ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Нанороботы уже внедряются в тело человека? Нанороботы в медицине

– рукотворные создания размером с молекулу, которые призваны выполнять важнейшие задачи в различных сферах жизни, от науки до медицины, от военных технологий до исследований космоса. Раньше нанотехнологии существовали только в фантастической литературе и кино, но в последние годы ведущие научные центры всех развитых государств мира уделяют этой теме первостепенное значение. Разработка полноценной технологии нанороботов коренным образом изменит мировую науку и приблизит нас к тому феерическому будущему, которого так ждали фантасты.

является давнее стремление человечества приспособить в работу даже самые мельчайшие частицы материи – атомы. Желание подчинить себе природу до последней капли привело в итоге к манипуляциям с отдельными атомами, которые вот уже двадцать лет. Многие современные материалы, ранее не существовавшие в природе, создавались именно так, из атомов различных элементов в химических лабораториях. Размер одного атома составляет не больше десятой доли нанометра, отсюда и название «нанотехнологии» .

Супер наука. Нанотехнологии. Южная Корея

История нанотехнологий

Первым шагом к созданию нанороботов стало изобретение электронного микроскопа, способного перемещать по электромагнитным полям отдельные атомы . Протестировали революционную технологию еще в восьмидесятые годы прошлого века, собрав из атомов углерода пару вращающихся шестеренок размеров в нанометр. Увидев, что зачатки нанотехнологий вполне жизнеспособны, ученые через несколько лет смогли создать и первый нанодвигатель, работающий на электрической тяге. В дальнейшем они надеются переработать микроскопический мотор в манипулятор, который сам будет переставлять местами атомы, облегчая работу в лабораториях. Таким образом, нанороботы смогут дать человечеству огромные перспективы изменения внутренней молекулярной структуры любой материи – и, фактически, власть над природой.

Нанотехнологии дают нам возможность создать уникальные материалы без лишних примесей, которые можно беспрепятственно применять в любом производстве – например, идеальные сверхтвердые алмазы из атомов углерода. При широком применении нанороботов больше не нужно будет строить огромные заводы: армия маленьких работников соберет из атомов любой продукт.

Нанотехнологии. Невидимая революция

Нанороботы в медицине

Наиболее полезной областью для применения нанороботов сегодня считается медицина . Медики планируют использовать эту технологию для экстренной доставки лекарств и полезных веществ прямо в клетки, а также для уничтожения инфекций и раковых клеток. нанороботы могут проникать внутрь тканей организма и уничтожать любую болезнь мгновенно, даже без применения специальных препаратов. Это позволит бороться и с генетическими нарушениями, ведь на уровне молекул и атомов можно исправить любые ошибки природы.

Другие медицинские нанороботы конструируются для точной диагностики заболеваний, сбора данных о человеческом организме. С началом активного применения этой технологии медицина будет развиваться ускоренными темпами, ведь это шанс заглянуть внутрь работающей клетки, изучить здоровые и поврежденные опухолями ткани, в конце концов, докопаться до ранее недоступных секретов нашего тела .

Сейчас в наномедицине приоритетными являются такие направления:

  1. Доставка лекарств напрямую в или систему на клеточном уровне .
  2. или же его ослабление для борьбы с аллергическими реакциями .
  3. Хирургия с микроскопическими разрезами, позволяющая ускорить период заживления постоперационных швов .
  4. Диагностика и лечение онкологических заболеваний .
  5. Безопасное распространение в организме компонентов вакцины .

Эти методы уже проверены на лабораторных животных, сейчас готовятся испытания на людях, которые навсегда изменят мировую медицину, если будут удачными. Возьмем, к примеру, нанороботов, которые доставляют лекарства в клетки. Благодаря им во много раз уменьшится не только расход лекарственного препарата, но и количество побочных эффектов от сильнодействующих лекарств, ведь они не будут затрагивать и системы, кроме непосредственно пораженных заболеванием. Лекарство будет доставляться через ее цитоплазму. Так же упростится и вакцинация, более того – непредсказуемые антитела можно будет сразу заменить нанороботами, которые будут бороться с любыми инфекциями, попадающими в организм извне.

На сегодняшний день уже реально зафиксировано использование нанотехнологий в медицине – в первую очередь, для борьбы с раком. Наночастицы, названные липосомами, доставляют химиотерапевтические вещества внутрь раковых опухолей. В первую очередь этот метод применяется для лечения ВИЧ саркомы Капоси, миелом и рака яичников.

Нанотехнологии для жизни

Нанороботы в третьей мировой войне

Человечество бы не было собой, если бы не нашло способа применить любые высокие технологии в военном деле. Нанороботы пока не используются в качестве оружия, но разработки в этой области ведутся чуть ли не так же активно, как в области медицины. Многие футурологи прогнозируют, что в будущем войны будут вестись вообще без участия живых солдат, а, например, между армиями нанороботов. Так, американский ученый российского происхождения Алекс Кушлеев уже тестирует несколько отрядов летающих нанороботов, способных координировать действия друг с другом и создавать сложные конструкции в воздухе. Более сотни таких маленьких беспилотников могут быть действительно грозным оружием, если их обеспечить достаточной огневой мощью.

По мнению Эдварда Теллера , изобретателя водородной бомбы, именно нанотехнологии станут решающим фактором в третьей мировой войне, если таковая случится. Тот, кто первым подчинит себе боевых наноботов, сможет завоевать мир. Кроме того, нанотехнологии могут стать причиной начала этой войны, если мировые лидеры начнут пытаться похитить друг у друга передовые разработки. Поскольку нанороботы способны к самовосстановлению и конструированию себе подобных из простейших атомов, эта война действительно может стать бесконечной и необычайно разрушительной. Даже в том случае, если сражения все еще будут вестись с участием человека, наноботов используют для доставки и ядов прямо в организм вражеских солдат.

Нанороботы являются одним из краеугольных камней современного фантастического кино и литературы

Создатели фильмов и сериалов видят будущее применение нанитов в пластической хирургии (один из героев фантастического детектива «Почти человек» похищал черты чужих лиц с помощью нанороботов и изменял свое ДНК, чтобы стать более привлекательным), или вообще делают их отдельной расой, отрицательно настроенной по отношению к людям (как в сериале «Звездные врата» и фильме «День, когда Земля остановилась»). Так или иначе, развитие нанотехнологий навсегда изменит нашу жизнь. И только от нас самих зависит, насколько разрушительными будут эти изменения.

Медицина будущего будет строиться на работе нанороботов. Уже сейчас в этом направлении есть замечательные прорывы. Стоит отметить хотя бы респироцита – наноробота, который выполняет функции кровеносного эритроцита, но в отличие от последнего, способен “перевозить” в 256 раз больше кислорода. Но обо всем по порядку.

Итак, наноробот это устройство имеющее размеры 0,5 – 100 мкм. Такая разница в габаритах зависит от функционального назначения наноробота. Те устройства, которые будут введены в кровоток, должны иметь меньший диаметр для безопасного прохождения капилляров. Нанороботы, которые будут действовать в тканях, могут иметь больший диаметр.

Почему на нанороботов возлагается такая надежда? Давайте покажем на примере, уже упомянутого мной респироцита, все плюсы этой технологии. Представьте себе емкость, в которую можно закачать кислород под давлением 1000 атмосфер. Так как стенки емкости состоят из сверхпрочного алмаза, кислород будет хорошо заперт и высвободится только по “разрешению”.

Я уже писал, что респироцит это наноробот напоминающий эритроцит. Его главная задача перенос кислорода. Запустив его в участках организма, где этого газа в достатке, робот переносит его к нуждающимся клеткам. Один респироцит может заменит 256 эритроцитов. Но так как при инъекции в организм попадает до нескольких триллионов нанороботов, то можно спокойно задерживать дыхание на большой промежуток времени не боясь, что клетки недополучат кислород.

Конечно, перенос кислорода это простая функция, нанороботы будущего будут нацелены на выявление патагонных микроорганизмов. Уже сейчас разработана технология создания фагоцитов – нанороботов, которые уничтожают некоторые вирусы, бактерии и грибки.

Такое “популярное” недомогание как простуда, ни что иное, как биохимический процесс внутри организма, с которым легко справятся нанороботы, выявив и уничтожив болезнетворные организмы.
Респироциты — искусственные эритороциты
Большинство нанороботов будущего будут состоять из атомов изотопа углерода 13C. С помощью механосинтеза алмаза, когда в вакуумной среде к кристаллической решетке алмаза добавляют атомы, создается тело устройства. Его снабжают бортовым компьютером и передающим устройством.

В качестве топлива, нанороботы будут использовать локальные запасы глюкозы и аминокислот. Кроме этого, традиционного для нанороботов способа получения энергии, уже сегодня ведутся эксперименты по доставке акустической энергии для нанороботов.

Но как же иммунная система, которая призвана обезвреживать и выдворять за пределы организма всех нелегалов? Тут у разработчиков таких устройств есть богатый опыт производителей имплантатов. Проблема совместимости ими давно решена, и они легко помогут свои коллегам. Если же обойти проблему за счет структуры материалов, из которых будет изготовлен наноробот, не удастся, то можно воспользоваться иммуноподавляющими препаратами на время нахождения нанороботов внутри организма.

Ну и напоследок нужно сказать несколько слов о выводе нанороботов из организма. Большинство таких устройств будут иметь возможность выйти традиционным способом. Кроме того, некоторые нанороботы, вывести которые обычным способом не удастся, можно будет удалить из организма с помощью специально разработанных выводящее — подобных процессов. В некоторых источников такие процессы называют нановыводом или наноаперезисом.

Наномедицина позволит в будущем избавиться от большинства болезней XX века. Быть может уже через несколько лет из нашего обихода уйдет словосочетание “хирургический скальпель”. Все операции будут вестись с помощью микроскопических устройств, которые получили название нанороботы.

В этой статье я попробую систематизировать и обобщить проблемы и достижения науки, реально еще не существующей – наномедицины. Эта отрасль медицины, по прогнозам ведущих ученых мира, будет преобладать во второй половине двадцать первого века. Речь пойдёт .

По каноническому определению ведущего учёного в данной области Р. Фрайтаса наномедицина это: слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя разработанные наноустройства и наноструктуры". В действительности, наномедицины пока еще не существует, существуют лишь нанопроекты, воплощение которых в медицину, в конечном итоге, даст результат. Но научное проектирование и прогнозирование тоже очень важная и нужная вещь. Через несколько десятков лет, когда уже, наконец, будет работать первый ассемблер (наноробот-сборщик), знания, накопленные наномедициной, воплотятся в жизнь.

А тогда...

Представьте себе, что вы подхватили грипп (то есть вы даже еще НЕ знаете, что его подхватили). Тут же среагирует система искусственно усиленного иммунитета - десятки тысяч нанороботов начнут распознавать (в соответствии со своей внутренней базой данных) вирус гриппа и за считанные минуты ни одного вируса у Вас в крови не будет!

Или...

У Вас начался ранний атеросклероз и искусственные клетки начинают чистить механическим и химическими путями Ваши сосуды.

А потом у Вас...

Началась, из-за дефекта в цепочке ДНК, самая обыкновенная генетическая болезнь - Вы начали... быстро стареть! Тут действует система посложнее - компьютеры, расположенные у Вас в организме начинают анализ информации. Почему Вы стареете? И, если не могут разрешить этого вопроса с помощью своих баз данных и алгоритмов запрашивают Центральный Медицинский компьютер где-то под землей или на ближайшем спутнике. Как только найдена "поломка" в Вашей ДНК и выделен белок, ответственный за старение, начинается глобальная операция - тысячи ДНК-ремонтеров, протягивая Вашу ДНК через свои анализаторы вырезают "ген старения". И старение коснется лишь 2-3 поколений клеток. Не нужно при этом говорить, что совместно с этим происходит полное обновление всех клеток Вашего организма, а Вы всегда выглядите на 20-30 лет.

Так из оборонительной, медицина станет наступательной и даже упреждающей.

Нанороботы будут способны ремонтировать клетки. Снабжённые полным описанием человеческого тела с точностью до атома они смогут вернуть даже очень старого человека в то состояние, в котором он был в молодости. От операций на органах мы перейдём к операциям на молекулах и станем практически бессмертными. Крионированные найдут свое воскрешение – миллионы роботов смогут восстановить разрушенные в процессе замораживания клетки (см. рис. 1).



рис. 1. Нанороботы, восстанавливающие поврежденный синапс.

Теперь подробнее о нанороботах – основной лечащей силе наномедицины. Типичное медицинское наноустройство будет представлять собой робота микронного (мкм) размера, собранного из наночастей. Эти части будут варьироваться от 1 до 100 нм (1 нм = 10-9 м), и будут должны составлять работоспособную машину, размерами около 0.5-3 мкм (1 мкм = 10-6 м) в диаметре. Три микрона – максимальный размер для медицинских нанороботов кровотока, т.к. это минимальный размер капилляров.

Невозможно сказать сейчас, как будет выглядеть универсальный наноробот. Нанороботы, предназначенные для путешествий внутри человеческого кровотока, возможно, будут иметь размер 500-3000 нм. Нанороботы, находящиеся в тканях, могут быть размерами от 50 до 100 мкм. А наноустройства, функционирующие в бронхах, могут быть еще больше. Каждый тип медицинского наноробота будет разработан под необходимые условия, и, поэтому, возможны разные их размеры и формы.

Очень простой наноробот, которого разработал Роберт Фрайтас несколько лет назад - искусственная красная кровеносная клетка, названная «респироцитом». Размер респироцита – 1 микрон в диаметре и он просто протекает в кровотоке. Это сферический наноробот, изготовленный из 18 биллионов атомов. Эти атомы, в основном, - углерод, с кристаллической решеткой алмаза, образующие сферическую оболочку механизма (см. рис. 2, 3).

Респироцит, по сути дела, - гидропневмоаккамулятор, который может нагнетать внутрь себя 9 биллионов молекул кислорода (O2) и молекул диоксида углерода (CO2). Позже, эти газы выпускаются из респироцита под контролем бортового компьютера. Газы сохраняются под давлением около 1000 атмосфер. (Респироциты могут быть изготовлены невоспламеняющимися благодаря оболочке из сапфира, негорючего и материала со свойствами, близкими к алмазоиду).

Поверхность каждого респироцита на 37% покрыта 29160 молекулярными сортирующими роторами (E. Drexler, «Nanosystems», стр. 374), которые могут нагнетать и выпускать газы во внутренний резервуар. Когда наноробот проплывает в альвеолярных капиллярах, парциальное давление O2 выше, чем CO2, поэтому бортовой компьютер говорит сортирующим роторам нагнетать в резервуары кислород, выпуская CO2. Когда устройство определит свое местоположение в тканях, бедных кислородом, произойдет обратная процедура: так как парциальное давление CO2 относительно высокое, а парциальное давление O2 низкое, то роторы будут нагнетать CO2, выпуская O2.

Респироциты подражают естественным функциям эритроцитов, наполненных гемоглобином. Но респироцит может переносить в 236 раз больше кислорода, чем естественная красная клетка. Этот наноробот намного более эффективен естественного, благодаря исключительной прочности алмазоида, позволяющего поддерживать внутри устройства высокое давление. Рабочее давление красной кровяной клетки – 0.51 атм, при этом только 0.13 атм доставляется тканям. Таким образом, инъекция 5 см3 дозы 50% раствора респироцитов в кровоток сможет заменить несущую способность 5400 см3 крови пациента (то есть ее всю)!


рис. 3. Респироциты в сравнении с красными кровяными тельцами.

Респироциты будут иметь сенсоры для приема акустического сигнала от врача, который будет использовать ультразвуковой передатчик для подачи команд роботам, чтобы изменить их поведение, пока они находятся в пациенте. Например, врач может дать команду респироцитам прекратить нагнетание кислорода и остановиться. Позже, врач может дать команду о включении.

Что будет, если добавить 1 литр респироцитов в ваш кровоток (это максимально безопасная доза)? Вы теперь можете задерживать дыхание на 4 часа, спокойно находясь при этом под водой. Или, если вы спринтер, и бежите на предельной скорости, то можете задержать дыхание на 15 минут до следующего вдоха!

Описанное «простое» устройство имеет очень полезные возможности, даже при его использовании в малых дозах. Другие, более сложные устройства, будут иметь больший набор возможностей. Некоторые устройства должны быть мобильными и способными плавать в крови, либо переползать внутри тканей. Естественно, что они будут иметь различные цвета, формы, в зависимости от выполняемых ими функций. Они будут иметь различные виды манипуляторов роботов, различные наборы сенсоров и т.д. Каждый медицинский наноробот будет спроектирован на определенный тип работы, и будет иметь уникальную форму и поведение.

Пару слов о репликации (самовоспроизводстве) медицинских наноустройств. Медицинские нанороботы не нуждаются в репликации вообще. В действительности FDA, или ее будущий эквивалент, никогда не разрешит использовать наноустройства, способные к репликации invivo (то есть в живом организме). Даже вообразив себе самые неожиданные обстоятельства, никто не хотел бы иметь внутри собственного тела что-либо, способное к репликации. Репликация бактерий уже доставляет нам много проблем.

Когда планы и мечты воплотятся в жизнь?

По-видимому тогда, когда будет создан первый наноманипулятор, полностью управляемый человеком или программируемый компьютером. Пока его создание планируется на 2050 год. Потом на базе наноманипулятора, и уже готового к тому времени нанокомпьютера, можно будет сделать первый наноробот, способный собирать любые вещи. Но первым объектом, который он произведет, будет он сам! Затем эти двое снова скопируют себя, и так далее до тех пор, пока мы не получим достаточное количество нанороботов для создания нами всего задуманного, вообще всего, что не противоречит законам природы. Итак, середина нашего века - время, до которого нам необходимо дожить! Тогда станет возможным почти всё, на что только способно человеческое воображение. Тогда главной проблемой будет понять то, чего же мы на самом деле хотим от человеческой жизни.

Нанороботы - это роботы, размер которых сопоставим с размером молекулы. Они обладают функциями движения, обработки и передачи информации, исполнения программ, а также в некоторых случаях возможностью самовоспроизведения.

Впервые открыто о создании нанороботов заговорил американский ученый Ким Эрик Дрекслер, которого называют "отцом нанотехнологий". Идею создания нанороботов ученый рассмотрел в своей книге "Машины создания". Здесь же он представил гипотетический сценарий оживления крионированных людей. Это первый теоретик создания молекулярных нанороботов и концепции "серой слизи". Дрекслер участвовал в исследованиях NASA на тему космических поселений в 1975 и 1976 годах. Он разрабатывал на основе нанотехнологий высокоэффективные солнечные батареи, а также активно участвовал в космической политике.

В 2010 году были впервые продемонстрированы нанороботы на основе ДНК, способные перемещаться в пространстве. А до этого время постоянно велись секретные исследования в этой отрасли.

Для чего же создаются нанороботы? По официальным данным, они могут оказать неоценимую помощь в медицине. Планируется, что эти микроскопические роботы будут впрыскиваться в пациента и выполнять роль беспроводной связи и ряд других задач на наноуровне.

Утверждается, что до сего момента нанороботы не были испытаны на людях, однако на протяжении последних 10-20 лет появляются факты о том, что нанороботы уже находятся в организме многих людей по всему миру, они выходят прямо из кожи человека, разрушают внутренние клетки человека, нарушают работу всех систем организма.

Несколько добровольных исследователей в этой области, сравнили фотографии некоторых нанороботов, представленных в научных изданиях, и многократно увеличенные фотографии с нанороботами, извлеченными из тел людей. Фотографии представлены ниже.

Общий фон - фото наноробота, извлеченного из тела американца, который уже 13 лет наблюдает за тем, как его тело постепенно разрушается непонятными явно нерукотворными созданиями. Справа - фото наноробота из научного журнала "Advanced Materials".


Вопрос: откуда взялись в теле человека нанороботы идентичные тем, что были представлены в научном журнале?

А самое страшное это то, что таких пациентов по всему миру становится все больше. Объяснения этому никто не дает. Исследования не ведутся. Ученые и медики, которые пытаются заняться исследованиями, погибают при таинственных обстоятельствах. Единственно, что удалось узнать некоторым медикам, при анализе этих нанороботов, найденных в телах людей, это то, что они состоят преимущественно из силикона и притягивают к себе множество других патогенных микроорганизмов.

Человечеству все еще нужны нанороботы? Для чего они созданы на самом деле - знают только посвященные.

Хотите наслаждаться всеми возможностями вашего смартфона на вашем телевизоре? Для этого вам достаточно купить андроид тв приставку . Большой выбор приставок представлен на сайте https://androidmag.org/ . Цены вас порадуют.

Нанороботы — это научный прогресс, который относится к созданию новейших технологий. Эти микроскопические машины способны выполнять определённые действия, на которые они запрограммированы в процессе создания. Также, продумали создание нанороботов способных размножаться и назвали их репликаторами.
Но существует и иная противоречивая точка зрения, которая значительно сужает круг работы нанороботов. То – есть каждый экземпляр выполняет определённую цель. В основном суть таких устройств заключается в воздействии на молекулярном уровне.
Но это только планы, которые скоро претворятся в жизнь. А на данный момент неизвестно ни одного случая взаимодействия с нанороботами, так как точное время доработки проектов и создания наноробов удовлетворяющих требованиям пока не известно.
Радует и то, что прототипы данного устройства заняли лидирующее место в определённой сфере науки. Речь идёт о специальных датчиках, которые ведут учёт молекул в образцах, но и они не нашли столь широкого применения в наше время.


В недалёком 2008 году команда учёных создала робот, которым можно управлять с помощью дезоксирибонуклеиновой кислоты. Этот робот собирается самостоятельно. Используя его возможности можно создавать компьютеры для работы с генами и выполнения логических операций. После, в 2010 году были созданы первые наномашины, которые работают на основе ДНК. То — есть, если DNA box работают на фрагментах ДНК, то тут ДНК полностью обеспечивают работу наномашин.


По типу нанороботы различаются способностью и неспособностью репликации. Даже некоторые учёные бьют тревогу, рассматривая способность машин к саморазмножению. Они считают, что этот тип может представить серьёзную опасность всему человечеству. Но это скорее зависит от интенсивности размножения. Да и сторонники саморазмножающихся машин гарантируют, что определённый момент размножения будет запрограммирован согласно среде производства. Поэтому делать выводы пока рано, тем более можно нарваться на двоякое спорное мнение по этому поводу.

Большие надежды возлагают на машины, учёные – медики. Но и они отрицают производство нанороботов способных к репликации, так как это может привести к возможным ошибкам и недостоверной информации о состоянии здоровья больных. Выход – создание отдельных фабрик для производства нанороботов используемых в медицинской сфере.

Производство и разработка конструкций


Вместе с задумками и детальной разработкой машин учёными, само собой появляется вопрос о реализации устройств. Это направление не оставили без внимания компании, которые создали «сотрудничество по разработке нанофабрик» где изучается возможность создание машин из различных материалов. И именно они нашли способ в использовании алмазов для создания конструкции нонороботов. На нанофабрики направлены основные усилия, ведь там разрабатывают не только основные компоненты машин, но и учитывается функциональное предназначение каждого вида и их количество.
К созданию основных компонентов машин относится разработка молекулярных моторов, которые имеют способность перерабатывать в кинетическую энергию различные типы существующих энергий. За счёт этого, они смогут вращаться в одном направлении.
Способов производства нанороботов два. К ним можно отнести:
3D печать;
двухфотонную литографию.

3D печать используется для создания физических предметов, используя чертежи, или лазерную гравировку. Выглядит 3D печать, созданная с помощью чертежей, как полноценная трёхмерная модель. Но производить наноустройства таким способом можно при условии высокой точности современных принтеров, дабы не упустить, ни одну деталь. Поэтому гравировка с использованием лазера позволяет добиться более высокоточных результатов. А принтер, использующий этот способ, может даже создавать составляющие части машин.
Если говорить о двухфотонной литографии, то следует отметить, что тут не отвергается использование 3D принтеров. Просто печать производится путём лазерного луча, отправляющего на точку фотоны. Этот способ тоже хорош тем, что создаёт высокоточную конструкцию или часть конструкции. Какой использовать способ пока не определились, но все они изучаются очень тщательно.


Если производители добьются своей цели и создадут нанороботы, то сфер применения их будет множество. Во-первых, как мы уже и говорили выше, медицина возлагает большие надежды на наномашины . Помимо контроля за состоянием здоровья больных, особенно в послеоперабельный период и страдающих сахарным диабетом, их планируют использовать для выявления и уничтожения раковых клеток, которые находятся в различных стадиях.
В военной отрасли, нанороботы могут быть инструментом для разведывательных операций и даже для устранения противников.

Видео: