ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Линейные уравнения. Решение, примеры. Решение показательных уравнений. Примеры

для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.

Инструкция

Способ подстановкиВыразите одну переменную и подставте ее в другое уравнение. Выражать можно любую переменную по вашему усмотрению. Например, выразите «у из второго уравнения:
х-у=2 => у=х-2Затем подставьте все в первое уравнение:
2х+(х-2)=10Перенесите все без «х в правую часть и подсчитайте:
2х+х=10+2
3х=12 Далее, чтобы «х, разделите обе части уравнения на 3:
х=4.Итак, вы нашли «х. Найдите «у. Для этого подставьте «х в то уравнение, из которого вы выразили «у:
у=х-2=4-2=2
у=2.

Сделайте проверку. Для этого подставьте получившиеся значения в уравнения:
2*4+2=10
4-2=2
Неизвестные найдены верно!

Способ сложения или вычитания уравненийИзбавьтесь сразу от -нибудь перемененной. В нашем случае это проще сделать с «у.
Так как в «у со знаком «+ , а во втором «- , то вы можете выполнить операцию сложения, т.е. левую часть складываем с левой, а правую с правой:
2х+у+(х-у)=10+2Преобразуйте:
2х+у+х-у=10+2
3х=12
х=4Подставьте «х в любое уравнение и найдите «у:
2*4+у=10
8+у=10
у=10-8
у=2По 1-ому способу можете , что найдены верно.

Если нет четко выраженных переменных, то необходимо немного преобразовать уравнения.
В первом уравнении имеем «2х, а во втором просто «х. Для того, чтобы при сложении или «х сократился, второе уравнение умножьте на 2:
х-у=2
2х-2у=4Затем вычтите из первого уравнения второе:
2х+у-(2х-2у)=10-4Заметим, если перед скобкой стоит минус, то после раскрытия поменяйте на противоположные:
2х+у-2х+2у=6
3у=6
у=2«х найдите, выразив из любого уравнения, т.е.
х=4

Видео по теме

Совет 2: Как решать линейное уравнение с двумя переменными

Уравнение , в общем виде записанное ах+bу+с=0, называется линейным уравнением с двумя переменными . Такое уравнение само по себе содержит бесконечное множество решений, поэтому в задачах оно всегда чем-либо дополняется – еще одним уравнением или ограничивающими условиями. В зависимости от условий, предоставленных задачей, решать линейное уравнение с двумя переменными следует разными способами.

Вам понадобится

  • - линейное уравнение с двумя переменными;
  • - второе уравнение или дополнительные условия.

Инструкция

Если дана система из двух линейных уравнений, решайте ее следующим образом. Выберите одно из уравнений, в котором коэффициенты перед переменными поменьше и выразите одну из переменных, например, х. Затем подставьте это значение, содержащее у, во второе уравнение. В полученном уравнении будет лишь одна переменная у, перенесите все части с у в левую часть, а свободные – в правую. Найдите у и подставьте в любое из первоначальных уравнений, найдите х.

Решить систему из двух уравнений можно и другим способом. Умножьте одно из уравнений на число, чтобы коэффициент перед одной из переменных, например, перед х, был одинаков в обоих уравнениях. Затем вычтите одно из уравнений из другого (если правая часть не равна 0, не забудьте вычесть аналогично и правые части). Вы увидите, что переменная х исчезла, и осталась только одна переменная у. Решите полученное уравнение, и подставьте найденное значение у в любое из первоначальных равенств. Найдите х.

Третий способ решения системы двух линейных уравнений – графический. Начертите систему координат и изобразите графики двух прямых, уравнения которых указаны в вашей системе. Для этого подставляйте любые два значения х в уравнение и находите соответствующие у – это будут координаты точек, принадлежащих прямой. Удобнее всего находить пересечение с осями координат – достаточно подставить значения х=0 и у=0. Координаты точки пересечения этих двух линий и будут задачи.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, и т.д. – тогда значениями могут быть только . Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Источники:

  • как решить уравнение с одной переменной

Само по себе уравнение с тремя неизвестными имеет множество решений, поэтому чаще всего оно дополняется еще двумя уравнениями или условиями. В зависимости от того, каковы исходные данные, во многом будет зависеть ход решения.

Вам понадобится

  • - система из трех уравнений с тремя неизвестными.

Инструкция

Если два из трех системы имеют лишь две неизвестные из трех, попытайтесь выразить одни переменные через другие и подставить их в уравнение с тремя неизвестными . Ваша цель при этом – превратить его в обычное уравнение с неизвестной. Если это , дальнейшее решение довольно просто – подставьте найденное значение в другие уравнения и найдите все остальные неизвестные.

Некоторые системы уравнений можно вычитанием из одного уравнения другого. Посмотрите, нет ли возможности умножить одно из на или переменную так, чтобы сократились сразу две неизвестные. Если такая возможность есть, воспользуйтесь ею, скорее всего, последующее решение не составит труда. Не забывайте, что при умножении на число необходимо умножать как левую часть, так и правую. Точно также, при вычитании уравнений необходимо помнить о том, что правая часть должна также вычитаться.

Если предыдущие способы не помогли, воспользуйтесь общим способом решений любых уравнений с тремя неизвестными . Для этого перепишите уравнения в виде а11х1+a12х2+а13х3=b1, а21х1+а22х2+а23х3=b2, а31х1+а32х2+а33х3=b3. Теперь составьте матрицу коэффициентов при х (А), матрицу неизвестных (Х) и матрицу свободных (В). Обратите внимание, умножая матрицу коэффициентов на матрицу неизвестных, вы получите матрицу, матрице свободных членов, то есть А*Х=В.

Найдите матрицу А в степени (-1) предварительно отыскав , обратите внимание, он не должен быть равен нулю. После этого умножьте полученную матрицу на матрицу В, в результате вы получите искомую матрицу Х, с указанием всех значений.

Найти решение системы из трех уравнений можно также с помощью метода Крамера. Для этого найдите определитель третьего порядка ∆, соответствующий матрице системы. Затем последовательно найдите еще три определителя ∆1, ∆2 и ∆3, подставляя вместо значений соответствующих столбцов значения свободных членов. Теперь найдите х: х1=∆1/∆, х2=∆2/∆, х3=∆3/∆.

Источники:

  • решений уравнений с тремя неизвестными

Решение системы уравнений сложно и увлекательно. Чем сложнее система, тем интереснее ее решать. Чаще всего в математике средней школы встречаются системы уравнений с двумя неизвестными, но в высшей математике переменных может быть и больше. Решать системы можно несколькими методами.

Инструкция

Самый распространенный метод решения системы уравнений - это подстановка. Для этого необходимо выразить одну переменную через другую и подставить ее во второе уравнение системы, таким образом приведя уравнение к одной переменной. Например, дана уравнений:2х-3у-1=0;х+у-3=0.

Из второго выражения удобно выразить одну из переменных, перенеся все остальное в правую часть выражения, не забыв при этом сменить знак коэффициента:х=3-у.

Раскрываем скобки: 6-2у-3у-1=0;-5у+5=0;у=1.Полученное значение у подставляем в выражение:х=3-у;х=3-1;х=2.

В первом выражении все члены 2, можно вынести 2 за скобку распределительному свойству умножения:2*(2х-у-3)=0. Теперь обе части выражения можно сократить на это число, а затем выразить у, так как коэффициент по модулю при нем равен единице:-у=3-2х или у=2х-3.

Так же, как и в первом случае, подставляем данное выражение во второе уравнение и получаем:3х+2*(2х-3)-8=0;3х+4х-6-8=0;7х-14=0;7х=14;х=2.Подставляем полученное значение в выражение: у=2х-3;у=4-3=1.

Мы видим, что коэффициент при у одинаков по значению, но различен по знаку, следовательно, если мы сложим данные уравнения, то вовсе избавимся от у:4х+3х-2у+2у-6-8=0;7х-14=0;х=2.Подставляем значение х в любое из двух уравнений системы и получаем у=1.

Видео по теме

Биквадратное уравнение представляет собой уравнение четвертой степени, общий вид которого представляется выражением ax^4 + bx^2 + c = 0. Его решение основано на применении метода подстановки неизвестных. В данном случае х^2 заменяется другой переменной. Таким образом, в итоге получается обычное квадратное уравнение , которое и требуется решить.

Инструкция

Решите квадратное уравнение , получившееся в результате замены. Для этого сначала посчитаем значение в соответствии с формулой: D = b^2 ? 4ac. При этом переменные a, b, c являются коэффициентами нашего уравнения.

Найдите корни биквадратного уравнения. Для этого возьмите корень квадратный из полученных решений . Если решение было одно, то будет два – положительное и отрицательное значение корня квадратного. Если решений было два, у биквадратного уравнения будет четыре корня.

Видео по теме

Одним из классических способов решения систем линейных уравнений является метод Гаусса. Он заключается в последовательном исключении переменных, когда система уравнений с помощью простых преобразований переводится в ступенчатую систему, из которой последовательно находятся все переменные, начиная с последних.

Инструкция

Сначала приведите систему уравнений в такой вид, когда все неизвестные будут стоять в строго определенном порядке. Например, все неизвестные Х будут стоять первыми в каждой строке, все Y – после X, все Z - после Y и так далее. В правой части каждого уравнения неизвестных быть не должно. Мысленно определите коэффициенты, стоящие перед каждой неизвестной, а также коэффициенты в правой части каждого уравнения.


Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.

Что такое уравнение?

Уравнение – одно из краеугольных понятий всей математики. Как школьной, так и высшей. Имеет смысл разобраться, правда? Тем более, что это очень простое понятие. Ниже сами убедитесь. :) Так что же такое уравнение?

То, что это слово однокоренное со словами «равный», «равенство», возражений, думаю, ни у кого не вызывает. Уравнение – это два математических выражения, соединённых между собой знаком равенства «=». Но… не каких попало. А таких, в которых (хотя бы в одном) содержится неизвестная величина . Или по-другому переменная величина . Или сокращённо просто «переменная». Переменных может быть одна или несколько. В школьной математике чаще всего рассматриваются уравнения с одной переменной. Которая обычно обозначается буквой x . Или другими последними буквами латинского алфавита - y , z , t и так далее.

Мы пока тоже будем рассматривать уравнения с одной переменной. С двумя переменными или более – в специальном уроке.

Что значит решить уравнение?

Идём дальше. Переменная в выражениях, входящих в уравнение, может принимать любые допустимые значения. На то она и переменная. :) При каких-то значениях переменной получается верное равенство, а при каких-то – нет. Решить уравнение – это значит найти все такие значения переменной, при подстановке которых в исходное уравнение получается верное равенство . Или, более научно, тождество . Например, 5=5, 0=0, -10=-10. И так далее. :) Или доказать, что таких значений переменной не существует.

Я специально акцентирую внимание на слове «исходное». Почему - будет ясно чуть ниже.

Эти самые значения переменной, при подстановке которых уравнение обращается в тождество, называются очень красиво - корнями уравнения . Если доказано, что таких значений нет, то в таком случае говорят, что уравнение не имеет корней .

Зачем нужны уравнения?

Для чего нам нужны уравнения? В первую очередь, уравнения – очень мощный и наиболее универсальный инструмент для решения задач . Самых разных. :) В школе, как правило, работают с текстовыми задачами . Это задачи на движение, на работу, на проценты и многие-многие другие. Однако применение уравнений не ограничивается одними лишь школьными задачками про бассейны, трубы, поезда и табуретки. :)

Без умения составлять и решать уравнения не решить ни одной сколь-нибудь серьёзной научной задачи - физической, инженерной или экономической. Например, рассчитать, куда попадёт ракета. Или ответить на вопрос, выдержит или не выдержит нагрузку какая-нибудь ответственная конструкция (лифт или мост, например). Или спрогнозировать погоду, рост (или падение) цен или доходов…

В общем, уравнение – ключевая фигура в решении самых разнообразных вычислительных задач.

Какие бывают уравнения?

Уравнений в математике несметное количество. Самых разных видов. Однако все уравнения можно условно разделить всего на 4 класса:

1) Линейные,

2) Квадратные,

3) Дробные (или дробно-рациональные),

4) Прочие.

Разные виды уравнений требуют и разного подхода к их решению: линейные уравнения решаются одним способом, квадратные – другим, дробные – третьим, тригонометрические, логарифмические, показательные и прочие – тоже решаются своими методами.

Прочих уравнений, разумеется, больше всего. Это и иррациональные, и тригонометрические, и показательные, и логарифмические, и многие другие уравнения. И даже дифференциальные уравнения (для студентов), где неизвестным является не число, а функция. Или даже целое семейство функций. :) В соответствующих уроках мы подробно разберём все эти типы уравнений. А здесь у нас – базовые приёмы, которые применимы для решения совершенно любых (да-да, любых!) уравнений. Называются эти приёмы равносильные преобразования уравнений . Их всего два. И нигде их не обойти. Так что знакомимся!

Как решать уравнения? Тождественные (равносильные) преобразования уравнений.

Решение любого уравнения заключается в поэтапном преобразовании входящих в него выражений. Но преобразований не абы каких, а таких, чтобы суть всего уравнения не менялась . Несмотря на то, что после каждого преобразования уравнение будет видоизменяться и в конечном счёте станет совсем не похоже на исходное. Такие преобразования в математике называются равносильными или тождественными . Среди всего многообразия тождественных преобразований уравнений выделяется два базовых . О них и пойдёт речь. Да-да, всего два! И каждое из них заслуживает отдельного внимания. Применение этих двух тождественных преобразований в том или ином порядке гарантирует успех в решении 99% всех уравнений.

Итак, знакомимся!

Первое тождественное преобразование:

К обеим частям уравнения можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной).

Суть уравнения при этом останется прежней. Это преобразование вы применяете всюду, наивно думая, что переносите какие-то члены из одной части уравнения в другую, меняя знак. :)

Например, такое крутое уравнение:

Тут и думать нечего: переносим минус тройку вправо, меняя минус на плюс:

А что же происходит в действительности? А на самом деле вы прибавляете к обеим частям уравнения тройку ! Вот так:

Суть всего уравнения от прибавления к обеим частям тройки не меняется. Слева остаётся чистый икс (чего мы, собственно, и добиваемся), а справа – что уж получится.

Перенос слагаемых из одной части в другую – это сокращённый вариант первого тождественного преобразования. Ошибиться здесь можно лишь в одном – забыть сменить знак при переносе. Например, такое уравнение:

Дело нехитрое. Работаем прямо по заклинанию: с иксами влево, без иксов – вправо. Какое слагаемое с иксом у нас справа? Что? 2x? Неверно! Справа у нас -2x (минус два икс)! Поэтому в левую часть это слагаемое перенесётся с плюсом :

Полдела сделано, иксы собрали слева. Осталось перенести единицу вправо. Опять вопрос – с каким знаком? Слева перед единицей ничего не написано – значит, подразумевается, что перед ней стоит плюс . Поэтому вправо единичка перенесётся уже с минусом :

Вот почти и всё. Слева приводим подобные, а справа – считаем. И получаем:

А теперь проанализируем наши махинации с переносом слагаемых. Что мы сделали, когда перенесли -2x влево? Да! Мы прибавили к обеим частям нашего злого уравнения выражение 2x. Я же говорил, что прибавлять (отнимать) мы имеем право любое число и даже выражение с иксом! Лишь бы одно и то же. :) А когда перенесли единичку вправо? Совершенно верно! Мы отняли от обеих частей уравнения единичку. Вот и всё.) Вот и вся суть первого равносильного преобразования.

Или такой пример – для старшеклассников:

Уравнение логарифмическое. Ну и что? Какая разница? Всё равно первым шагом делаем базовое тождественное преобразование – переносим слагаемое с переменной (то есть, -log 3 x) влево, а числовое выражение log 3 4 переносим вправо. Со сменой знака, разумеется:

Вот и всё. Кто дружит с логарифмами, тот в уме дорешает уравнение и получит:

Что? Хотите синусы? Пожалуйста, вот вам синусы:

Снова выполняем первое тождественное преобразование - переносим sin x влево (с минусом), а -1/4 переносим вправо (с плюсом):

Получили простейшее тригонометрическое уравнение с синусом, решить которое для знающих также не составляет труда.

Видите, насколько универсально первое равносильное преобразование! Встречается везде и всюду и не обойти его никак. Поэтому надо уметь его делать на автомате. Главное – не забывать менять знак при переносе! Продолжаем знакомиться с тождественными преобразованиями уравнений.)

Второе тождественное преобразование:

Обе части уравнения можно умножить (разделить) на одно и то же неравное нулю число или выражение.

Это тождественное преобразование мы тоже постоянно применяем, когда нам в уравнении мешают какие-то коэффициенты и мы хотим от них избавиться. Безопасно для самого уравнения. :) Например, такое злое уравнение:

Тут каждому ясно, что x = 3 . А как вы догадались? Подобрали? Или ткнули пальцем в небо и угадали?

Чтобы не подбирать и не гадать (мы с вами всё-таки математики, а не гадалки:)), нужно понять, что вы просто поделили обе части уравнения на четвёрку. Которая нам и мешает.

Вот так:

Эта палка с делением означает, что на четвёрку делятся обе части нашего уравнения. Вся левая часть и вся правая часть:

Слева четвёрки благополучно сокращаются и остаётся икс в гордом одиночестве. А справа при делении 12 на 4 получается, естественно, тройка. :)

Или такое уравнение:

Что делать с одной седьмой? Перенести вправо? Не-а, нельзя! Одна седьмая с иксом умножением связана. Коэффициент, понимаешь. :) Нельзя коэффициент оторвать и перенести отдельно от икса. Только всё выражение (1/7)x целиком. Но – незачем. :) Снова вспоминаем про умножение/деление. Что нам мешает? Дробь 1/7, не так ли? Вот и давайте избавимся от неё. Как? А в результате какого действия у нас пропадает дробь? Дробь у нас пропадает при умножении на число, равное её знаменателю! Вот и умножим обе части нашего уравнения на 7:

Слева семёрки сократятся и останется как раз одинокий икс, а справа, если вспомнить таблицу умножения, получится 21:

Теперь пример для старшеклассников:

Чтобы добраться до икса и тем самым решить наше злое тригонометрическое уравнение, нам надо сначала получить слева чистый косинус, безо всяких коэффициентов. А двойка мешает. :) Вот и делим на 2 всю левую часть:

Но тогда и правую часть тоже придётся разделить на двойку: это уже МАТЕМАТИКА требует. Делим:

Получили справа табличное значение косинуса. И теперь уравнение решается за милую душу.)

Всё понятно с умножением/делением? Отлично! Но… внимание! В данном преобразовании, несмотря на всю его простоту, кроется источник очень досадных ошибок! Называется он потеря корней и приобретение посторонних корней .

Выше я уже сказал, что обе части уравнения можно умножать (делить) на любое число или выражение с иксом . Но с одной важной оговоркой: выражение, на которое умножаем (делим) должно быть отлично от нуля . Именно этот пунктик, который многие поначалу просто игнорируют, и приводит к таким досадным промахам. Собственно, смысл этого ограничения понятен: на ноль умножать глупо, а делить вообще нельзя. Разберёмся, что к чему? Начнём с деления и с потери корней .

Допустим, есть у нас такое вот такое уравнение:

Здесь прямо-таки руки чешутся взять и поделить обе части уравнения на общую скобку (x-1):

Допустим, в задании на ЕГЭ сказано найти сумму корней этого уравнения. Что в ответ писать будем? Тройку? Если вы решили, что тройку, то вы попали в засаду . Под названием «потеря корней». :) В чём же дело?

А давайте в исходном уравнении раскроем скобки и соберём всё слева:

Получили классическое квадратное уравнение. Решаем через дискриминант (или через теорему Виета) и получаем два корня:

Стало быть, сумма корней равна 1+3 = 4. Четыре, а не три! Куда у нас «пропал» корень

x = 1

При первом способе решения? А единичка у нас пропала как раз во время деления обеих частей на скобочку (x-1). Почему так произошло? А всё потому, что при x = 1 у нас обнуляется эта самая скобочка (x-1). А делить мы имеем право только на отличное от нуля выражение! Как можно было бы избежать потери этого корня? И вообще потери корней? Для этого, во-первых, перед делением на какое-то выражение с иксом всегда дописываем условие, что это выражение отлично от нуля. И находим нули этого выражения . Вот так (на примере нашего уравнения):

А во-вторых, чтобы какие-то корни у нас не пропали в процессе деления, мы должны отдельно проверить в качестве кандидатов в корни все нули нашего выражения (того, на которое делим) . Как? Просто подставить их в исходное уравнение и посчитать. В нашем случае проверяем единичку:

Всё честно. Значит, единичка – корень!

А вообще, на будущее, всегда старайтесь избегать деления на выражение с иксом. Потеря корней – штука очень опасная и досадная! Применяйте любые другие способы – раскрытие скобок и особенно разложение на множители . Разложение на множители - самый простой и безопасный способ избежать потери корней. Для этого собираем всё слева, потом выносим общий множитель (на который так хотим «сократить») за скобки, раскладываем на множители и дальше приравниваем каждый получившийся множитель к нулю. Например, наше уравнение можно было бы вполне безобидно решить не только приведением к квадратному, но и разложением на множители. Смотрите сами:

Переносим влево всё выражение (x-1) целиком. Со знаком минус:

Выносим (x-1) за скобку как общий множитель и раскладываем на множители:

Произведение равно нулю, когда хотя бы один из множителей равен нулю . Приравниваем теперь (в уме!) каждую скобку к нулю и получаем наши законные два корня:

И ни один корень не потерялся!

Разберём теперь противоположную ситуацию – приобретение посторонних корней. Такая ситуация возникает при умножении обеих частей уравнения на выражение с иксом. Сплошь и рядом встречается при решении дробно-рациональных уравнений. Например, такое несложное уравнение:

Дело знакомое – умножаем обе части на знаменатель, чтобы избавиться от дроби и получить уравнение в линеечку:

Приравниваем каждый множитель к нулю и получаем два корня:

Вроде бы, всё хорошо. Но попробуем сделать элементарную проверку. И если при x = 0 у нас всё славненько срастётся, получится тождество 2=2, то при x = 1 получится деление на ноль. Чего делать нельзя категорически. Не годится единичка в качестве корня нашего уравнения. В таких случаях говорят, что x = 1 – так называемый посторонний корень . Единичка является корнем нашего нового уравнения без дроби x(x-1) = 0, но не является корнем исходного дробного уравнения. Как же появляется этот посторонний корень? Он появляется при домножении обеих частей на знаменатель x-1. Который при x = 1 как раз обращается в ноль! А мы имеем право умножать только на отличное от нуля выражение!

Как же быть? Вообще не умножать? Тогда мы совсем ничего решить не сможем. Каждый раз проверку делать? Можно. Но зачастую трудоёмко, если исходное уравнение слишком накрученное. В таких случаях спасают три волшебные буквы - ОДЗ. О бласть Д опустимых З начений. И чтобы исключить появление посторонних корней, при умножении на выражение с иксом всегда надо дополнительно записывать ОДЗ. В нашем случае:

Вот теперь при этом ограничении можно смело умножать обе части на знаменатель. Все вредные последствия от такого умножения (т.е. посторонние корни) мы исключим по ОДЗ. И нашу единичку безжалостно выкинем.

Итак, появление посторонних корней не так опасно, как потеря: ОДЗ – штука мощная. И жёсткая. Она нам всегда отсеет всё лишнее. :) Мы с ОДЗ будем дружить и подробнее познакомимся в отдельном уроке.

Вот и все тождественные преобразования.) Всего два. Однако у неопытного ученика могут возникать некоторые трудности, связанные с последовательностью их применения: в каких-то примерах начинают с домножения (или деления), в каких-то – с переноса. Например, такое линейное уравнение:

С чего начинать? Можно начать с переноса:

А можно сначала поделить обе части на пятёрку, а затем – переносить. Тогда числа попроще станут и считать будет легче:

Как видим, и так, и сяк можно. Вот и возникает у некоторых учеников вопрос: «Как правильно?» Ответ: «По-всякому правильно!» Кому как удобнее. :) Лишь бы ваши действия не противоречили правилам математики. А последовательность этих самых действий зависит исключительно от личных предпочтений и привычек решающего. Однако, с опытом такие вопросы отпадут сами собой, и в итоге не математика будет командовать вами, а вы – математикой. :)

В заключение хочу отдельно сказать о так называемых условно тождественных преобразованиях , справедливых при некоторых условиях . Например, возведение обеих частей уравнения в одну и ту же степень. Или извлечение корня из обеих частей. Если показатель степени нечётный, то ограничений никаких – возводите и извлекайте без опасений. А вот если чётный, то такое преобразование будет тождественным только если обе части уравнения неотрицательны . Об этих подводных камнях мы подробно поговорим в теме про иррациональные уравнения.

Сервис для решения уравнений онлайн поможет вам решить любое уравнение. Используя наш сайт, вы получите не просто ответ уравнения, но и увидите подробное решение, то есть пошаговое отображение процесса получения результата. Наш сервис будет полезен старшеклассникам общеобразовательных школ и их родителям. Ученики смогут подготовиться к контрольным, экзаменам, проверить свои знания, а родители – проконтролировать решение математических уравнений своими детьми. Умение решать уравнения – обязательное требование к школьникам. Сервис поможет вам самообучаться и повышать уровень знаний в области математических уравнений. С его помощью вы сможете решить любое уравнение: квадратное, кубическое, иррациональное, тригонометрическое и др. Польза онлайн сервиса бесценна, ведь кроме верного ответа вы получаете подробное решение каждого уравнения. Преимущества решения уравнений онлайн. Решить любое уравнение онлайн на нашем сайте вы можете абсолютно бесплатно. Сервис полностью автоматический, вам ничего не придется устанавливать на свой компьютер, достаточно будет только ввести данные и программа выдаст решение. Любые ошибки в расчетах или опечатки исключены. С нами решить любое уравнение онлайн очень просто, поэтому обязательно используйте наш сайт для решения любых видов уравнений. Вам необходимо только ввести данные и расчет будет выполнен за считанные секунды. Программа работает самостоятельно, без человеческого участия, а вы получаете точный и подробный ответ. Решение уравнения в общем виде. В таком уравнении переменные коэффициенты и искомые корни связаны между собой. Старшая степень переменной определяет порядок такого уравнения. Исходя из этого, для уравнений используют различные методы и теоремы для нахождения решений. Решение уравнений данного типа означает нахождение искомых корней в общем виде. Наш сервис позволяет решить даже самое сложное алгебраическое уравнение онлайн. Вы можете получить как общее решение уравнения, так и частное для указанных вами числовых значений коэффициентов. Для решения алгебраического уравнения на сайте достаточно корректно заполнить всего два поля: левую и правую части заданного уравнения. У алгебраических уравнений с переменными коэффициентами бесконечное количество решений, и задав определенные условия, из множества решений выбираются частные. Квадратное уравнение. Квадратное уравнение имеет вид ax^2+bx+с=0 при а>0. Решение уравнений квадратного вида подразумевает нахождение значений x, при которых выполняется равенство ax^2+bx+с=0. Для этого находится значение дискриминанта по формуле D=b^2-4ac. Если дискриминант меньше нуля, то уравнение не имеет действительных корней (корни находятся из поля комплексных чисел), если равен нулю, то у уравнения один действительный корень, и если дискриминант больше нуля, то уравнение имеет два действительных корня, которые находятся по формуле: D= -b+-sqrt/2а. Для решения квадратного уравнения онлайн вам достаточно ввести коэффициенты такого уравнения (целые числа, дроби или десятичные значения). При наличии знаков вычитания в уравнении необходимо поставить минус перед соответствующими членами уравнения. Решить квадратное уравнение онлайн можно и в зависимости от параметра, то есть переменных в коэффициентах уравнения. С этой задачей отлично справляется наш онлайн сервис по нахождению общих решений. Линейные уравнения. Для решения линейных уравнений (или системы уравнений) на практике используются четыре основных метода. Опишем каждый метод подробно. Метод подстановки. Решение уравнений методом подстановки требует выразить одну переменную через остальные. После этого выражение подставляется в другие уравнения системы. Отсюда и название метода решения, то есть вместо переменной подставляется ее выражение через остальные переменные. На практике метод требует сложных вычислений, хотя и простой в понимании, поэтому решение такого уравнения онлайн поможет сэкономить время и облегчить вычисления. Вам достаточно указать количество неизвестных в уравнении и заполнить данные от линейных уравнений, далее сервис сделает расчет. Метод Гаусса. В основе метода простейшие преобразования системы с целью прийти к равносильной системе треугольного вида. Из нее поочередно определяются неизвестные. На практике требуется решить такое уравнение онлайн с подробным описанием, благодаря чему вы хорошо усвоите метод Гаусса для решения систем линейных уравнений. Запишите в правильном формате систему линейных уравнений и учтите количество неизвестных, чтобы безошибочно выполнить решение системы. Метод Крамера. Этим методом решаются системы уравнений в случаях, когда у системы единственное решение. Главное математическое действие здесь – это вычисление матричных определителей. Решение уравнений методом Крамера проводится в режиме онлайн, результат вы получаете мгновенно с полным и подробным описанием. Достаточно лишь заполнить систему коэффициентами и выбрать количество неизвестных переменных. Матричный метод. Этот метод заключается в собрании коэффициентов при неизвестных в матрицу А, неизвестных – в столбец Х, а свободных членов в столбец В. Таким образом система линейных уравнений сводится к матричному уравнению вида АхХ=В. У этого уравнения единственное решение только если определитель матрицы А отличен от нуля, иначе у системы нет решений, либо бесконечное количество решений. Решение уравнений матричным методом заключается в нахождении обратной матрицы А.