ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Что означает открытие гравитационных волн для обычного человека

Спустя сто лет после теоретического предсказания, которое в рамках общей теории относительности сделал Альберт Эйнштейн, ученым удалось подтвердить существование гравитационных волн. Начинается эра принципиально нового метода изучения далекого космоса — гравитационно-волновой астрономии.

Открытия бывают разные. Бывают случайные, в астрономии они встречаются часто. Бывают не совсем случайные, сделанные в результате тщательного «прочесывания местности», как, например, открытие Урана Вильямом Гершелем. Бывают серендипические — когда искали одно, а нашли другое: так, например, открыли Америку. Но особое место в науке занимают запланированные открытия. Они основаны на четком теоретическом предсказании. Предсказанное ищут в первую очередь для того, чтобы подтвердить теорию. Именно к таким открытиям относятся обнаружение бозона Хиггса на Большом адронном коллайдере и регистрация гравитационных волн с помощью лазерно-интерферометрической гравитационно-волновой обсерватории LIGO. Но для того чтобы зарегистрировать какое-то предсказанное теорией явление, нужно довольно неплохо понимать, что именно и где искать, а также какие инструменты необходимы для этого.

Гравитационные волны традиционно называют предсказанием общей теории относительности (ОТО), и это в самом деле так (хотя сейчас такие волны есть во всех моделях, альтернативных ОТО или же дополняющих ее). К появлению волн приводит конечность скорости распространения гравитационного взаимодействия (в ОТО эта скорость в точности равна скорости света). Такие волны — возмущения пространства-времени, распространяющиеся от источника. Для возникновения гравитационных волн необходимо, чтобы источник пульсировал или ускоренно двигался, но определенным образом. Скажем, движения с идеальной сферической или цилиндрической симметрией не подходят. Таких источников достаточно много, но часто у них маленькая масса, недостаточная для того, чтобы породить мощный сигнал. Ведь гравитация — самое слабое из четырех фундаментальных взаимодействий, поэтому зарегистрировать гравитационный сигнал очень трудно. Кроме того, для регистрации нужно, чтобы сигнал быстро менялся во времени, то есть имел достаточно высокую частоту. Иначе нам не удастся его зарегистрировать, так как изменения будут слишком медленными. Значит, объекты должны быть еще и компактными.

Первоначально большой энтузиазм вызывали вспышки сверхновых, происходящие в галактиках вроде нашей раз в несколько десятков лет. Значит, если удастся достичь чувствительности, позволяющей видеть сигнал с расстояния в несколько миллионов световых лет, можно рассчитывать на несколько сигналов в год. Но позднее оказалось, что первоначальные оценки мощности выделения энергии в виде гравитационных волн во время взрыва сверхновой были слишком оптимистичными, и зарегистрировать подобный слабый сигнал можно было бы только в случае, если б сверхновая вспыхнула в нашей Галактике.

Еще один вариант массивных компактных объектов, совершающих быстрые движения, — нейтронные звезды или черные дыры. Мы можем увидеть или процесс их образования, или процесс взаимодействия друг с другом. Последние стадии коллапса звездных ядер, приводящие к образованию компактных объектов, а также последние стадии слияния нейтронных звезд и черных дыр имеют длительность порядка нескольких миллисекунд (что соответствует частоте в сотни герц) — как раз то что надо. При этом выделяется много энергии, в том числе (а иногда и в основном) в виде гравитационных волн, так как массивные компактные тела совершают те или иные быстрые движения. Вот они — наши идеальные источники.

Правда, сверхновые вспыхивают в Галактике раз в несколько десятков лет, слияния нейтронных звезд происходят раз в пару десятков тысяч лет, а черные дыры сливаются друг с другом еще реже. Зато сигнал гораздо мощнее, и его характеристики можно достаточно точно рассчитать. Но теперь нам надо научиться видеть сигнал с расстояния в несколько сотен миллионов световых лет, чтобы охватить несколько десятков тысяч галактик и обнаружить несколько сигналов за год.

Определившись с источниками, начнем проектировать детектор. Для этого надо понять, что же делает гравитационная волна. Не вдаваясь в детали, можно сказать, что прохождение гравитационной волны вызывает приливную силу (обычные лунные или солнечные приливы — это отдельное явление, и гравитационные волны тут ни при чем). Так что можно взять, например, металлический цилиндр, снабдить датчиками и изучать его колебания. Это несложно, поэтому такие установки начали делать еще полвека назад (есть они и в России, сейчас в Баксанской подземной лаборатории монтируется усовершенствованный детектор, разработанный командой Валентина Руденко из ГАИШ МГУ). Проблема в том, что такой прибор будет видеть сигнал без всяких гравитационных волн. Есть масса шумов, с которыми трудно бороться. Можно (и это было сделано!) установить детектор под землей, попытаться изолировать его, охладить до низких температур, но все равно для того, чтобы превысить уровень шума, понадобится очень мощный гравитационно-волновой сигнал. А мощные сигналы приходят редко.

Поэтому был сделан выбор в пользу другой схемы, которую в 1962 году выдвинули Владислав Пусто-войт и Михаил Герценштейн. В статье, опубликованной в ЖЭТФ (Журнал экспериментальной и теоретической физики), они предложили использовать для регистрации гравитационных волн интерферометр Майкельсона. Луч лазера бегает между зеркалами в двух плечах интерферометра, а затем лучи из разных плеч складываются. Анализируя результат интерференции лучей, можно измерить относительное изменение длин плеч. Это очень точные измерения, поэтому, если победить шумы, можно достичь фантастической чувствительности.

В начале 1990-х было принято решение о строительстве нескольких детекторов по такой схеме. Первыми в строй должны были войти относительно небольшие установки, GEO600 в Европе и ТАМА300 в Японии (числа соответствуют длине плеч в метрах) для обкатки технологии. Но основными игроками должны были стать установки LIGO в США и VIRGO в Европе. Размер этих приборов измеряется уже километрами, а окончательная плановая чувствительность должна была бы позволить видеть десятки, если не сотни событий в год.

Почему нужны несколько приборов? В первую очередь для перекрестной проверки, поскольку существуют локальные шумы (например, сейсмические). Одновременная регистрация сигнала на северо-западе США и в Италии была бы прекрасным свидетельством его внешнего происхождения. Но есть и вторая причина: гравитационно-волновые детекторы очень плохо определяют направление на источник. А вот если разнесенных детекторов будет несколько, указать направление можно будет довольно точно.

Лазерные исполины

В своем первоначальном виде детекторы LIGO были построены в 2002 году, a VIRGO — в 2003-м. По плану это был лишь первый этап. Все установки поработали по несколько лет, а в 2010-2011 годах были остановлены для доработки, чтобы затем выйти на плановую высокую чувствительность. Первыми заработали детекторы LIGO в сентябре 2015 года, VIRGO должна присоединиться во второй половине 2016-го, и начиная с этого этапа чувствительность позволяет надеяться на регистрацию как минимум нескольких событий в год.

После начала работы LIGO ожидаемый темп всплесков составлял примерно одно событие в месяц. Астрофизики заранее оценили, что первыми ожидаемыми событиями должны стать слияния черных дыр. Связано это с тем, что черные дыры обычно раз в десять тяжелее нейтронных звезд, сигнал получается мощнее, и его «видно» с больших расстояний, что с лихвой компенсирует меньший темп событий в расчете на одну галактику. К счастью, долго ждать не пришлось. 14 сентября 201 5 года обе установки зарегистрировали практически идентичный сигнал, получивший наименование GW150914.

С помощью довольно простого анализа можно получить такие данные, как массы черных дыр, мощность сигнала и расстояние до источника. Масса и размер черных дыр связаны очень простым и хорошо известным образом, а по частоте сигнала сразу можно оценить размер области выделения энергии. В данном случае размер указывал на то, что из двух дыр массой 25-30 и 35-40 солнечных масс образовалась черная дыра с массой более 60 солнечных масс. Зная эти данные, можно получить и полную энергию всплеска. В гравитационное излучение перешло почти три массы Солнца. Это соответствует светимости 1023 светимостей Солнца — примерно столько же, сколько за это время (сотые доли секунды) излучают все звезды в видимой части Вселенной. А из известной энергии и величины измеренного сигнала получается расстояние. Большая масса слившихся тел позволила зарегистрировать событие, произошедшее в далекой галактике: сигнал шел к нам примерно 1,3 млрд лет.

Более детальный анализ позволяет уточнить отношение масс черных дыр и понять, как они вращались вокруг своей оси, а также определить и некоторые другие параметры. Кроме того, сигнал с двух установок позволяет примерно определить направление всплеска. К сожалению, пока тут точность не очень велика, но с вводом в строй обновленной VIRGO она возрастет. А еще через несколько лет начнет принимать сигналы японский детектор KAGRA. Затем один из детекторов LIGO (изначально их было три, одна из установок была сдвоенной) будет собран в Индии, и ожидается, что тогда будут регистрироваться многие десятки событий в год.

Эра новой астрономии

На данный момент самый важный результат работы LIGO — это подтверждение существования гравитационных волн. Кроме того, уже первый всплеск позволил улучшить ограничения на массу гравитона (в ОТО он имеет нулевую массу), а также сильнее ограничить отличие скорости распространения гравитации от скорости света. Но ученые надеются, что уже в 2016 году они смогут получать с помощью LIGO и VIRGO много новых астрофизических данных.

Во-первых, данные гравитационно-волновых обсерваторий — это новый канал изучения черных дыр. Если ранее можно было только наблюдать потоки вещества в окрестностях этих объектов, то теперь можно прямо «увидеть» процесс слияния и «успокоения» образующейся черной дыры, как колеблется ее горизонт, принимая свою окончательную форму (определяемую вращением). Наверное, вплоть до обнаружения хокинговского испарения черных дыр (пока что этот процесс остается гипотезой) изучение слияний будет давать лучшую непосредственную информацию о них.

Во-вторых, наблюдения слияний нейтронных звезд дадут много новой, крайне нужной информации об этих объектах. Впервые мы сможем изучать нейтронные звезды так, как физики изучают частицы: наблюдать за их столкновениями, чтобы понять, как они устроены внутри. Загадка строения недр нейтронных звезд волнует и астрофизиков, и физиков. Наше понимание ядерной физики и поведения вещества при сверхвысокой плотности неполно без разрешения этого вопроса. Вполне вероятно, что именно гравитационноволновые наблюдения сыграют здесь ключевую роль.

Считается, что именно слияния нейтронных звезд ответственны за короткие космологические гамма-всплески. В редких случаях удастся одновременно наблюдать событие сразу и в гамма-диапазоне, и на гравитационно-волновых детекторах (редкость связана с тем, что, во-первых, гамма-сигнал сконцентрирован в очень узкий луч, и он не всегда направлен на нас, а во-вторых, от очень далеких событий мы не зарегистрируем гравитационных волн). Видимо, понадобится несколько лет наблюдений, чтобы удалось это увидеть (хотя, как обычно, может повезти, и это произойдет прямо сегодня). Тогда, кроме всего прочего, мы сможем очень точно сравнить скорость гравитации со скоростью света.

Таким образом, лазерные интерферометры вместе будут работать как единый гравитационно-волновой телескоп, приносящий новые знания и астрофизикам, и физикам. Ну а за открытие первых всплесков и их анализ рано или поздно будет вручена заслуженная Нобелевская премия.

2198

Вчера мир потрясла сенсация: ученые наконец-то обнаружили гравитационные волны, существование которых предсказывал Эйнштейн еще сто лет назад. Это прорыв. Искажение пространства-времени (это и есть гравитационные волны - сейчас объясним, что к чему) обнаружили в обсерватории ЛИГО, а одним из ее основателей является - кто бы вы думали? - Кип Торн, автор книги .

Рассказываем, почему открытие гравитационных волн так важно, что сказал Марк Цукерберг и, конечно, делимся историей от первого лица. Кип Торн как никто другой знает, как устроен проект, в чем его необычность и какое значение ЛИГО имеет для человечества. Да-да, все так серьезно.

Открытие гравитационных волн

Научный мир навсегда запомнит дату 11 февраля 2016. В этот день участники проекта ЛИГО (LIGO) объявили: после стольких тщетных попыток гравитационные волны найдены. Это реальность. На самом деле их обнаружили немного раньше: в сентябре 2015 года, но вчера открытие было признано официально. В The Guardian считают, что ученые непременно получат Нобелевскую премию по физике.

Причина гравитационных волн - столкновение двух черных дыр, которое произошло аж… в миллиарде световых лет от Земли. Представляете, насколько огромна наша Вселенная! Так как черные дыры - очень массивные тела, они пускают «рябь» по пространству-времени, немного его искажая. Вот и появляются волны, похожие на те, которые распространяются от камня, брошенного в воду.

Вот так можно представить гравитационные волны, идущие к Земле, например, от червоточины. Рисунок из книги «Интерстеллар. Наука за кадром»

Полученные колебания преобразовали в звук. Интересно, что сигнал от гравитационных волн приходит примерно на той же частоте, что и наша речь. Так что мы можем своими ушами услышать, как сталкиваются черные дыры. Послушайте, как звучат гравитационные волны .

И знаете что? Совсем недавно , что черные дыры устроены не так, как считалось раньше. Но ведь доказательств того, что они в принципе существуют, не было вовсе. А теперь есть. Черные дыры действительно «живут» во Вселенной.

Так, по мнению ученых, выглядит катастрофа – слияние черных дыр, — .

11 февраля состоялась грандиозная конференция, куда съехались больше тысячи ученых из 15 стран. Российские ученые тоже присутствовали. И, конечно, не обошлось без Кипа Торна. «Это открытие - начало изумительного, великолепного квеста для людей: поиска и исследования искривленной стороны Вселенной - объектов и явлений, созданных из искаженного пространства-времени. Столкновение черных дыр и гравитационные волны - наши первые замечательные образцы», - сказал Кип Торн.

Поиск гравитационных волн был одной из главных проблем физики. Теперь они найдены. И гений Эйнштейна подтвержден вновь.

В октябре мы взяли интервью у Сергея Попова, отечественного астрофизика и известного популяризатора науки. Он как в воду глядел! Осенью : «Мне кажется, что сейчас мы стоим на пороге новых открытий, что в первую очередь связано с работой детекторов гравитационных волн LIGO и VIRGO (Кип Торн как раз внес большой вклад в создание проекта LIGO)». Удивительно, правда?

Гравитационные волны, детекторы волн и LIGO

Что ж, а теперь немного физики. Для тех, кто действительно хочется разобраться в том, что такое гравитационные волны. Вот художественное изображение тендекс-линий двух черных дыр, которые вращаются по орбитам друг вокруг друга, против часовой стрелки, и затем сталкиваются. Тендекс-линии порождают приливную гравитацию. Идем дальше. Линии, которые исходят из двух наиболее удаленных друг от друга точек на поверхностях пары черных дыр, растягивают все на своем пути, включая попавшую на рисунок подругу художницы. Линии же, исходящие из области столкновения, все сжимают.

Когда дыры вращаются одна вокруг другой, они увлекают следом свои тендекс-линии, которые походят на струи воды из крутящейся поливалки на газоне. На рисунке из книги «Интерстеллар. Наука за кадром» - пара черных дыр, которые сталкиваются, вращаясь одна вокруг другой против часовой стрелки, и их тендекс-линии.

Черные дыры объединяются в одну большую дыру; она деформирована и вращается против часовой стрелки, увлекая за собой тендекс-линии. Неподвижный наблюдатель, находящийся вдали от дыры, почувствует колебания, когда через него будут проходить тендекс-линии: растяжение, затем сжатие, затем растяжение - тендекс-линии стали гравитационной волной. По мере распространения волн деформация черной дыры постепенно уменьшается, и волны также ослабевают.

Когда эти волны достигают Земли, они имеют вид, показанный в верхней части рисунка ниже. Они растягивают в одном направлении и сжимают в другом. Растяжения и сжатия колеблются (от красного вправо-влево, к синему вправо-влево, к красному вправо-влево и т. д.) по мере того, как волны проходят через детектор в нижней части рисунка.

Гравитационные волны, проходящие через детектор ЛИГО.

Детектор представляет собой четыре больших зеркала (40 килограммов, 34 сантиметра в диаметре), которые закреплены на концах двух перпендикулярных труб, называемых плечами детектора. Тендекс-линии гравитационных волн растягивают одно плечо, сжимая при этом второе, а затем, наоборот, сжимают первое и растягивают второе. И так снова и снова. При периодическом изменении длины плеч зеркала смещаются друг относительно друга, и эти смещения отслеживаются с помощью лазерных лучей способом, который называется интерферометрией. Отсюда и название ЛИГО: Лазерно-интерферометрическая гравитационноволновая обсерватория.

Центр управления ЛИГО, откуда отправляют команды детектору и следят за полученными сигналами. Гравитационные детекторы ЛИГО расположены в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. Фото из книги «Интерстеллар. Наука за кадром»

Сейчас ЛИГО - интернациональный проект, в котором участвует 900 ученых из разных стран, со штабом, расположенным в Калифорнийском технологическом институте.

Искривленная сторона Вселенной

Черные дыры, червоточины, сингулярности, гравитационные аномалии и измерения высшего порядка связаны с искривлениями пространства и времени. Поэтому Кип Торн называет их «искривленной стороной Вселенной». У человечества до сих пор очень мало экспериментальных и наблюдательных данных с искривленной стороны Вселенной. Вот почему мы столько внимания отдаем гравитационным волнам: они состоят из искривленного пространства и предоставляют наиболее доступный для нас способ исследовать искривленную сторону.

Представьте, что вам приходилось видеть океан, только когда он спокоен. Вы бы знать не знали о течениях, водоворотах и штормовых волнах. Это напоминает наши сегодняшние знания об искривлении пространства и времени.

Мы почти ничего не знаем о том, как искривленное пространство и искривленное время ведут себя «в шторм» - когда форма пространства бурно колеблется и когда колеблется скорость течения времени. Это необыкновенно манящий рубеж знаний. Ученый Джон Уилер придумал для этих изменений термин «геометродинамика»

Особый интерес в области геометродинамики представляет столкновение двух черных дыр.

Столкновение двух невращающихся черных дыр. Модель из книги «Интерстеллар. Наука за кадром»

На рисунке выше изображен момент столкновения двух черных дыр. Как раз такое событие позволило ученым зафиксировать гравитационные волны. Эта модель построена для невращающихся черных дыр. Сверху: орбиты и тени дыр, вид из нашей Вселенной. Посередине: искривленное пространство и время, вид из балка (многомерного гиперпространства); стрелками показано, как пространство вовлекается в движение, а изменяющимися цветами - как искривляется время. Снизу: форма испускаемых гравитационных волн.

Гравитационные волны от Большого взрыва

Слово Кипу Торну. «В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был таков: квантовые флуктуации (случайные колебания - прим. ред) гравитационного поля при Большом взрыве были многократно усилены первоначальным расширением Вселенной и так стали изначальными гравитационными волнами. Эти волны, если их удастся обнаружить, могут рассказать нам, что происходило в момент зарождения нашей Вселенной».

Если ученые найдут первоначальные гравитационные волны, мы узнаем, как зародилась Вселенная.

Люди разгадали далеко на все загадки Вселенной. Все еще впереди.

В последующие годы, по мере того как совершенствовались наши представления о Большом взрыве, стало очевидно: эти изначальные волны должны быть сильными на длинах волн, соизмеримых с величиной видимой Вселенной, то есть на длинах в миллиарды световых лет. Представляете, сколько это?.. А на длинах волн, которые охватывают детекторы ЛИГО (сотни и тысячи километров), волны, скорее всего, окажутся слишком слабыми, чтобы их распознать.

Команда Джейми Бока построила аппарат BICEP2 , с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год.

Аппарат BICEP2 . Изображение из книги «Интерстеллар. Наука за кадром»

Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след - поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов.

След начала Вселенной

В начале девяностых космологи поняли, что эти гравитационные волны длиной в миллиарды световых лет должны были оставить уникальный след в электромагнитных волнах, наполняющих Вселенную, - в так называемом космическом микроволновом фоне, или реликтовом излучении. Это положило начало поискам святого Грааля. Ведь если обнаружить этот след и вывести из него свойства изначальных гравитационных волн, можно узнать, как зарождалась Вселенная.

В марте 2014 года, когда Кип Торн писал эту книгу, команда Джеми Бока, космолога из Калтеха, кабинет которого находится рядом с кабинетом Торна, наконец обнаружила этот след в реликтовом излучении.

Это совершенно потрясающее открытие, но есть один спорный момент: след, найденный командой Джеми, мог быть вызван не гравитационными волнами, а чем-то еще.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной.

Это открытие подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов - инфляционно быстрым. И возвещает наступление новой эры в космологии.

Гравитационные волны и «Интерстеллар»

Вчера на конференции по поводу открытия гравитационных волн Валерий Митрофанов, руководитель московской коллаборации ученых LIGO, в которую входят 8 ученых из МГУ, отметил, что сюжет фильма «Интерстеллар» хоть и фантастичен, но не так далек от действительности. А все потому, что научным консультантом был Кип Торн. Сам же Торн выразил надежду, что верит в будущие пилотируемые полеты человека к черной дыре. Пусть они случатся не так скоро, как хотелось бы, и все же сегодня это намного реальнее, чем было раньше.

Не так уж и далек день, когда люди покинут пределы нашей галактики.

Событие всколыхнуло умы миллионов людей. Небезызвестный Марк Цукерберг написал: «Обнаружение гравитационных волн - самое большое открытие в современной науке. Альберт Эйнштейн - один из моих героев, поэтому я воспринял открытие так близко. Столетие назад в рамках Общей Теории Относительности (ОТО) он предсказал существование гравитационных волн. А ведь они так малы, чтобы их обнаружить, что пришло искать их в истоках таких событий, как Большой взрыв, взрывы звезд и столкновения черных дыр. Когда ученые проанализируют полученные данные, перед нами откроется совершенной новый взгляд на космос. И, возможно, это прольет свет на происхождение Вселенной, рождение и процесс развития черных дыр. Это очень вдохновляет - думать о том, сколько жизней и усилий было положено на то, чтобы сорвать покров с этой тайны Вселенной. Этот прорыв стал возможным благодаря таланту блистательных ученых и инженеров, людей разных национальностей, а также новейшим компьютерным технологиям, которые появились только недавно. Поздравляю всех причастных. Эйнштейн бы вами гордился».

Такая вот речь. И это человек, который просто интересуется наукой. Можно себе представить, какая буря эмоций захлестнула ученых, которые внесли свою лепту в открытие. Кажется, мы стали свидетелями новой эры, друзья. Это поразительно.

P.S.: Понравилось? Подписывайтесь на нашу рассылку по кругозору . Раз в неделю присылаем познавательные письма и дарим скидки на книги МИФа.

Группа ученых из 16 стран впервые получила доказательство существования гравитационных волн на практике. В этом им помогли две черные дыры, которые соединились в одну 1,3 млрд лет назад. В процессе произошел такой выброс энергии, который заставил Землю трястись, как желе. «Фонтанка» попыталась разобраться в представленных доказательствах.

Источник: LIGO

«Мы зафиксировали гравитационную волну», - заявил на пресс-конференции в Вашингтоне исполнительный директор лазерно-интерферометрической гравитационно-волновой обсерватории LIGO Дэвид Рейтс. Его слова вызвали шквал аплодисментов. Все же не так часто фундаментальная наука радует открытиями вселенского масштаба.

Исследование действительно выходит за пределы планеты. Источник колебаний, который удалось обнаружить ученым, находится где-то в южной части звездного неба. Волна пришла со стороны Магеллановых Облаков, которые являются галактиками-спутниками Млечного пути. Возможное местонахождение источника с разной вероятностью отмечено на карте ниже.

Около 1,3 млрд лет назад, полагают ученые, там развивались фантастические события, когда две черные дыры попали под влияние друг друга и стали сближаться. Напомним, «черные дыры» - условное название для космических объектов, которые притягивают к себе все, что находится рядом. Сила притяжения настолько велика, что даже свет не может вырваться за их пределы. Из-за этого на фоне ярких звезд и освещаемых ими объектов «черные дыры» выглядят абсолютно темными.

И вот два таких объекта начали притягиваться друг к другу, двигаясь по улитке. Тем самым они создавали возмущения в гравитационном поле, и от их движения начали расходиться гравитационные волны. Процесс завершился логично: соединением в один космический объект. Визуально это похоже на деление клетки, которое знакомо всем из учебника по биологии, запущенное в обратном направлении.

Исследователи LIGO отмечают критический момент за миллисекунду до окончательного соединения двух «черных дыр» в одну, когда произошел выброс энергии, в 50 раз превышающий энергию всех звезд во Вселенной.

Источник: LIGO

Своеобразный «девятый вал» прошелся по Вселенной и докатился до Земли. Волна ударила в планету и повлияла на ее гравитационное поле. Для наглядности ученые пояснили, что эффект был похож на то, что будет, если ткнуть чем-нибудь желе и оно начнет трястись. Впрочем, для планеты такие сотрясения неопасны, и ничем, кроме сверхчувствительных приборов, они не зафиксированы. Сооснователь LIGO Райнер Вейс при этом наглядно продемонстрировал, как конкретно волна проходит через гравитационное поле.

К тому времени, как волна дошла до Земли, экспериментальные исследования в поисках гравитационных волн велись уже четверть века. Надо сказать, что теоретическая возможность существования гравитационных волн упоминается в нескольких теориях. Например, согласно общей теории относительности Эйнштейна скорость распространения гравитационной волны равняется скорости света в линейном приближении.

Однако экспериментально опровергнуть или подтвердить ни одну из теорий было невозможно, ввиду того, что обнаружить гравитационную волну очень сложно. Чтобы понять масштаб такого явления, надо знать, что в Солнечной системе самыми мощными источниками гравитационных волн являются, собственно, Солнце и Юпитер. И мощность этих волн составляет ничтожные, по сравнению с кинетической энергией этих тел, 5 киловатт.

Однако 14 сентября 2015 года сразу двум гравитационно-волновым обсерваториям в США удалось зафиксировать колебания, которые впоследствии были идентифицированы учеными как гравитационные волны. Сначала колебания зафиксировали в городе Хэнфорд штата Вашингтон, а через 7 миллисекунд в Ливингстоне штата Луизиана. Перепроверка всех данных заняла еще около полугода. После этого ученые смогли рассказать, как им удалось поймать гравитационную волну.

Для измерения использовался лазерный интерферометр. Суть его работы заключается в разделении лазерного луча на два, отличающиеся интенсивностью. Каждый из них далее доходит до зеркала, где отражается и возвращается в систему, а уже оттуда направляется на специальный фотодетектор. Принцип работы системы изображен на видео ниже.

Источник: LIGO

Зеркала находятся на значительном расстоянии от лазера и изолированы от посторонних колебаний. Когда гравитационная волна проходит сквозь Землю, меняется ее форма, а значит, и расстояние зеркал от источника излучения. В результате, после отражения лазерного луча от зеркала, лучу необходимо большее или меньшее расстояние, чтобы дойти до фотодетектора. Микроскопическая разница в попадании лазера на фотодетектор как раз и является методом определения гравитационной волны.

Для большей наглядности ученые определили цветом амплитуду гравитационной волны. Представитель LIGO из Университета Луизианы Габриэла Гонсалес также заявила, что гравитационная волна находится в том диапазоне, который может уловить человеческое ухо. «Мы буквально можем услышать гравитационную волну, мы можем услышать Вселенную. Однако эта волна настолько короткая, что мы услышим только звук, похожий на «плюк!», - пояснила Гонсалес.

Читателям «Фонтанки» также предлагаем услышать гравитационную волну, которая появилась около 1,3 млрд лет назад в результате соединения двух «черных дыр» в далекой-далекой галактике.

В четверг, 11 февраля, группа ученых из международного проекта LIGO Scientific Collaboration заявили, что им удалось , существование которых еще в 1916 году предсказал Альберт Эйнштейн. По утверждению исследователей, 14 сентября 2015 года они зафиксировали гравитационную волну, которая была вызвана столкновением двух черных дыр массой в 29 и 36 раз больше массы Солнца, после чего они слились в одну большую черную дыру. По их словам, это произошло предположительно 1,3 миллиарда лет назад на расстоянии 410 Мегапарсеков от нашей галактики.

Подробно о гравитационных волнах и масштабном открытии ЛІГА.net рассказал Богдан Гнатык , украинский ученый, астрофизик, доктор физико-математических наук, ведущий научный сотрудник Астрономической обсерватории Киевского национального университета имени Тараса Шевченко, который возглавлял обсерваторию с 2001-го по 2004 год.

Теория простым языком

Физика изучает взаимодействие между телами. Установлено, что между телами существует четыре вида взаимодействия: электромагнитное, сильное и слабое ядерное взаимодействие и гравитационное взаимодействие, которое мы все ощущаем. Вследствие гравитационного взаимодействия планеты вращаются вокруг Солнца, тела имеют вес и падают на землю. С гравитационным взаимодействием человек сталкивается постоянно.

В 1916 году, 100 лет назад, Альберт Эйнштейн построил теорию гравитации, которая улучшала ньютоновскую теорию гравитации, сделала ее математически правильной: она стала отвечать всем требованиям физики, стала учитывать то, что гравитация распространяется с очень большой, но конечной скоростью. Это по праву одно из самых грандиозных достижений Эйнштейна, поскольку он построил ​​теорию гравитации, которая отвечает всем явлениям физики, которые мы сегодня наблюдаем.

Эта теория также предполагала существование гравитационных волн . Основой этого предсказания было то, что гравитационные волны существуют в результате гравитационного взаимодействия, которое возникает вследствие слияния двух массивных тел.

Что такое гравитационная волна

Сложным языком это возбуждение метрики пространства-времени. "Скажем, пространство имеет определенную упругость и по нему могут бежать волны. Это похоже на то, когда мы в воду бросаем камешек и от него разбегаются волны", - рассказал ЛІГА.net доктор физико-математических наук.

Ученым удалось экспериментально доказать, что подобное колебание имело место во Вселенной и во всех направлениях пробежала гравитационная волна. "Астрофизическим способом впервые было зафиксировано явление такой катастрофической эволюции двойной системы, когда сливаются два объекта в один, а это слияние приводит к очень интенсивному выделению гравитационной энергии, которая затем в виде гравитационных волн распространяется в пространстве", - пояснил ученый.


Как это выглядит (фото - EPA)

Эти гравитационные волны очень слабые и чтобы они поколебали пространство-время, необходимо взаимодействие очень больших и массивных тел, чтобы напряженность гравитационного поля была большая в месте генерирования. Но, несмотря на их слабость, наблюдатель через определенное время (равное расстоянию к взаимодействию разделенному на скорость прохождения сигнала) зарегистрирует эту гравитационную волну.

Приведем пример: если бы Земля упала на Солнце, то произошло бы гравитационное взаимодействие: выделилась бы гравитационная энергия, образовалась бы гравитационная сферически-симметричная волна и наблюдатель смог бы ее зарегистрировать. "Здесь же произошло аналогичное, но уникальное, с точки зрения астрофизики, явление: столкнулись два массивных тела - две черные дыры", - отметил Гнатык.

Вернемся к теории

Черная дыра - это еще одно предсказание общей теории относительности Эйнштейна, которое предусматривает, что тело, которое имеет огромную массу, но эта масса сконцентрирована в малом объеме, способно существенно искажать пространство вокруг себя, вплоть до его замыкания. То есть, предполагалось, что когда достигается критическая концентрация массы этого тела - такая, что размер тела будет меньше, чем так называемый гравитационный радиус, то вокруг этого тела пространство замкнется и топология его будет такой, что никакой сигнал с него за пределы замкнутого пространства распространиться не сможет.

"То есть, черная дыра, простыми словами, это массивный объект, который настолько тяжелый, что замыкает вокруг себя пространство-время", - говорит ученый.

И мы, по его словам, можем посылать любые сигналы этому объекту, а он нам - нет. То есть, никакие сигналы не могут выходить за пределы черной дыры.

Черная дыра живет по обычным физическим законам, но в результате сильной гравитации, ни одно материальное тело, даже фотон, не способно выйти за пределы этой критической поверхности. Черные дыры образуются в ходе эволюции обычных звезд, когда происходит коллапс центрального ядра и часть вещества звезды, коллапсируя, превращается в черную дыру, а другая часть звезды выбрасывается в виде оболочки Сверхновой звезды, превращаясь в так называемую "вспышку" Сверхновой звезды.

Как мы увидели гравитационную волну

Приведем пример. Когда на поверхности воды у нас есть два поплавка и вода спокойная - то расстояние между ними постоянное. Когда приходит волна, то она смещает эти поплавки и расстояние между поплавками изменится. Волна прошла - и поплавки возвращаются на свои прежние позиции, а расстояние между ними восстанавливается.

Аналогичным образом распространяется и гравитационная волна в пространстве-времени: она сжимает и растягивает тела и объекты, которые встречаются на ее пути. "Когда на пути волны встречается некий объект - он деформируется вдоль своих осей, а после ее прохождения - возвращается к прежней форме. Под действием гравитационной волны все тела деформируются, но эти деформации - очень незначительны", - говорит Гнатык.

Когда прошла волна, которую зафиксировали ученые, то относительный размер тел в пространстве изменился на величину порядка 1 умножить на 10 в минус 21-ой степени. Например, если взять метровую линейку, то она сжалась на такую ​​величину, которая составляла ее размер, умноженный на 10 в минус 21-ой степени. Это очень мизерная величина. И проблема заключалась в том, что ученым нужно было научиться это расстояние измерить. Обычные методы давали точность порядка 1 к 10 в 9 степени милионнам, а здесь необходима гораздо более высокая точность. Для этого создали так называемые гравитационные антенны (детекторы гравитационных волн).


Обсерватория LIGO (фото - EPA)

Антенна, которая зафиксировала гравитационные волны, построена таким образом: существует две трубы, примерно по 4 километра в длину, расположенные в форме буквы "Г", но с одинаковыми плечами и под прямым углом. Когда на систему падает гравитационная волна, она деформирует крылья антенны, но в зависимости от ее ориентации, она деформирует одно больше, а второе - меньше. И тогда возникает разность хода, интерференционная картина сигнала меняется - возникает суммарная положительная или отрицательная амплитуда.

"То есть, прохождение гравитационной волны аналогично волне на воде, проходящей между двумя поплавками: если бы мы мерили расстояние между ними во время и после прохождения волны, то мы бы увидели, что расстояние изменилось бы, а потом снова стало прежним", - рассказал Гнатык.

Здесь же измеряется относительное изменение расстояния двух крыльев интерферометра, из которых каждое имеет около 4 километров в длину. И только очень точные технологии и системы позволяют измерить такое микроскопическое смещение крыльев, вызванное гравитационной волной.

На границе Вселенной: откуда пришла волна

Ученые зафиксировали сигнал с помощью двух детекторов, которые в США расположены в двух штатах: Луизиане и Вашингтон на расстоянии около 3 тыс километров. Ученым удалось оценить, откуда и с какого расстояния пришел этот сигнал. Оценки показывают, что сигнал пришел с расстояния, которое составляет 410 Мегапарсеков. Мегапарсек - это расстояние, которое свет проходит за три миллиона лет.

Чтобы было легче представить: ближайшая к нам активная галактика со сверхмассивной черной дырой в центре - Центавр А, которая находится от нашей на расстоянии четыре Мегапарсека, в то же время Туманность Андромеды находится на расстоянии 0,7 Мегапарсеков. "То есть расстояние, с которого пришел сигнал гравитационной волны настолько велико, что сигнал шел к Земле примерно 1,3 млрд лет. Это космологические расстояния, которые достигают около 10% горизонта нашей Вселенной", - рассказал ученый.

На таком расстоянии в какой-то далекой галактике произошло слияние двух черных дыр. Эти дыры, с одной стороны, были относительно малыми по размерам, а с другой стороны, большая сила амплитуды сигнала свидетельствует, что они были очень тяжелые. Установлено, что массы их были соответственно 36 и 29 масс Солнца. Масса Солнца, как известно, составляет величину, которая равняется 2 умножить на 10 в 30 степени килограмм. После слияния эти два тела слились и теперь на их месте образовалась одна черная дыра, которая имеет массу, равную 62 массам Солнца. При этом, примерно три массы Солнца выплеснулось в виде энергии гравитационной волны.

Кто и когда сделал открытие

Обнаружить гравитационную волну удалось ученым из международного проекта LIGO 14 сентября 2015 года. LIGO (Laser Interferometry Gravitation Observatory) - это международный проект, в котором принимают участие ряд государств, осуществивших определенный финансовый и научный взнос, в частности США, Италия, Япония, которые являются передовыми в области этих исследований.


Професcоры Райнер Вайс и Кип Торн (фото - EPA)

Была зафиксирована следующая картина: произошло смещение крыльев гравитационного детектора, в результате реального прохождения гравитационной волны через нашу планету и через эту установку. Об этом не сообщили тогда, потому что сигнал нужно было обработать, "почистить", найти его амплитуду и проверить. Это стандартная процедура: от реального открытия, до объявления об открытии - проходит несколько месяцев для того, чтобы выдать обоснованное заявление. "Никто не хочет портить свою репутацию. Это все секретные данные, до обнародования которых - о них никто не знал, ходили только слухи", - отметил Гнатык.

История

Гравитационные волны исследуются с 70-х годов прошлого века. За это время был создан ряд детекторов и проведен ряд фундаментальных исследований. В 80-х годах американский ученый Джозеф Вебер построил первую гравитационную антенну в виде алюминиевого цилиндра, который имел размер порядка нескольких метров, оснащенный пьезо-датчиками, которые должны были зафиксировать прохождение гравитационной волны.

Чувствительность этого прибора была в миллион раз хуже, чем нынешние детекторы. И, конечно, он тогда реально зафиксировать волну не мог, хотя и Вебер заявил, что он это сделал: пресса об этом написала и произошел "гравитацонный бум" - в мире сразу начали строить гравитационные антенны. Вебер стимулировал других ученых заняться гравитационными волнами и продолжать эксперименты над этим явлением, благодаря чему удалось в миллион раз поднять чувствительность детекторов.

Однако само явление гравитационных волн было зарегистрировано еще в прошлом веке, когда ученые обнаружили двойной пульсар. Это была косвенная регистрация факта, что гравитационные волны существуют, доказанная благодаря астрономическим наблюдениям. Пульсар был открыт Расселом Халсом и Джозефом Тейлором в 1974 году, во время проведения наблюдений на радиотелескопе обсерватории Аресибо. Ученые были удостоены Нобелевской премии в 1993 году "за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации".

Исследования в мире и Украине

На территории Италии близок к завершению аналогичный проект, которые называется Virgo. Япония также намерена через год запустить аналогичный детектор, Индия также готовит такой эксперимент. То есть, во многих точках мира существуют подобные детекторы, но они еще не вышли на тот режим чувствительности, чтобы можно было говорить о фиксации гравитационных волн.

"Официально Украина не входит в LIGO и также не участвует в итальянском и японском проектах. Среди таких фундаментальных направлений Украина сейчас принимает участие в проекте LHC (БАК - Большой адронный коллайдер) и в CERN"е (официально станем участником только после уплаты вступительного взноса)", - рассказал ЛІГА.net доктор физико-математических наук Богдан Гнатык.

По его словам, Украина с 2015 года является полноправным членом международной коллаборации CTA (МЧТ- массив черенковских телескопов), которая строит современный телескоп мультиТеВ ного гамма диапазона (с энергиями фотонов до 1014 эВ). "Основными источниками таких фотонов как раз и являются окрестности сверхмассивных черных дыр, гравитационное излучение которых впервые зафиксировал детектор LIGO. Поэтому открытие новых окон в астрономии - гравитационно-волнового и мультиТеВ ного электромагнитного обещает нам еще много открытий в будущем", - добавляет ученый.

Что дальше и как новые знания помогут людям? Ученые расходятся во мнениях. Одни говорят, что это лишь очередная ступень в понимании механизмов Вселенной. Другие видят в этом первые шаги на пути к новым технологиям перемещения сквозь время и пространство. Так или иначе - это открытие в очередной раз доказало, как мало мы понимаем и как много еще предстоит узнать.

Гравитационные волны – изображение художника

Гравитационные волны - возмущения метрики пространства-времени, отрывающиеся от источника и распространяющиеся подобно волнам (так называемая «рябь пространства-времени»).

В общей теории относительности и в большинстве других современных теорий гравитации гравитационные волны порождаются движением массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны имеют весьма малую величину, с трудом поддающуюся регистрации.

Поляризованная гравитационная волна

Гравитационные волны предсказываются общей теорией относительности (ОТО), многими другими . Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами , на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух и образования одной более массивной вращающейся чёрной дыры. Косвенные свидетельства их существования были известны с 1970-х годов - ОТО предсказывает совпадающие с наблюдениями темпы сближения тесных систем за счёт потери энергии на излучение гравитационных волн. Прямая регистрация гравитационных волн и их использование для определения параметров астрофизических процессов является важной задачей современной физики и астрономии.

В рамках ОТО гравитационные волны описываются решениями уравнений Эйнштейна волнового типа, представляющими собой движущееся со скоростью света (в линейном приближении) возмущение метрики пространства-времени. Проявлением этого возмущения должно быть, в частности, периодическое изменение расстояния между двумя свободно падающими (то есть не испытывающими влияния никаких сил) пробными массами. Амплитудой h гравитационной волны является безразмерная величина - относительное изменение расстояния. Предсказываемые максимальные амплитуды гравитационных волн от астрофизических объектов (например, компактных двойных систем) и явлений (взрывов , слияний , захватов чёрными дырами и т. п.) при измерениях в весьма малы (h =10 −18 -10 −23). Слабая (линейная) гравитационная волна согласно общей теории относительности переносит энергию и импульс, двигается со скоростью света, является поперечной, квадрупольной и описывается двумя независимыми компонентами, расположенными под углом 45° друг к другу (имеет два направления поляризации).

Различные теории по-разному предсказывают скорость распространения гравитационных волн. В общей теории относительности она равна скорости света (в линейном приближении). В других теориях гравитации она может принимать любые значения, в том числе до бесконечности. По данным первой регистрации гравитационных волн их дисперсия оказалась совместимой с безмассовым гравитоном, а скорость оценена как равная скорости света.

Генерация гравитационных волн

Система из двух нейтронных звезд порождает рябь пространства-времени

Гравитационную волну излучает любая материя, движущаяся с асимметричным ускорением. Для возникновения волны существенной амплитуды необходимы чрезвычайно большая масса излучателя или/и огромные ускорения, амплитуда гравитационной волны прямо пропорциональна первой производной ускорения и массе генератора, то есть ~ . Однако если некоторый объект движется ускоренно, то это означает, что на него действует некоторая сила со стороны другого объекта. В свою очередь, этот другой объект испытывает обратное действие (по 3-му закону Ньютона), при этом оказывается, что m 1 a 1 = − m 2 a 2 . Получается, что два объекта излучают гравитационные волны только в паре, причём в результате интерференции они взаимно гасятся почти полностью. Поэтому гравитационное излучение в общей теории относительности всегда носит по мультипольности характер как минимум квадрупольного излучения. Кроме того, для нерелятивистских излучателей в выражении для интенсивности излучения имеется малый параметр где - гравитационный радиус излучателя, r - его характерный размер, T - характерный период движения, c - скорость света в вакууме.

Наиболее сильными источниками гравитационных волн являются:

  • сталкивающиеся (гигантские массы, очень небольшие ускорения),
  • гравитационный коллапс двойной системы компактных объектов (колоссальные ускорения при довольно большой массе). Как частный и наиболее интересный случай - слияние нейтронных звёзд. У такой системы гравитационно-волновая светимость близка к максимально возможной в природе планковской светимости.

Гравитационные волны, излучаемые системой двух тел

Два тела, движущиеся по круговым орбитам вокруг общего центра масс

Два гравитационно связанных тела с массами m 1 и m 2 , движущиеся нерелятивистски (v << c ) по круговым орбитам вокруг их общего центра масс на расстоянии r друг от друга, излучают гравитационные волны следующей энергии, в среднем за период:

Вследствие этого система теряет энергию, что приводит к сближению тел, то есть к уменьшению расстояния между ними. Скорость сближения тел:

Для Солнечной системы, например, наибольшее гравитационное излучение производит подсистема и . Мощность этого излучения примерно 5 киловатт. Таким образом, энергия, теряемая Солнечной системой на гравитационное излучение за год, совершенно ничтожна по сравнению с характерной кинетической энергией тел.

Гравитационный коллапс двойной системы

Любая двойная звезда при вращении её компонент вокруг общего центра масс теряет энергию (как предполагается - за счёт излучения гравитационных волн) и, в конце концов, сливается воедино. Но для обычных, некомпактных, двойных звёзд этот процесс занимает очень много времени, много большее настоящего возраста . Если же двойная компактная система состоит из пары нейтронных звёзд, чёрных дыр или их комбинации, то слияние может произойти за несколько миллионов лет. Сначала объекты сближаются, а их период обращения уменьшается. Затем на заключительном этапе происходит столкновение и несимметричный гравитационный коллапс. Этот процесс длится доли секунды, и за это время в гравитационное излучение уходит энергия, составляющая по некоторым оценкам более 50 % от массы системы.

Основные точные решения уравнений Эйнштейна для гравитационных волн

Объёмные волны Бонди - Пирани - Робинсона

Эти волны описываются метрикой вида . Если ввести переменную и функцию , то из уравнений ОТО получим уравнение

Метрика Такено

имеет вид , -функции, удовлетворяют тому же уравнению.

Метрика Розена

Где удовлетворяют

Метрика Переса

При этом

Цилиндрические волны Эйнштейна - Розена

В цилиндрических координатах такие волны имеют вид и выполняются

Регистрация гравитационных волн

Регистрация гравитационных волн достаточно сложна ввиду слабости последних (малого искажения метрики). Приборами для их регистрации являются детекторы гравитационных волн. Попытки обнаружения гравитационных волн предпринимаются с конца 1960-х годов. Гравитационные волны детектируемой амплитуды рождаются при коллапсе двойного . Подобные события происходят в окрестностях ориентировочно раз в десятилетие.

С другой стороны, общая теория относительности предсказывает ускорение взаимного вращения двойных звёзд из-за потери энергии на излучение гравитационных волн, и этот эффект надёжно зафиксирован в нескольких известных системах двойных компактных объектов (в частности, пульсаров с компактными компаньонами). В 1993 году «за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации» открывателям первого двойного пульсара PSR B1913+16 Расселу Халсу и Джозефу Тейлору мл. была присуждена Нобелевская премия по физике. Ускорение вращения, наблюдаемое в этой системе, полностью совпадает с предсказаниями ОТО на излучение гравитационных волн. Такое же явление зафиксировано ещё в нескольких случаях: для пульсаров PSR J0737-3039, PSR J0437-4715, SDSS J065133.338+284423.37 (обычно сокращённо J0651) и системы двойных RX J0806. Например, расстояние между двумя компонентами A и B первой двойной звезды из двух пульсаров PSR J0737-3039 уменьшается примерно на 2,5 дюйма (6,35 см) в день из-за потерь энергии на гравитационные волны, причём это происходит в согласии с ОТО. Все эти данные интерпретируются как непрямые подтверждения существования гравитационных волн.

По оценкам наиболее сильными и достаточно частыми источниками гравитационных волн для гравитационных телескопов и антенн являются катастрофы, связанные с коллапсами двойных систем в ближайших галактиках. Ожидается, что в ближайшем будущем на усовершенствованных гравитационных детекторах будет регистрироваться несколько подобных событий в год, искажающих метрику в окрестности на 10 −21 -10 −23 . Первые наблюдения сигнала оптико-метрического параметрического резонанса, позволяющего обнаружить воздействие гравитационных волн от периодических источников типа тесной двойной на излучение космических мазеров, возможно, были получены на радиоастрономической обсерватории РАН, Пущино.

Ещё одной возможностью детектирования фона гравитационных волн, заполняющих Вселенную, является высокоточный тайминг удалённых пульсаров - анализ времени прихода их импульсов, которое характерным образом изменяется под действием проходящих через пространство между Землёй и пульсаром гравитационных волн. По оценкам на 2013 год, точность тайминга необходимо поднять примерно на один порядок, чтобы можно было задетектировать фоновые волны от множества источников в нашей Вселенной, и эта задача может быть решена до конца десятилетия.

Согласно современным представлениям, нашу Вселенную заполняют реликтовые гравитационные волны, появившиеся в первые моменты после . Их регистрация позволит получить информацию о процессах в начале рождения Вселенной. 17 марта 2014 года в 20:00 по московскому времени в Гарвард-Смитсоновском центре астрофизики американской группой исследователей, работающей над проектом BICEP 2, было объявлено о детектировании по поляризации реликтового излучения ненулевых тензорных возмущений в ранней Вселенной, что также является открытием этих реликтовых гравитационных волн. Однако почти сразу этот результат был оспорен, поскольку, как выяснилось, не был должным образом учтён вклад . Один из авторов, Дж. М. Ковац (Kovac J. M. ), признал, что «с интерпретацией и освещением данных эксперимента BICEP2 участники эксперимента и научные журналисты немного поторопились».

Экспериментальное подтверждение существования

Первый зафиксированный гравитационно-волновой сигнал. Слева данные с детектора в Хэнфорде (H1), справа - в Ливингстоне (L1). Время отсчитывается от 14 сентября 2015, 09:50:45 UTC. Для визуализации сигнала он отфильтрован частотным фильтром с полосой пропускания 35-350 Герц для подавления больших флуктуаций вне диапазона высокой чувствительности детекторов, также были применены полосовые режекторные фильтры для подавления шума самих установок. Верхний ряд: напряжения h в детекторах. GW150914 сначала прибыл на L1 и через 6 9 +0 5 −0 4 мс на H1; для визуального сравнения данные с H1 показаны на графике L1 в обращённом и сдвинутом по времени виде (чтобы учесть относительную ориентацию детекторов). Второй ряд: напряжения h от гравитационно-волнового сигнала, пропущенные через такой же полосный фильтр 35-350 Гц. Сплошная линия - результат численной относительности для системы с параметрами, совместимыми с найденными на базе изучения сигнала GW150914, полученный двумя независимыми кодами с результирующим совпадением 99,9. Серые толстые линии - области 90 % доверительной вероятности формы сигнала, восстановленные из данных детекторов двумя различными методами. Тёмно-серая линия моделирует ожидаемые сигналы от слияния чёрных дыр, светло-серая не использует астрофизических моделей, а представляет сигнал линейной комбинацией синусоидально-гауссовых вэйвлетов. Реконструкции перекрываются на 94 %. Третий ряд: Остаточные ошибки после извлечения отфильтрованного предсказания сигнала численной относительности из отфильтрованного сигнала детекторов. Нижний ряд: представление частотной карты напряжений, показывающее возрастание доминирующей частоты сигнала со временем.

11 февраля 2016 года коллаборациями LIGO и VIRGO. Сигнал слияния двух чёрных дыр с амплитудой в максимуме около 10 −21 был зарегистрирован 14 сентября 2015 года в 9:51 UTC двумя детекторами LIGO в Хэнфорде и Ливингстоне через 7 миллисекунд друг от друга, в области максимальной амплитуды сигнала (0,2 секунды) комбинированное отношение сигнал-шум составило 24:1. Сигнал был обозначен GW150914. Форма сигнала совпадает с предсказанием общей теории относительности для слияния двух чёрных дыр массами 36 и 29 солнечных; возникшая чёрная дыра должна иметь массу 62 солнечные и параметр вращения a = 0,67. Расстояние до источника около 1,3 миллиарда , излучённая за десятые доли секунды в слиянии энергия - эквивалент около 3 солнечных масс.

История

История самого термина «гравитационная волна», теоретического и экспериментального поиска этих волн, а также их использования для исследований явлений недоступных иными методам.

  • 1900 - Лоренц предположил, что гравитация «…может распространятся со скоростью, не большей скорости света»;
  • 1905 - Пуанкаре впервые ввёл термин гравитационная волна (onde gravifique). Пуанкаре, на качественном уровне, снял устоявшиеся возражения Лапласа и показал, что связанные с гравитационными волнами поправки к общепринятым законам тяготения Ньютона порядка сокращаются, таким образом, предположение о существовании гравитационных волн не противоречит наблюдениям;
  • 1916 - Эйнштейн показал, что в рамках ОТО механическая система будет передавать энергию гравитационным волнам и, грубо говоря, любое вращение относительно неподвижных звёзд должно рано или поздно остановиться, хотя, конечно, в обычных условиях потери энергии порядка ничтожны и практически не поддаются измерению (в этой работе он ещё ошибочно полагал, что механическая система, постоянно сохраняющая сферическую симметрию, может излучать гравитационные волны);
  • 1918 - Эйнштейн вывел квадрупольную формулу, в которой излучение гравитационных волн оказывается эффектом порядка , тем самым исправив ошибку в своей предыдущей работе (осталась ошибка в коэффициенте, энергия волны в 2 раза меньше);
  • 1923 - Эддингтон - поставил под сомнение физическую реальность гравитационных волн «…распространяются… со скоростью мысли». В 1934 году, при подготовке русского перевода своей монографии «Теория относительности», Эддингтон добавил несколько глав, включая главы с двумя вариантами расчётов потерь энергии вращающимся стержнем, но отметил, что использованные методы приближенных расчётов ОТО, по его мнению, неприменимы к гравитационно связанным системам, поэтому сомнения остаются;
  • 1937 - Эйнштейн совместно с Розеном исследовал цилиндрические волновые решения точных уравнений гравитационного поля. В ходе этих исследований у них возникли сомнения, что гравитационные волны, возможно, являются артефактом приближенных решений уравнений ОТО (известна переписка относительно рецензии на статью Эйнштейна и Розена «Существуют ли гравитационные волны?»). Позднее он нашёл ошибку в рассуждениях, окончательный вариант статьи с фундаментальными правками был опубликован уже в «Journal of the Franklin Institute»;
  • 1957 - Герман Бонди и Ричард Фейнман предложили мысленный эксперимент «трость с бусинками» в котором обосновали существование физических последствий гравитационных волн в ОТО;
  • 1962 - Владислав Пустовойт и Михаил Герценштейн описали принципы использования интерферометров для обнаружения длинноволновых гравитационных волн;
  • 1964 - Филип Петерс и Джон Мэтью теоретически описали гравитационные волны, излучаемые двойными системами;
  • 1969 - Джозеф Вебер, основатель гравитационно-волновой астрономии, сообщает об обнаружении гравитационных волн с помощью резонансного детектора - механической гравитационной антенны. Эти сообщения порождают бурный рост работ в этом направлении, в частности, Ренье Вайс, один из основателей проекта LIGO, начал эксперименты в то время. На настоящий момент (2015) никому так и не удалось получить надёжных подтверждений этих событий;
  • 1978 - Джозеф Тейлор сообщил об обнаружении гравитационного излучения в двойной системе пульсара PSR B1913+16. Исследования Джозефа Тейлора и Рассела Халса заслужили Нобелевскую премию по физике за 1993 год. На начало 2015 года три пост-кеплеровских параметра, включающих уменьшение периода вследствие излучения гравитационных волн, было измерено, как минимум, для 8 подобных систем;
  • 2002 - Сергей Копейкин и Эдвард Фомалонт произвели с помощью радиоволной интерферометрии со сверхдлинной базой измерения отклонения света в гравитационном поле Юпитера в динамике, что для некоторого класса гипотетических расширений ОТО позволяет оценить скорость гравитации - отличие от скорости света не должно превышать 20 % (данная трактовка не общепринята);
  • 2006 - международная команда Марты Бургей (Обсерватория Паркса, Австралия) сообщила о существенно более точных подтверждениях ОТО и соответствия ей величины излучения гравитационных волн в системе двух пульсаров PSR J0737-3039A/B;
  • 2014 - астрономы Гарвард-Смитсоновского центра астрофизики (BICEP) сообщили об обнаружении первичных гравитационных волн при измерениях флуктуаций реликтового излучения. На настоящий момент (2016) обнаруженные флуктуации считаются не имеющими реликтового происхождения, а объясняются излучением пыли в Галактике;
  • 2016 - международная команда LIGO сообщила об обнаружении события прохождения гравитационных волн GW150914. Впервые сообщено о прямом наблюдении взаимодействующих массивных тел в сверхсильных гравитационных полях со сверхвысокими относительными скоростями (< 1,2 × R s , v/c > 0.5), что позволило проверить корректность ОТО с точностью до нескольких постньютоновских членов высоких порядков. Измеренная дисперсия гравитационных волн не противоречит сделанным ранее измерениям дисперсии и верхней границы массы гипотетического гравитона (< 1,2 × 10 −22 эВ), если он в некотором гипотетическом расширении ОТО будет существовать.