного назначения материала (ПС), способа получения (Э – эмульсионный; М – полимеризация в массе (блочный); С – суспензионный), цифрового обозначения марки, указания рецептуры светостабилизации, наименования цвета, указания рецептуры окрашивания цвета, сорта и обозначения стандарта. В обозначение поверхностно обработанного полистирола вводят буквенный эквивалент «С» перед указанием сорта.

Пример условного обозначения полистирола общего назначения блочного марки 111, светостабилизированного, красного цвета, высшего сорта по ГОСТ 20282-86: ПСМ-111-20, красный, рец. 136П, высший сорт ГОСТ 20282-86.

Пример условного обозначения полистирола общего назначения блочного марки 151, неокрашенного, поверхностно обработанного, первого сорта по ГОСТ 20282-86: ПСМ-151 «С», первый сорт ГОСТ 20282-86.

Ударопрочный полистирол – непрозрачный бесцветный материал, продукт привитой сополимеризации стирола с бутадиеновым или бутадиен-стирольным каучуком, имеющий двухфазную структуру. Непрерывная фаза (матрица) образована полистиролом. Дискретная фаза (микрогель) – частицами каучука овальной формы с размерами 2-5 мкм. Каучуковые частицы окружены тонкой пленкой привитого сополимера стирола на каучуке, а внутри частиц содержится также окклюдированный полистирол, в результате чего увеличивается эффективный объем каучуковой фазы. От объема последней во многом зависят свойства ударопрочного полистирола. Ударопрочный полистирол выпускается стабилизированным, в виде белых гранул. Основные методы переработки – литье под давлением и экструзия листа с последующим пневмо- или вакуумформованием.

Условное обозначение ударопрочного полистирола в соответствии с ГОСТ 28250-89 состоит из букв УП – ударопрочный, сразу за которыми указывается метод синтеза полистирола: М – полимеризацией в массе, Э – полимеризацией в эмульсии, С – полимеризацией в суспензии. Далее через тире две цифры обозначают ударную вязкость. Следующие две цифры указывают удесятеренное содержание остаточного мономера. Кроме того, в марку может включаться буква, означающая предпочтительный способ переработки.

Пример условного обозначения ударопрочного полистирола, полученного полимеризацией в массе с ударной вязкостью 7 кДж/м2 и остаточным содержанием мономера 0,3 %, предназначенного для переработки экструзионным методом: УПМ-0703 Э.

Обычное обозначение полистирола на российском рынке ПС, но могут встречаться и другие обозначения: PS или GPPS или PS-GP или XPS или Crystal PS (полистирол общего назначения), УП или УПС или HIPS или PS-HI или PS-I (ударопрочный полистирол), MIPS или IPS или PS-I (ударопрочный полистирол средней ударной прочности), SHIPS (ударопрочный полистирол сверхвысокой ударной прочности).

Кроме полистирола общего назначения и ударопрочного полистирола промышленностью выпускается широкое разнообразие модификаций и сополимеров стирола. В частности, эластомеры, обладающие способностью к большим обратимым деформациям за счет частичного развертывания хаотически свернутых цепных молекул полимера, и синдиотактический полистирол, получаемый на металлоценовых катализаторах и обладающий очень высокой жесткостью и термостойкостью.

Полистирол – термопластичный материал, обладающий высокой твёрдостью и хорошими диэлектрическими свойствами, химически стойкий по отношению к щелочам и кислотам, кроме азотной и уксусной. Полистирол не растворяется в низших спиртах, алифатических углеводородах, фенолах, простых эфирах. Растворяется в собственном мономере, ароматических и хлорированных углеводородах, сложных эфирах, ацетоне. Устойчив к радиоактивному облучению, но стойкость к ультрафиолетовым лучам невелика. Полистирол легко формуется и окрашивается. Хорошо обрабатывается механическими способами. Без труда склеивается. Обладает низким влагопоглощением и высокой влагостойкостью и морозостойкостью. Физиологически безвреден. Изделия из полистирола обладают высоким глянцем.

Полистирол общего назначения весьма хрупок, имеет низкую ударную прочность и малую теплостойкость: температура размягчения полистирола составляет 90-95°С. Лучшими эксплуатационными свойствами обладают различные сополимеры стирола. Ударопрочный полистирол отличается повышенными показателями ударной вязкости в широком диапазоне температур (до -30...-40 °С).

Основной недостаток полистирола – низкая термо- и светостойкость. Поэтому изделия с применением полистирола не рекомендуются к эксплуатации на улице без покрытия и больше подходят для интерьерных применений.

Свойства полистирола общего назначения.

  1. Плотность – 1050-1080 кг/м3.
  2. Насыпная плотность гранул – 550-560 кг/м3.
  3. Линейная усадка в форме – 0,4-0,8 %.
  4. Нижний предел рабочих температур – минус 40 °С.
  5. Верхний предел рабочих температур 65-75 °С.
  6. Электрическая прочность при частоте 50 Гц – 20-23 кВ/мм.
  7. Удельное поверхностное электрическое сопротивление – 1016 Ом.
  8. Удельное объемное электрическое сопротивление
    • при выдержке под напряжением 1 мин. – 1017 Ом·см
    • при выдержке под напряжением 15 мин. – 1018 Ом·см.
  9. Коэффициент термического линейного расширения – 6·10-5-7·10-5 град-1.
  10. Коэффициент теплопроводности – 0,093-0,140 Вт/м·К.
  11. Удельная теплоемкость – 34·103 Дж/кг·К.
  12. Тангенс угла диэлектрических потерь при частоте 1 МГц – 3-4·10-4.
  13. Диэлектрическая проницаемость – 2,49-2,60.

Полистирольные изделия и продукция
Оборудование для получения и переработки полистирола
Книги и журналы о полистиролах
Фотографии
Видео
Процесс производства полистирола
Исторические факты
Перспективы и прогнозы развития
Краткие характеристики и свойства:

Полистирол получают полимеризацией стирола в массе (ПСМ), в эмульсии (ПСЭ) и реже-в суспензии (С). Средняя молекулярная масса (ММ) =80-100тысяч в зависимости от способа получения.
Формула полистирола:
n
C6H5
Полистирол и материалы на его основе относятся к конструкционным полимерным материалам. Они характеризуются достаточно высокой прочностью, жесткостью, высокой размерной стабильностью, отличными декоративными свойствами. Полистирол - аморфный полимер, характеризующийся высокой прозрачностью (светопропускание до 90%).
Полистирол (ПС, бакелит, вестирон, стирон, фостарен, эдистер и др.). Плотность 1,04-1,05 г/см3, t разм 82-95 С. Полистирол растворяется в стироле и ароматических углеводородах, кетонах. Полистирол не растворяется в воде, спиртах, слабых растворах кислот, щелочей. Модуль при изгибе 2700-3200 МПа. Теплопроводность 0,08-0,12 Вт/(м*К). Ударная вязкость по Шарпи с надрезом 1,5-2 кДж/м2. Полистирол склонен к растрескиванию. Температура самовоспламенения 440 С. КПВ пылевоздушной смеси 25-27,5 г/м3.Полистирол хрупок, стоек к щелочам и ряду кислот, к маслам, легко окрашивается красителями, не теряя прозрачности, имеет высокие диэлектрические свойства. Полистирол не токсичен, допущен к контакту с пищевыми продуктами и к использованию в медико - биологической технике.
УПС (ударопрочный полистирол) получают привитой сополимеризацией стинола с полибутадиеновыми или бутадиенстирольными каучуками. Ударопрочный полистирол (УП, каринекс, люстерекс, стернит, стирон, хостирен идр.)Структурно УПС представляет собой трехфазную систему, состоящую из ПС (полистирола), гель Фракии привитого сополимера и каучука с привитым стиролом в виде частиц размером до 15 мкм, равномерно распределенным по объему УПС. Несмотря на низкую молекулярную массу матричного полистирола (70-100 тыс.), присутствие каучука существенно замедляет рост микротрещин, что и повышает прочность материала (табл. 1).
В марке УПС указывается метод синтеза (М, С), цифровое обозначение ударной вязкости (две первые цифры) и десятикратное значение содержания остаточного мономера. Кроме того, в марку могут включать букву, обозначающую предпочтительный способ переработки. Например, УПМ-0703 Э - ударопрочный полистирол, полученный полимеризацией в массе; его ударная вязкость 7 кДж/м 2 , остаточное содержание мономера 0,3%, переработка - экструзией.

Таблица 1.

Основные свойства полистирольных пластиков

Свойства полистирола

Плотность, кг / м 3

Температура плавления, 0 С

Разрушающее напряжение, МПа, при:

Растяжении

Изгибе

Сжатии

Относительное удлинение при разрыве, %

Ударная вязкость, кДж / м 2

Твердость по Бринеллю, МПа

Теплостойкость по Мартенсу, 0 С

Диэлектическая проницаемость при 10 6 Гц

Тангенс угла диэлектрических потерб при 10 6 Гц, х10 4

Удельное объемное электрическое сопротивление, Ом∙м

Электрическая мощность, МВ / м

АБС - пластик является продуктом привитой сополимеризации трех мономеров - акрилонитрила , бутадиена и стирола , причем статический сополимер стирола и акрилонитрила образует жесткую матрицу, в которой распределены частицы каучука размером до 1 мкм. Повышение ударной прочности сопровождается сохранением на высоком уровне основных физико-механических и теплофизических свойств (табл. 1). АБС непрозрачен. Выпускается стабилизированным в виде порошка и гранул. Применяется для изготовления изделий технического назначения.
В марке АБС первые две цифры означают величину ударной вязкости по Изоду, следующие две - ПТР (показатель текучести расплава), буква в конце марки указывает на метод переработки или на особые свойства. Например, АБС-0809Т характеризуется ударной вязкость - 8 кДж/м 2 , ПТР - 9г/10 мин, повышенной теплостойкостью (Т).
В промышленности используются сополимеры стинола с акрилонитрилом (САН), стинола с метилиетакрилатом (МС) и стинола с метиметакрилатом и акрилонитрилом (МСН).
Полистирол перерабатывается всеми известными способами.

Механические свойства полистирола

Механическая стойкость полистиролов к кислотам и растворителям:

Полистирол

Н 2 SO 4

HNO 3 50%

HCl до 37%

Ацетон

Этанол

Бензол

Фенол

Теплофизические свойства полистиролов:

Полистирол

Теплопроводность, λ, Вт/(м*К)

Теплоемкость, с, кДж/(кг*К)

Температуропроводность, a*10 7 , м 2 /с

Средний КЛР (β*10 5),К -1

Температурные характеристики:

Полистирол

Пределы рабочих температур, С

Температура размягчения по Вика

Теплостойкость по Мартенсу

Температура плавления С

Диэлектрическая проницаемость полистиролов:

Показатель возгораемости (К) - безразмерная величина, выражающая отношение количества тепла, выделенного при горении к количеству тепла, затраченному на поджигание образца материала. Материал с показателем К>0,5 является горючим. Для полистирола показатель К-1,4 материал является горючим

Показатели пожароопасности полистиролов:

Особенности горения полистирола и ударопрочного полистирола:
Поведение пламени : Вспыхивает при поджигании, горит легко. Горит и после удаления из пламени.
Окраска пламени : Оранжево-желтое, светящееся.
Характер горения : Горит с образованием большого количества копоти, плавится.
Запах: Сладковатый цветочный с оттенком запаха бензола. Запах корицы, если уколоть раскаленной иглой. Сладковатый запах стирола.

Краткое описание, методы переработки, основное назначение, качественная оценка свойств полистиролов и специфические особенности

Полистирол блочный, эмульсионный, суспензионный : Более жесткий материал чем ПЭВД И ПЭНД, с хорошими диэлектрическими свойствами, недостаток хрупкость и низкая теплостойкость. Химическистоек. Для повышения ударной вязкости и теплостойкости используют сополимеризацию стирола с другими мономерами или совмещение его с каучуками. При введении в полистирол порофоров м последующем вспенивании получают пенополистирол, отличающийся высоким тепло и звукоизоляционными свойствами, плавучестью, химической стойкостью и водостойкостью

Основное назначение: Для корпустных деталий приборов, ридиоэлектронной аппаратуры, изоляторов, крупногабаритных деталей холодильников, внутренней отделки самолетов. Пенополистрирол для тепло и звукоизоляции в строительстве

Полистрирол ударопрочный : Более высокая ударная вязость чем у полистрирола

Методы переработки: Литье под давлением. Пневматическое и вакуумное формование. Экструзия. Штамповка. Прессование. Склейка. Механическая обработка

Основное назначение: Для технических изделий и деталей

Модифицированный полистирольный пластик : Высокая ударная вязкость при низких и высоких температурах, повышенная нагревостойкость, стойкость к щелочам и смазочным маслам

Методы переработки: Литье под давлением. Экструзия. Раздувка

Основное назначение: Для крупногабаритных изделий в автомобилестроении и в электротехнике

Из различной пластмассы на сегодняшний день изготавливают большое количество игрушек, строительных материалов и пр. Самым популярным видом пластика считается полистирол. Он обладает высокими техническими характеристиками. Поэтому такой материал широко используется в быту и промышленной сфере.

Что такое полистирол

Полистирол представляет собой твердый бесцветный материал. Он относится к группе синтетических полимеров. Изготавливают полистирол из стирола или фентилэтилена путем полимеризации. Одним из конечных продуктов переработки природного газа и нефти является полистирол.

Как применяется полистирол

Изготавливается полимер в виде прозрачных гранул. Они обладают цилиндрической формой. Большое количество пластика основывается на основе полистирола. Так как полимер имеет простое строение, небольшую стоимость и большой выбор. Из полистирола изготавливают различные материалы, предметы, которые необходимы в повседневной жизни. Например, игрушки, одноразовая посуда, упаковки и т.д. Все предметы не несут вреда для нашего здоровья.

Для изготовления теплоизоляционных материалов используют полистирол. Поэтому он широко применяется в строительстве. На его основе изготавливают плиты, несъемные опалуби, сэндвич-панели и многое другое. Еще изготавливают из полистирола декоративную плитку и потолочные карнизы.

Помимо строительства полистирол используют в медицинских нуждах. Из него изготавливают одноразовые инструменты и части системы переливания крови.

Для подготовки и очистки сточных вод применяют вспененный полистирол.

В пищевой промышленности тоже используется полистирол. Из него изготавливают упаковочные материалы.

А для производства электроники и бытовой техники используют ударопрочный полистирол.

Виды полистирола

Полистирол можно разделить по технологии производства. Рассмотрим самые популярные виды данного материала:

Свойства полимера

Полистирол представляет собой термопластическую пластмассу, которая изготавливается в виде плит. Она может быть с гладкой поверхностью или иметь штампованные рисунки. Полимер бывает прозрачный и белый. Прозрачный полимер может стать хорошей заменой оргстеклу, а белый - пластику ПВХ. Такой материал очень популярен благодаря своей высокой ударопрочности, простоте в обработке и гибкостью.

Одним из достоинств такого материала является низкая стоимость. Полистирол легко формуется, обрабатывается и препятствует потери тепла. Он с легкостью может заменить стекло, так как прост в обработке и имеет прозрачный цвет.

Благодаря высоким химическим и физическим свойствам такой материал применяется для наружных и внутренних частей помещений. Прозрачный полимер можно использовать для остекления зданий, так как он хорошо пропускает свет. Но стоит учитывать, что такой материал боится воздействия прямых солнечных лучей. Так как через какое-то время полистирол начинает желтеть, снижаются его характеристики и затем он разрушается. Такой материал давно используется для изготовления пенопласта и других материалов. Происходит это при помощи нагревания материала и преобразователя. При изготовлении получается вспученный полистирол. А после того как материал остывает он превращается во вспененную застывшую массу. Она обладает жесткой структурой с плотными ячейками, которые заполняются на 98% воздухом. В получившемся материале содержится всего 2% полимера.

Благодаря низкой теплопроводности материала он отлично подходит для строительства. Полистирол широко применяется для утепления пола, кровли, потолков и стен. Такой утеплитель легко устанавливать и резать обычным строительным ножом. Вес такого материала небольшой. Те, кто уже покупал полистирол,отзываются только о его положительных сторонах. Они отмечают, что полистирол противостоит гниению, грибку, проявляет стойкость к агрессивной среде и воздействию микроорганизмов. Но, как и у любого материала можно выделить некоторые недостатки:

  1. Пожароопасность;
  2. Экологически небезопасный материал;
  3. Небольшой срок службы.

Физические свойства полистирола

Рассмотрим физические свойства полистирола:

  • Теплоемкость составляет 35х103Дж/кг*К;
  • Плотность материала составляет от 1050 до 1080 кг/м3;
  • Усадка от 0,4 до 0,8%;Насыпная плотность гранул составляет от 550 до 560 кг/м3;
  • Нижнее значение рабочей температуры равняется -40оС, а верхнее - 75оС;
  • Диэлектрическая проницаемость равняется от 2,49 до 2,6;
  • Электрическая прочность составляет частоту 50 Гц;
  • Электрическое сопротивление равняется 1016 Ом.

Отличие полистирола от пенопласта

Пенопласт является разновидностью вспененного полистирола. Гранулы материала обрабатывают паром, поэтому промежутки между молекулами увеличиваются. При распухании гранул полистирола они склеиваются между собой, и образуется пенопласт.

При разогреве гранулированного полистирола, который имеет пенообразующий наполнитель, полученную пену выдавливают в форму и таким образом получается экструдированный пенополистирол. Пенопласт и пенополистирол ни чем не отличается кроме техники изготовления.