ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Погрешность приближения. Погрешность и точность приближения

Абсолютная и относительная погрешность числа.

В качестве характеристик точности приближенных величин любого происхождения вводятся понятия абсолютной и относительной погрешности этих величин.

Обозначим через а приближение к точному числу А.

Определени . Величина называется погрешностью приближенного числаа.

Определение . Абсолютной погрешностью приближенного числа а называется величина
.

Практически точное число А обычно неизвестно, но мы всегда можем указать границы, в которых изменяется абсолютная погрешность.

Определение . Предельной абсолютной погрешностью приближенного числа а называется наименьшая из верхних границ для величины , которую можно найти при данном способе получения числаа.

На практике в качестве выбирают одну из верхних границ для , достаточно близкую к наименьшей.

Поскольку
, то
. Иногда пишут:
.

Абсолютная погрешность - это разница между результатом измерения

и истинным (действительным) значением измеряемой величины.

Абсолютная погрешность и предельная абсолютная погрешность не достаточны для характеристики точности измерения или вычисления. Качественно более существенна величина относительной погрешности.

Определение . Относительной погрешностью приближенного числа а назовем величину:

Определение . Предельной относительной погрешностью приближенного числа а назовем величину

Так как
.

Таким образом, относительная погрешность определяет фактически величину абсолютной погрешности, приходящейся на единицу измеряемого или вычисляемого приближенного числа а.

Пример. Округляя точные числа А до трех значащих цифр, определить

абсолютную Dи относительную δ погрешности полученных приближенных

Дано:

Найти:

∆-абсолютная погрешность

δ –относительная погрешность

Решение:

=|-13.327-(-13.3)|=0.027

,a0

*100%=0.203%

Ответ: =0,027; δ=0.203%

2.Десятичная запись приближенного числа. Значащая цифра. Верные знаки числа(определение верных и значащих цифр, примеры; теория о связи относительной погрешности и числа верных знаков).

Верные знаки числа.

Определение . Значащей цифрой приближенного числа а называется всякая цифра, отличная от нуля, и нуль, если он расположен между значащими цифрами или является представителем сохраненного десятичного разряда.

Например, в числе 0,00507 =
имеем 3 значащие цифры, а в числе 0,005070=
значащие цифры, т.е. нуль справа, сохраняя десятичный разряд, является значащим.

Условимся впредь нули справа записывать, если только они являются значащими. Тогда, иначе говоря,

значащими являются все цифры числа а, кроме нулей слева.

В десятичной системе счисления всякое число а может быть представлено в виде конечной или бесконечной суммы (десятичной дроби):

где
,
- первая значащая цифра, m - целое число, называемое старшим десятичным разрядом числа а.

Например, 518,3 =, m=2.

Пользуясь записью , введем понятие о верных десятичных знаках (в значащих цифрах) приближенно-

го числа.

Определение . Говорят, что в приближенном числе а формы n - первых значащих цифр ,

где i= m, m-1,..., m-n+1 являются верными, если абсолютная погрешность этого числа не превышает половины единицы разряда, выражаемого n-й значащей цифрой:

В противном случае последняя цифра
называется сомнительной.

При записи приближенного числа без указания его погрешности требуют, чтобы все записанные цифры

были верными. Это требование соблюдено во всех математических таблицах.

Термин “n верных знаков” характеризует лишь степень точности приближенного числа и его не следует понимать так, что n первых значащих цифр приближенного числа а совпадает с соответствующими цифрами точного числа А. Например, у чисел А=10, а=9,997 все значащие цифры различны, но число а имеет 3 верных значащих цифры. Действительно, здесь m=0 и n=3 (находим подбором).

Тема “ ” изучается в 9 классе бегло. И у учащихся, как правило, не до конца формируются навыки ее вычисления.

А ведь с практическим применением относительной погрешности числа , в равно степени как и с абсолютной погрешностью, мы сталкиваемся на каждом шагу.

Во время ремонтных работ измерили (в сантиметрах) толщину m коврового покрытия и ширину n порожка. Получили следующие результаты:

m≈0,8 (с точностью до 0,1);

n≈100,0 (с точностью до 0,1).

Заметим, что абсолютная погрешность каждого из данных измерений не больше 0,1.

Однако 0,1 – это солидная часть числа 0,8 . Как для числа 100 она представляет незначительную ч асть. Это показывает, что качество второго измерения намного выше, чем первого.

Для оценки качества измерения используется относительная погрешность приближенного числа.

Определение.

Относительной погрешностью приближенного числа (значения) называется отношение абсолютной погрешности к модулю приближенного значения.

Относительную погрешность договорились выражать в процентах.

Пример 1.

Рассмотрим дробь 14,7 и округлим ее до целых. Также найдем относительную погрешность приближенного числа:

14,7≈15.

Для вычисления относительной погрешности, кроме приближенного значения, как правило, нужно еще знать и абсолютную погрешность. Абсолютная погрешность не всегда бывает известна. Поэтому вычислить невозможно. И в таком случае достаточно бывает указать оценку относительной погрешности.

Вспомним пример, который был приведен в начале статьи. Там были указаны измерение толщины m ковролина и ширина n порожка.

По итогам измерений m ≈0,8 с точностью до 0,1. Можно сказать, что абсолютная погрешность измерения не больше 0,1. Значит, результат деления абсолютной погрешности на приближенное значение (а это и есть относительная погрешность) меньше или равно 0,1/0,8 = 0,125 = 12,5%.

Т. о., относительная погрешность приближения ≤ 12,5%.

Аналогичным образом вычислим относительную погрешность приближения ширины порожка; она не более 0,1/100 = 0,001 = 0,1%.

Говорят, что в первом случае измерение выполнено с относительной точность до 12,5%, а во втором – с относительной точностью до 0,1%.

Подведем итог.

Абсолютная погрешность приближенного числа - это разность между точным числом x и его приближенным значением a.

Если модуль разности | x a | меньше некоторого D a , то величину D a называют абсолютной погрешностью приближенного числа a .

Относительная погрешность приближенного числа - это отношение абсолютной погрешности D a к модулю числа a , то есть D a / |a | = d a .

Пример 2.

Рассмотрим известное приближенное значение числа π≈3,14.

Учитывая его значение с точностью до стотысячных долей, можно указать его погрешность 0,00159… (запомнить цифры числа π поможет )

Абсолютная погрешность числа π равна: | 3,14 3,14159 | = 0,00159 ≈0,0016.

Относительная погрешность числа π равна: 0.0016/3.14 = 0,00051 = 0,051%.

Пример 3.

Попробуйте самостоятельно вычислить относительную погрешность приближенного числа √2. есть несколько способов, чтобы запомнить цифры числа “квадратный корень из 2″.

Рассчитывая значения систематической, случайной и суммарной погрешностей, особенно при использовании электронного калькулятора, получают значение с большим числом знаков. Однако исходные данные для этих расчетов всегда указываются с одной или двумя значащими цифрами. Действительно, класс точности прибора на его шкале указывается не более чем с двумя значащими цифрами, а среднее квадратическое отклонение не имеет смысла записывать с более чем двумя значащими цифрами, так как точность этой оценки при 10 измерениях не выше 30 %. Вследствие этого и в окончательном значении расчетной погрешности должны быть оставлены только первые одна - две значащие цифры. При этом необходимо учитывать следующее. Если полученное число начинается с цифры 1 или 2, то отбрасывание второго знака приводит к очень большой ошибке (до 30– 50 %), это недопустимо. Если же полученное число начинается, например, с цифры 9, то сохранение второго знака, то есть указание погрешности, например, 0,94 вместо 0,9, является дезинформацией, так как исходные данные не обеспечивают такой точности.

В итоге можно сформулировать правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения:

1. Абсолютная погрешность результата измерения указывается двумя значащими цифрами, если первая из них равна 1 или 2, и одной, – если первая есть 3 и более.

2. Среднее значение измеренной величины округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности.

3. Относительную погрешность, выраженную в процентах, достаточно записать двумя значащими цифрами.

4. Округление производится лишь в окончательном ответе, а все предварительные вычисления проводятся с одним лишним знаком.

Пример:
На вольтметре класса точности 2,5 с пределом измерений 300 В были произведены несколько повторных измерений одного и того же напряжения. При этом оказалось, что все замеры дали одинаковый результат 267,5 В .

Отсутствие различий между знаками говорит о том, что случайная погрешность пренебрежимо мала, поэтому суммарная погрешность совпадает с систематической (см. рис. 1а).

Сначала найдем абсолютную, а затем относительную погрешности. Абсолютная погрешность градуировки прибора равна:

Так как первая значащая цифра абсолютной погрешности больше трех, то это значение должно быть округлено до 8 В . Относительная погрешность:

В значении относительной погрешности должны быть сохранены два значащих разряда: 2,8 %.

Таким образом, в окончательном ответе должно быть сообщено “Измеренное напряжение U=(268+8) В при относительной погрешности d U =2,8 % ”.

При выполнении вычислений часто возникает необходимость в округлении чисел, т.е. в замене их числами с меньшим количеством значащих цифр.

Существуют три способа округления чисел:

Округление с недостатком до k -й значащей цифры состоит в отбрасывании всех цифр, начиная с (k+1) -й.

Округление с избытком отличается от округления с недостатком тем, что последняя сохраняемая цифра увеличивается на единицу.

Округление с наименьшей погрешностью отличается от округления с избытком тем, что увеличение на единицу последней сохраняемой цифры производится лишь в том случае, когда первая из отбрасываемых цифр больше 4.

Исключение: если округление с наименьшей погрешностью сводится к отбрасыванию только одной цифры 5, то последняя сохраняемая цифра не изменяется если она четная, и увеличивается на 1, если она нечетная.

Из вышеуказанных правил округления приближенных чисел следует, что погрешность, вызываемая округлением с наименьшей погрешностью, не превышает половины единицы последнего сохраняемого разряда, а при округлении с недостатком или с избытком погрешность может быть и больше половины единицы последнего сохраняемого разряда, но не более целой единицы этого разряда.

Рассмотрим это на следующих примерах.

1. Погрешность суммы. Пусть x а , у -- некоторое приближение величины b . Пусть х и у -- абсолютные погрешности соответствующих приближений х и у . Найдем границу абсолютной погрешности h a+b суммы х+у , являющейся приближением суммы а+b .

a = x + х,

b = y + y.

Сложим эти два равенства, получим

a + b = x + y + х + y.

Очевидно, что погрешность суммы приближений x и у равна сумме погрешностей слагаемых, т.е.

(x + y) = x + y

Известно, что модуль суммы меньше или равен сумме модулей слагаемых. Поэтому

(x + y) = x + y x + y

Отсюда следует, что абсолютная погрешность суммы приближений не превышает суммы абсолютных погрешностей слагаемых. Следовательно, за границу абсолютной погрешности суммы можно принять сумму границ абсолютных погрешностей слагаемых.

Обозначив границу абсолютной погрешности величины а через h a , а величины b через h b будем иметь

h a+b = h a + h b

2. Погрешность разности. Пусть х и у -- погрешности приближений x и у соответственно величин a и b.

a = x + х,

b = y + y.

Вычтем из первого равенства второе, получим

a - b = (x - y) + (x - y)

Очевидно, что погрешность разности приближений равна разности погрешностей уменьшаемого и вычитаемого, т. е.

(x - y) = x - y) ,

(x - y) = x + (-y)

А тогда, рассуждая так же, как в случае сложения, будем иметь

(x - y) = x + (-y) x + y

Отсюда следует, что абсолютная погрешность разности не превышает суммы абсолютных погрешностей уменьшаемого и вычитаемого.

За границу абсолютной погрешности разности можно принять сумму границ абсолютных погрешностей уменьшаемого и вычитаемого. Таким образом.

h a-b = h a + h b (9)

Из формулы (9) следует, что граница абсолютной погрешности разности не может быть меньше границы абсолютной погрешности каждого приближения. Отсюда вытекает правило вычитания приближений, применяемое иногда при вычислениях.

При вычитании чисел, являющихся приближениями некоторых величин, в результате следует оставить столько цифр после запятой, сколько их имеет приближение с наименьшим числом цифр после запятой.

3. Погрешность произведения. Рассмотрим произведение чисел х и у , являющихся приближениями величин a и b . Обозначим через x погрешность приближения х , а через у -- погрешность приближения у ,

a = x + х,

b = y + y.

Перемножив эти два равенства, получим

Абсолютная погрешность произведения ху равна

И поэтому

Разделив обе части полученного неравенства на ху , получим

Учитывая, что модуль произведения равен произведению модулей сомножителей, будем иметь

Здесь левая часть неравенства представляет собой относительную погрешность произведения ху , -- относительную погрешность приближения х , а -- относительную погрешность приближения у . Следовательно, отбрасывая здесь малую величину, получим неравенство

Таким образом, относительная погрешность произведения приближений не превышает суммы относительных погрешностей сомножителей. Отсюда следует, что сумма границ относительных погрешностей сомножителей является границей относительной погрешности произведения, т.е.

E ab = E a + E b (10)

Из формулы (10) следует, что граница относительной погрешности произведения не может быть меньше границы относительной погрешности наименее точного из сомножителей. Поэтому здесь, как и в предыдущих действиях, не имеет смысла сохранять в сомножителях излишнее количество значащих цифр.

Иногда при вычислениях для сокращения объема работы полезно руководствоваться следующим правилом: При умножении приближений с различным числом значащих цифр в результате следует сохранить столько значащих цифр, сколько их имеет приближение с наименьшим числом значащих цифр.

4. Погрешность частного. Если x -- приближение величины а, погрешность которого x, а у -- приближение величины b с погрешностью y, то

Вычислим сначала абсолютную погрешность частного:

а затем относительную погрешность:

Принимая во внимание, что y мало по сравнению с y , абсолютную величину дроби можно считать равной единице. Тогда

из последней формулы вытекает, что относительная погрешность частного не превышает суммы относительных погрешностей делимого и делителя. Следовательно, можно считать, что граница относительной погрешности частного равна сумме границ относительных погрешностей делимого и делителя, т.е.

5. Погрешность степени и корня. 1) Пусть u = a n , где n -- натуральное число, и пусть а х. Тогда, если E a -- граница относительной погрешности приближения x величины a , то

и поэтому

Таким образом, граница относительной погрешности степени равна произведению границы относительной погрешности основания на показатель степени, т.е.

E u = n E a (11)

2) Пусть, где n -- натуральное число, и пусть ах .

По формуле (11)

и, следовательно,

погрешность вычитаемый вычисление

Таким образом, граница относительной погрешности корня n -й степени в n раз меньше границы относительной погрешности подкоренного числа.

6. Обратная задача приближенных вычислений. В прямой задаче требуется найти приближенное значение функции u=f(х,у,…,n) по данным приближенным значениям аргументов

и границу погрешности h a , которая выражается через погрешности аргументов некоторой функции

h u = (h x , h y , …, h z ) (12)

На практике нередко приходится решать и обратную задачу, в которой требуется узнать, с какой точностью должны быть заданы значения аргументов х, у, …, z , чтобы вычислить соответствующие значения функции u = f(х, у, …, z) с наперед заданной точностью h u .

Таким образом, при решении обратной задачи искомыми являются границы погрешностей аргументов, связанные с заданной границей погрешности функции h u уравнением (12), и решение обратной задачи сводится к составлению и решению уравнения h u = (h x , h y , …, h z ) относительно h x , h y , …, h z . Такое уравнение или имеет бесконечное множество решений, или совсем не имеет решений. Задача считается решенной, если найдено хотя бы одно решение такого уравнения.

Для решения обратной задачи, которая часто бывает неопределенной, приходится вводить добавочные условия об отношениях искомых погрешностей, например считать их равными и тем самым сводить задачу к уравнению с одним неизвестным.