ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Чему равно давление в вакууме. Датчики для измерения вакуума

1.1 . Основные термины и определения

Вакуумом называют состояние газа или пара при давлении ниже атмосферного. Количественной характеристикой вакуума служит абсолютное давление (разница между атмосферным и вакуумным). Вакуумная техника - прикладная наука, рассматривающая проблемы изучения и поддержания вакуума, а так же вопросы разработки конструирования и применение вакуумных систем и их элементов.
Вакуум бывает: низкий; средний; высокий; сверхвысокий.
Низкий и средний вакуум используются в осветительных приборах. Высокий - используется в приемно-усилительных генераторных лампах.
Сверхвысокий вакуум используется в металлургии (плавка и переплавка в вакууме) для получения различных сплавов, для получения сверхчистых веществ, полупроводников, диэлектриков и т. д.; кристаллизация (искусственные сапфиры); диффузионная сварка (для соединения деталей из металлов с сильно различающимися температурами плавления).

Химическая промышленность - вакуумные сушильные аппараты, вакуумные фильтры, кристаллизирующие вакуумные аппараты.
Электротехническая промышленность производство кабелей, электродвигателей с использованием вакуумной пропитки.
Оптическая промышленность - производство зеркал (вакуумное алюминирование), просветленная оптика, производство биноклей, очков и т. д.
Пищевая промышленность - вакуумные упаковки, доильные аппараты, пылесосы.
Транспорт - вакуумные усилители тормозных систем.
Медицина - производство и хранение медикаментов.
Интенсивность протекания физико-химических процессов в вакууме зависит от соотношения между числом столкновения молекул газа со стенками ограничивающего сосуда и числом взаимных столкновений молекул, характеризуется отношением средней длины свободного пути молекул к характерному размеру сосуда. Это число называется числом Кнудсена.

где: - средняя длина свободного пути молекулы; l - характерный размер сосуда.
На основании числа Кнудсена идет деление по степеням вакуума. Степень вакуума определяется равновесным давлением, которое устанавливается в откачиваемом объеме под действием противоположных процессов, откачки газа насосом и поступления газа в объем за счет натекания через неплотности диффузионных и технологических газовыделений и проницаемости газа через стенки сосуда.
Низкий вакуум
Характеризуется давлением газа, при котором средняя длина пробега молекул значительно меньше характерного линейного размера сосуда. Эта область давлений от 10 до 100 МПа.
Средний вакуум
Характеризуется давлением газа, при котором средняя длина пробега молекул приближенно равна характерному линейному размеру сосуда. Эта область давлений от 100 до 0,1 МПа.
Высокий вакуум
Характеризуется давлением газа, при котором средняя длина пробега молекул значительно больше характерного линейного размера сосуда. Эта область давлений от 0,1 до 10 МПа.
Сверхвысокий вакуум
Характеризуется давлением газа, при котором не происходит заметного изменения свойств поверхности первоначально свободной от абсорбирующего газа за время, существующее для рабочего процесса.
Газ - состояние вещества, при котором движение молекул практически неограниченно межмолекулярными силами и занимает весь объем.
Давление в точке газового пространства - отношение скорости переноса нормальной составляющей количества движения. Откачка - уменьшение молекулярной концентрации газа при помощи устройств поглощающих газ.
Время откачки - время необходимое для уменьшения давления в откачивающей системе насосом конкретного типа.
Остаточный газ - газ оставшийся после откачки в вакуумной системе.
Предельное остаточное давление - наименьшее давление, которое может быть достигнуто при конкретных устройств для откачки.
Форвакуум - вакуум, создаваемый насосом более низкого вакуума при последовательной работе нескольких насосов.
Молекулярная концентрация - число молекул газа в единице объема.
Длина свободного пути молекулы - длина пути молекулы между двумя последовательными столкновениями с другими молекулами.
Средняя длина свободного пути молекулы - среднеарифметическое расстояние, которое молекула проходит между двумя последними столкновениями.
Диффузия газа - движение газа в другой среде под влиянием градиента концентраций.
Коэффициент диффузии - отношение абсолютной скорости потока молекул через единицу поверхности к градиенту концентраций.
Вязкостное течение - течение газа в канале при условии, когда длина свободного пути молекулы очень мала по сравнению с наименьшим поперечным сечением канала.
Температурная транспирация - течение газа между соединенными сосудами.
Поток молекул - число молекул, проходящих через некоторое сечение в единицу времени. Плотность потока молекул - отношение результирующего потока молекул к поверхности, которую он пересекает.
Результирующий поток молекул - отношение потока молекул определенного разностью между числом молекул пересекающих поверхность за данный интервал температуры в заданном направлении и числом молекул через эту поверхность в обратном направлении к этому времени.
Массовый поток газа - масса газа пресекающего определенную поверхность за единицу времени.
Проводимость - отношение потока к разности средних давлений в двух сечениях потока при изотермическом равновесии. Сопротивление величина обратная проводимости.
Сорбция - поглощение газа или пара твердым веществом или жидкостью. Десорбция-обратный процесс.
Коэффициент аккомодации - отношение средней энергии реально передаваемой поверхности налетающими частицами средней энергии, которая может быть передана в случае достижения полного теплового равновесия.
Частота столкновений - отношение числа сталкивающихся с поверхностью молекул в заданный интервал времени к этому интервалу и площади поверхности.
Скорость прилипания - число молекул, сорбированных на единице площади поверхности в единицу времени.
Время удерживания - среднее время, в течении которого молекулы удерживаются на поверхности в состоянии сорбции.
Миграция - движение молекулы на поверхности.
Газовыделение - самопроизвольное выделение газа из материала в вакуум.
Обезгаживание - принудительное удаление газа из материала.
Проницаемость твердой перегородки - отношение потока газа через перегородку к потоку через тоже течение при отсутствии перегородки является функцией давления по обе стороны перегородки и ее структуры.
Коэффициент проницаемости - отношение произведения проницаемости на толщину перегородки к ее площади.
Натекание - проникновение газа из окружающей среды в откачиваемый сосуд.

1.2. Давление в вакууме

Основой физики вакуума являются следующие постулаты:
1. Газ состоит из отдельных, движущихся молекул.
2. Существует постоянное распределение молекул газа по скоростям, т. е. одной и той же скоростью обладает всегда одинаковое число молекул.
3. При движении молекул газа нет преимущественных направлений, пространство газовых молекул изотропно.
4. Температура газа величина пропорциональная средней кинетической энергии его молекул.
5. При взаимодействии с поверхностью твердого тела молекула газа абсорбируется.
При взаимодействии газа с поверхностью твердого тела нормальная составляющая изменения количества движения молекулы будет равна:,
где θ - угол между нормалью поверхности и вектором скорости; v - скорость молекулы; m - масса молекулы.
Рассмотрим случай, когда между поверхностью и газовой средой существует энергетическое равновесие, в этом случае суммарное изменение количества движения абсорбированной и десорбированной молекул будет равняется .
Согласно второму закону Ньютона, давление молекулы на поверхность:

, (1.1)

где: Δt - время взаимодействия молекулы с поверхностью; ΔF - площадь поверхности.
Число молекул в элементарном объеме dV, движущихся в направлении площадки ΔF, пропорционально согласно третьему постулату, пропорционально телесному углу dW, под которым из центра dV видна площадка ΔF.

. (1.2)
Телесный угол
, (1.3)
где r - расстояние между выделенным объектом и поверхностью.
Объем в полярной системе координат:

Давление газа на поверхность найдем интегрированием по объему полусферы, из которой молекулы достигают поверхности за время Δt с радиусом .
С учетом (1.1) получаем:

(1.5)

Подставляя (1.2), (1.3), (1.4) в (1.5), получим:

где n - молекулярная концентрация.
Согласно постулату 2, введем вместо постоянной среднеквадратичную скорость молекулы.

,
тогда

(1.7).
Учитывая, что плотность газа ρ=nm, получим .
Условия равновесия, использованные при выводе уравнения (1.7) могут, не выполнятся, например, в случае конденсирующей поверхности, с которой из-за очень большого времени адсорбции не происходит десорбция молекул газа, и наоборот, тело в космическом пространстве десорбирует молекулы с поверхности, а количеством молекул ударяющихся об это тело, можно пренебречь. В этих случаях необходимо точно знать соотношение потоков падающих и вылетающих молекул газа.

1.3. Газовые законы

Если в объеме находится смесь из К газов, то давление смеси:

(1.8)

или (1.9) - закон Дальтона.

Т. к. температура, согласно 4 постулату, пропорциональна кинетической энергии молекулы, можно записать ,
где с - некоторая постоянная.
Тогда (1.7) можно записать в виде:
.
Обозначим , тогда (1.10),
а средняя кинетическая энергия молекулы:

(1.11)

Уравнение (1.10) называют уравнением газового состояния, оно связывает три основных параметра: давление, молекулярную концентрацию и температуру. Константа k=1.38∙10-23Дж/к - постоянная Больцмана.
Уравнение (1.10) также можно представить в виде:

, (1.12),
где М - молекулярная масса газа; V - объём газа; NA=М/m=6.02∙1028 к моль-1 - число Авагадро; R=kNA=8.31∙103, Дж/Кмоль - универсальная газовая постоянная.
1.4. Частота соударений молекул с поверхностью

Число молекул, соударяющихся об единицу поверхности в единицу времени:

(1.13)

С учетом функции распределения молекул по скоростям получаем

, (1.14)

где Vар - средняя арифметическая скорость.
Объем газа, ударяющегося об единицу поверхности в единицу времени можно выразить через частоту соударений и молекулярную концентрацию

(1.15)

Данное выражение не зависит от давления и определяет максимальную быстроту действия идеального вакуумного насоса, откачивающего все молекулы газа, которые попадают в него через входное отверстие.

1.5. Распределение молекул газа по скоростям

При соударении друг с другом или со стенками вакуумной камеры молекулы изменяют свои скорости, как по величине, так и по направлению. Используя гипотезы о стационарном распределении по скоростям и изотропности пространства, Максвелл получил функцию распределения молекул по скоростям

, (1.16)

где dnV - число молекул скорости, которых находятся в пределах от V до 0.
Скорость, при которой наблюдаются максимальные функции распределения, называют наиболее вероятной скоростью

. (1.17)

Если ввести обозначения , то получим .
Используются безразмерная дифференциальная - f(c)=dnV/(ndc) b и интегральная - F(c)= функции распределения молекул по скоростям.
В расчетах также используют среднеарифметическую скорость

(1.18)
и среднеквадратичную
(1.19).

Соотношение между скоростями Vвер, Vар, Vкв составляет 1:1,128:1,225.

Таблица 1.1.
Среднеарифметические скорости газов при различных температурах


Газ

Кислород

Кроме распределения по скоростям молекул имеются функции распределения по энергии
;

; (1.20)

, (1.21),
здесь .
Существуют наиболее вероятная энергия и среднеарифметическая .
1.6. Средняя длина свободного пути

Направленный молекулярный поток, содержащий в начальный момент N0 молекул газа с хаотично движущимися молекулами с частотой К за время dt, уменьшается на величину:
, интегрируя, получаем .

Средняя длина свободного пути молекул газа , определяемая как отношение скорости молекул к числу столкновений в единицу времени. - длина пути молекулы за время t, столкновение произойдет в том случае, если расстояние между центрами молекул будет не более диаметра молекулы . Будем считать, что одна молекула имеет радиус , а все остальные математические точки с нулевым радиусом. При движении со скоростью с молекулярной концентрацией n, за одну секунду такая воображаемая молекула опишет объем , и испытает столкновений. Средняя длина свободного пути в таком случае будет равна
. (1.23)

С учетом относительных скоростей движения молекулы газа, которые не учитывались при выводе уравнения (1.23), для длины свободного пути можно получить более точное выражение
. (1.24)

Из (1.24) видно, что при постоянной молекулярной концентрации, длина свободного пути не должна зависеть от температуры.
Однако из опытных данных следует, что при n = const, средняя длина свободного пути увеличивается , данный фактор учитывается введением дополнительного модуля, тогда
, (1.25)

где С - постоянная Сезерленда, равная температуре при которой, в случае постоянной молекулярной концентрации газа, средняя длина свободного пути молекул уменьшается вдвое по сравнению со значением соответствующей бесконечно большой температуре [K] .
Для учета взаимодействия молекул между собой вводят понятие эффективного диаметра молекулы dТ, который уменьшается с увеличением температуры

) - среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т.д. В зависимости от величины соотношения λ/d различают низкий (λ/d<<1), средний (λ/d~1) и высокий (λ/d>>1) вакуум.

Следует различать понятия физического вакуума и технического вакуума .

Технический вакуум

На практике сильно разреженный газ называют техническим вакуумом . В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно. Мерой степени разрежения вакуума служит длина свободного пробега молекул газа < λ > , связанной с их взаимными столкновениями в газе, и характерного линейного размера l сосуда, в котором находится газ. Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 Торр) говорят о достижении низкого вакуума (λ < < l )(5000-10000 молекул на 1см3). Обычно низковакуумный насос стоит между атмосферным воздухом и высоковакуумным насосом, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум . При дальнейшем понижении давления в камере, увеличивается средняя длина свободного пробега λ молекул газа. При λ > > l молекулы газа уже не сталкиваются друг с другом, а свободно перемещаются от стенки до стенки, в этом случае говорят о высоком вакууме (10 -5 Торр)(1000 молекул на 1 см3). Сверхвысокий вакуум соответствует давлению 10 -9 Торр и ниже. К сожалению в земных условиях пока не получен. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10 -30 Торр и ниже(1 молекула на 1 см3).Встречается полное отсутствие молекул.

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами . Для поглощения газов и создания необходимой степени вакуума используются геттеры . Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему . А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.

См. также

Примечания

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Физический вакуум" в других словарях:

    физический вакуум - absoliutusis vakuumas statusas T sritis fizika atitikmenys: angl. absolute vacuum; perfect vacuum; physical vacuum vok. absolutes Vakuum, n; physikalisches Vakuum, n rus. абсолютный вакуум, m; совершенный вакуум, m; физический вакуум, m pranc.… … Fizikos terminų žodynas

    физический вакуум - Состояние системы квантовых полей с наинизшей энергией, определенное перенормированным гамильтонианом теории, включающим физические (наблюдаемые) массы, заряды и поля … Политехнический терминологический толковый словарь

    Ртутный вакуумный барометр Эванджелисты Торричелли учёного, впервые создавшего вакуум в лаборатории. Над поверхностью ртути в верхней части запаянной трубки «торричелиева пустота» (вакуум, содержащий пары ртути под давлением насыщения … Википедия

    В квантовой теории поля низшее энергетич. состояние квантованных полей, характеризующееся отсутствием к. л. реальных ч ц. Все квант. числа В. ф. (импульс, электрич. заряд и др.) равны нулю. Однако возможность виртуальных процессов в В. ф.… … Физическая энциклопедия

    Вакуум физический, среда, в которой нет частиц вещества или поля. В технике В. называют среду, в которой содержится «очень мало» частиц; чем меньше частиц находится в единице объёма такой среды, тем более высок В. Однако полный В. ≈ среда, в… …

    - (от лат. vacuum пустота), состояние газа при давлении меньше атмосферного. Понятие «В.» применяется к газу в замкнутом или откачиваемом сосуде, но нередко распространяется и на газ в свободном пр ве, напр. к космосу. Степень В. определяют,… … Физическая энциклопедия

    I Вакуум (от лат. vacuum пустота) состояние газа при давлениях значительно ниже атмосферного. Понятие В. применяется обычно к газу, заполняющему ограниченный объём, но нередко его относят и к газу, находящемуся в свободном пространстве,… … Большая советская энциклопедия

    ВАКУУМ - в житейском понимании пустота, отсутствие реальных частиц. В квантовой механике вводится понятие физического вакуума как основного состояния квантовых полей, обладающих минимальной энергией и нулевыми значениями импульса, углового момента,… … Философия науки: Словарь основных терминов

    Вакуум (от лат. vacuum пустота) среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься… … Википедия

Давления, измеренные на шкале, которая использует нулевое значение в качестве опорной точки, называются абсолютными давлениями. Атмосферное давление на поверхности Земли изменяется, но составляет приблизительно 10 5 Па (1000 мбар). Это абсолютное давление, потому что оно выражается в отношении нулевого.

Датчик предназначенный для измерения давления, выраженного в отношении атмосферного давления, и, таким образом, показывающий ноль, когда его измерительный порт содержит молекулы при атмосферном давлении. Измерения проводимые таким датчиком известны как измерение давления в относительном режиме. Таким образом, разница между значением абсолютного давления и значением избыточного является переменным значением атмосферного:

Абсолютное = избыточное + атмосферное.

Чтобы избежать серьезных ошибок, важно знать какой режим измерения вакуума используется: абсолютный или относительный. Обратите внимание, что эталонная линия для измерений калибровочной моды не является прямой, что иллюстрирует изменчивость атмосферного давления.

Единицы измерения вакуума и давления

Исторические единицы

К сожалению, в измерениях вакуума и давления существует множество единиц, что создает значительные проблемы как для новичков, так и для опытных специалистов. К счастью, жизнь становится легче, так как устаревшие и плохо определенные единицы исчезают в пользу единицы измерения СИ.

Многие старые единицы имеют очевидное практическое и историческое происхождение; Например, дюйм воды был единицей, используемой, когда давление измерялось водяным столбом, верхняя поверхность которого была видна на дюймовой шкале. Первоначально точность измерений вакуума, требуемая для таких систем, соответствовала довольно грубым методам измерения вакуума, и никто не беспокоился, была ли вода горячей или холодной. По мере роста технологических потребностей возникла потребность в более последовательных измерениях. Математические модели измерительных приборов были значительно усовершенствованы. Например, в одной традиционной схеме измерения вакуума ртутного барометра было принято для дифференциальных разложений между ртутью в колонне, стеклом, из которого изготовлена колонна, латунью, из которой изготовлена шкала, и стальным резервуаром. Однако даже с уточненными определениями и связанной с ними математикой многие традиционные единицы не могут использоваться в рамках современных технологий.

Единица измерения СИ

Единица измерения СИ - это паскаль, сокращенно обозначаемый Па, имя дано давлению одного ньютона на квадратный метр (Н/м 2). В то время как легко визуализировать один квадратный метр, один ньютон сложнее, но он примерно равен нисходящей силе, действующей на руку, когда держит маленькое яблоко (если держатель стоит на поверхности земли!) Что касается повседневной жизни, один паскаль представляет собой очень небольшую величину, при этом атмосферное составляет примерно 100 000 Па. На дне кастрюли, наполненной водой, давление из-за глубины воды будет примерно на 1000 Па больше, чем на поверхности воды. Чтобы избежать использования громоздких чисел, кратным 103 и 0,001 назначаются префиксы, так что, например, 100 000 Па (105 Па) могут быть записаны как 100 кПа или 0,1 МПа.

Единицы измерения вакуума и конвертация

Взаимоотношения между паскалем и некоторыми другими единицами показаны в таблице, но обратите внимание, что не все могут быть или могут быть точно выражены. Надстрочные римские цифры в таблице относятся к примечаниям, которые следуют за ней.

Методы измерения вакуума

Общие положения

В приборах для измерения вакуума используется ряд совершенно разных принципов. Некоторые из них имеют фундаментальный характер, например, измерение высоты столба жидкости с известной плотностью. Одним из таких примеров является ртутный барометр, в котором атмосферное давление может быть уравновешено столбом ртути. Расширение этой идеи для использования при высоких давлениях - использование металлических гирь, действующих над известной площадью, чтобы обеспечить силу, а не вес жидкости.

Часто вакуум может быть определено путем измерения механической деформации чувствительного элемента, который подвергается упругой деформации, когда изменяется разность давлений на его поверхностях. Механический прогиб может быть реализован и воспринят несколькими способами. Одним из наиболее распространенных типов движущихся механических элементов является эластичная диафрагма. Другим примером является труба Бурдона, где внутреннее давление вынуждает выпрямляться изогнутую трубку.

Такая механическая деформация может быть обнаружена несколькими способами: серией механических рычагов для непосредственного отображения деформации, измерения сопротивления в тензодатчике, измерения емкости, изменения частоты резонирующего элемента при растяжении или сжатии и т. д.

Когда вакуума глубокий и поэтому механическое отклонение слишком мало для измерения вакуума, используются косвенные средства, которые измеряют физические свойства, такие как теплопроводность, ионизация или вязкость, которые зависят от плотности числа молекул.

Столб жидкости

Один из самых ранних методов измерения вакуума, и все еще один из самых точных сегодня, состоит в том, что столб жидкости способен вытеснять жидкость из трубы.

Манометр, показанный на рисунке, представляет собой, по существу, заполненную жидкостью U-образную трубку, где вертикальное разделение поверхностей жидкости дает измерение разности давлений. На уровне нулевой точки d; давление L, обеспечивается жидкостью над ней, плюс давление p 2 в верхней части трубки. В равновесии колонка поддерживается восходящим давлением p 1 , которое передается через жидкость из другой конечности.

Давление p 1 на нижней поверхности жидкости определяется как:

Где h - вертикальная высота столбца жидкости выше уровня нулевой точки,P Плотность жидкости, g - локальное значение ускорения силы тяжести. Если верхняя труба соединена с атмосферой (р2 = атмосферное давление), то р1 является калибровочным давлением; Если верхняя труба вакуумирована (т. Е. Р2 = ноль), то р1 является абсолютным давлением и прибор становится барометром.

Ртуть, вода и масло используются в различных конструкциях манометра, хотя для барометрических целей всегда используется ртуть; Его плотность более чем в 13 раз превышает плотность воды или масла, и поэтому требуется гораздо более короткая колонна. Около 0,75 м при измерении атмосферного давления. Плотность ртути также значительно более стабильна, чем плотность других жидкостей.

Измерение вакуума путём деформации упругого элемента.

Когда давление приложено к деформирующему элементу, он будет двигаться. Для создания датчика давления перемещение должно быть достаточно маленьким, чтобы оставаться в пределе упругости материала, но достаточно большим, чтобы быть обнаруженным с достаточным разрешением. Поэтому при более низком давлении используются тонкие гибкие компоненты, а при более высоких давлениях - более жесткие. Существует несколько методов, используемых для определения степени отклонения. Они варьируются от механического усиления, производя видимое отклонение указателя до электронных методов обнаружения.

Перечисленные ниже инструменты включают не все типы, а те, которые обычно широко используются в промышленности.

Диафрагмы

Мембрана, прикрепленная к жесткому основанию, будет подвергаться воздействию силы, если между каждой стороной существует разница в давлении. Диафрагмы проще производить круглыми, но возможны и другие формы. Разность вызовет отклонение диафрагмы с максимальным отклонением в центре, и это отклонение можно измерить с помощью различных механических и электронных датчиков. Поскольку центр отклоняется, поверхность диафрагмы также напряжена и может показать, с одной стороны, сжимающие напряжения вокруг внешней кромки и растягивающие напряжения вокруг центральной части диафрагмы. Эта конфигурация напряжений может быть обнаружена с помощью тензодатчиков, и из этой информации можно рассчитать вакуум.

Капсулы. По существу капсулы изготавливаются из пары диафрагм, соединенных по их внешним краям. У одного будет центральная арматура, через которую поступает давление, а перемещение центра другой диафрагмы относительно первого определяется датчиком некоторого типа. Ясно, что действие двух диафрагм, действующих последовательно, должно удвоить отклонение.

Сильфоны. Не существует четкого различия между сильфоном и капсулами, но сильфоны обычно имеют несколько секций, последовательно уложенных друг в друга, и, как правило, гофры малы по сравнению с диаметром. Сильфоны могут быть свернуты из трубы, образованы под давлением или образованы из сварных элементов.

Трубка Бурдона

Существуют различные конструкции, но типичной формой является закрытая труба с овальным поперечным сечением, изогнутая вдоль ее длины. Когда трубка находится под давлением, на стремится выпрямиться, и датчик обнаруживает это движение. Они могут быть сконструированы для работы в широком диапазоне, а также в манометрическом, абсолютном и дифференциальном режимах. Доступны простые «C» - образные, спиральные и спиральные типы. Электронное обнаружение движения конца обычно используется с кварцевыми спиральными устройствами.

Измерения вакуума путём измерения теплопроводности

Для измерения вакуума можно использовать передачу энергии от горячей проволоки через газ. Тепло переносится в газе путем молекулярных столкновений с проволокой, т.е. теплопроводностью, а скорость передачи тепла зависит от теплопроводности газа. Таким образом, точность этих приборов имеет сильную зависимость от состава газа. В области глубокого вакуума, где имеется молекулярный поток (число Кнудсена больше 3, где число Кнудсена = длина свободного пробега / характерный размер системы), теплопередача пропорциональна вакууму. Когда число молекул увеличивается, газ становится более плотным, и молекулы начинают сталкиваться друг с другом чаще. В этой так называемой переходной области потока (или потока скольжения, 0,01 <число Кнудсена <3) простая пропорция теплоотдачи к давлению не действительна. При еще более высоких давлениях (число Кнудсена <0,01) теплопроводность практически не зависит от него. Здесь конвекционное охлаждение горячих поверхностей обычно является основным источником теплообмена.

Вакуумметры Пирани

Тепловые потери от провода (обычно от 5 до 20 мкм) могут быть определены косвенно с помощью мостовой схемы Уитстона, которая нагревает провод и измеряет его сопротивление и, следовательно, его температуру. Существует два основных типа нагреваемых элементов. Традиционная и гораздо более распространенная конфигурация состоит из тонкой металлической проволоки, подвешенной в измерительной головке. Другая конфигурация - микрообработанная структура, обычно изготовленная из кремния, покрытого тонкой металлической пленкой, такой как платина. В обычной конфигурации тонкая металлическая проволока подвешена, по меньшей мере, с одной стороны, электрически изолированной в измерительной головке и находящейся в контакте с газом. Вольфрам, никель, иридий или платина могут быть использованы для проволоки. Провод электрически нагревается, и теплопередача измеряется электронным способом. Существует три общих метода работы: метод постоянной температуры, мост с постоянным напряжением и мост с постоянным током. Все эти методы косвенно измеряют температуру провода по его сопротивлению. Основным недостатком использования датчиков Пирани является их сильная зависимость от состава газа и их ограниченная точность. Воспроизводимость датчиков Пирани, как правило, достаточно хороша до тех пор, пока не произойдет сильное загрязнение. Диапазон измерения вакуума датчиков Пирани составляет приблизительно от 10-2 Па до 105 Па, но наилучшие характеристики обычно получают между приблизительно 0,1 Па и 1000 Па.

Ионизационные датчики измерения вакуума

Когда вакуум в системе ниже приблизительно 0,1 Па (10 -3 мбар), прямые методы измерения вакуума с помощью таких средств, как отклонение диафрагмы или измерение свойств газа, таких как теплопроводность, уже не могут быть легко применимы, Поэтому необходимо прибегнуть к методам, которые в основном подсчитывают количество присутствующих молекул газа, т. е. измеряет плотность, а не вакуум. Из кинетической теории газов для данного газа с известной температурой Т давление р непосредственно связано с плотностью числа n через уравнение (в пределе идеального газа):

Где с - постоянная. Одним из наиболее удобных методов измерения плотности числа является использование некоторой методики ионизации молекул газа и последующего сбора ионов. В большинстве практических вакуумных датчиков для осуществления ионизации используются электроны с умеренной энергией (50 эВ до 150 эВ). Результирующий ионный ток напрямую связан с вакуумом и, таким образом, может быть выполнена калибровка. Последнее утверждение верно только в отношении конечного диапазона давлений, который определит рабочий диапазон прибора. Верхний предел давления будет достигнут, когда плотность газа будет достаточно большой, что при создании иона имеет значительную вероятность взаимодействия с молекулами нейтрального газа или свободными электронами в газе, так что ион сам нейтрализуется и не может достичь коллектора, для практических целей в типичных лабораторных системах или промышленных установках это можно принять за 0,1 Па (10 -3 мбар).

Нижний предел вакуума манометра будет достигнут, когда электрический ток утечки в измерительной головке или измерительной электронике станет сравнимым с измеряемым ионным током или когда другой физический эффект (например, влияние посторонних рентгеновских лучей) вызовет появление токов этого величина. Для большинства датчиков, описанных в Руководстве, эти пределы лежат ниже 10 -6 Па (10 -8 мбар).

Основным калибровочным уравнением для ионизационной калибровки является:

Ic - ионный ток K - постоянная, содержащая вероятность ионизации молекулы газа какими бы то ни было средствами и вероятность сбора результирующего иона n - плотность числа молекул газа Ie - ток ионизирующего электрона.

Вероятность ионизации молекулы газа будет зависеть от множества факторов, и поэтому ионизационный датчик будет иметь разные значения чувствительности для разных видов газа. Большинство практических вакуумных датчиков используют электронное воздействие для ионизации молекул газа, и это может быть достигнуто просто «кипящими» электронами от нити накаленной проволоки и притягивающей их к какому-то электронному коллектору. Затем ионы притягиваются к коллектору. К сожалению, вероятность ионизации молекулы газа электроном настолько мала за один проход в калибровке нормальных размеров, что необходимо увеличить длину пробега электронов и тем самым увеличить вероятность того, что какой-либо один электрон создает ион.

Широко используются два метода. В калибровочном ионизационном датчике горячего катода электроны, полученные в горячей нити накала, притягиваются к сетке, изготовленной из очень тонкой проволоки и при положительном электрическом потенциале. Поскольку сетка открыта, есть очень большая вероятность того, что электрон пройдет через сетку и не ударит провод. Если сетка окружена экраном с отрицательным электрическим потенциалом, электрон будет отражен этим экраном и будет притягиваться обратно к сетке. Этот процесс может происходить много раз, прежде чем электрон окончательно попадает в сетку. В результате очень длинные траектории электронов могут быть достигнуты в небольшом объеме. В противоположность этому, ионы притягиваются непосредственно в коллектор.

Ионизационная лампа с холодным катодом обходится без горячей нити и использует комбинацию электрических и магнитных полей. Любой электрон будет вращаться вокруг магнитных силовых линий до того, как он, в конечном счете, будет собран на положительно заряженном аноде. Фактически, длина пути будет такой большой, а вероятность ионизации настолько велика, что после запуска будет создан самоподдерживающийся газовый разряд, при условии, что ионы будут быстро вытесняться из области разряда ионным коллектором.

Выбор устройства для измерения вакуума

Прежде чем выбрать прибор для измерения вакуума и определить подходящего поставщика, важно установить критерии отбора. Они будут включать множество факторов, и этот раздел призван помочь потенциальному пользователю сделать выбор.

    Глубина измерения вакуума

    Характеристики среды

    Внешняя среда

    Физические характеристики прибора

    Тип использования

    Безопасность

    Установка и обслуживание

    Преобразование сигнала

Молекул газа λ и характерным размером среды d . Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (), средний () и высокий () вакуум.

Следует различать понятия физического вакуума и технического вакуума .

На практике сильно разреженный газ называют техническим вакуумом . В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

Мерой степени разрежения вакуума служит длина свободного пробега молекул газа , связанной с их взаимными столкновениями в газе, и характерного линейного размера сосуда, в котором находится газ.

Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 торр ) говорят о достижении низкого вакуума () (10 16 молекул на 1 см³ ). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум . При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ молекул газа. При молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10 −5 торр ) (10 11 молекул на 1 см³ ). Сверхвысокий вакуум соответствует давлению 10 −9 торр и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа . Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10 −16 торр и ниже (1 молекула на 1 см³ ).

Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами . Для поглощения газов и создания необходимой степени вакуума используются геттеры . Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов - это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например титан) и криосорбционные насосы (в основном для создания форвакуума).

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумированно.

Вакуум широко применяется в электровакуумных приборах - радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.

Физический вакуум

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой . Квантовая теория поля утверждает, что, в согласии с принципом неопределённости , в физическом вакууме постоянно рождаются и исчезают виртуальные частицы : происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов ; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва .

См. также

  • Диэлектрическая проницаемость вакуума
  • Вакуумное среднее
  • Вакуумный конденсат

Применения:

Примечания

Литература

  • L. B. Okun On the concepts of vacuum and mass and the search for higgs (англ.) // Modern Physics Letters A . - 2012. - Vol. 27. - P. 1230041. - DOI :10.1142/S0217732312300418 - arΧiv :1212.1031

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Вакуум" в других словарях:

    Первая часть сложных слов. Обозначает отнесённость к вакууму, пространству с выкачанным воздухом; вакуумный. Вакуум аппарат, вакуум камера, вакуум измерительный, вакуум костюм, вакуум насос, вакуум процесс, вакуум установка, вакуум фильтр, вакуум … Энциклопедический словарь

    - (лат., от vacare делать пустым). Пустое безвоздушное пространство. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ВАКУУМ безвоздушное пространство. В. аппарат котел, в котором вываривают, под безвоздушным… …

    ВАКУУМ, область чрезвычайно низкого давления. В межзвездном пространстве царит высокий вакуум, со средней плотностью менее 1 молекулы на кубический сантиметр. Самый разреженный вакуум, созданный человеком, менее 100000 молекул на кубический… … Научно-технический энциклопедический словарь

    Вакуум... вакуум... (… Словарь иностранных слов русского языка

    Разрежение, пустота; пустое пространство, форвакуум, монжюс, отсутствие, недостаток Словарь русских синонимов. вакуум см. пустота Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова … Словарь синонимов

    вакуум - Состояние среды, абсолютное давление которой меньше атмосферного [ГОСТ 5197 85] вакуум Состояние жидкости, характеризующееся отрицательным избыточным давлением. [СО 34.21.308 2005] вакуум разрежение Давление газа ниже атмосферного. Примечание… … Справочник технического переводчика

    - (от латинского vacuum пустота), состояние газа при давлениях p, более низких, чем атмосферное. Различают низкий вакуум (например, в вакуумных приборах), которому соответствует область давлений p>1 мм ртутного столба; средний: 10 3 мм ртутного… … Современная энциклопедия

    - (от лат. vacuum пустота) состояние газа при давлениях p, более низких, чем атмосферное. Различают низкий вакуум (в вакуумных приборах и установках ему соответствует область давлений p выше 100 Па), средний (0,1 Па p 100 Па), высокий (10 5 Па p… … Большой Энциклопедический словарь

    ВАКУУМ: ВАКУУМ... и ВАКУУМ... Первая часть сложных слов со знач. относящийся к вакууму (в 1 знач.), напр. вакуумметр, вакуум аппарат, вакуумкамера. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Вакуум... и ВАКУУМ... Первая часть сложных слов со относящийся к вакууму (в 1 знач.), напр. вакуумметр, вакуум аппарат, вакуумкамера. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Числовое значение давления определяется не только принятой системой единиц, но и выбранным началом отсчета. Исторически сложились три системы отсчета давления: абсолютная, избыточная и вакуумметрическая (рис.2.2).

Рис. 2.2. Шкалы давления. Связь между давлением абсолютным, избыточным и вакуумом

Абсолютное давление отсчитывается от абсолютного нуля (рис. 2.2). В этой системе атмосферное давление . Следовательно, абсолютное давление равно

.

Абсолютное давление всегда является величиной положительной.

Избыточное давление отсчитывается от атмосферного давления, т.е. от условного нуля. Чтобы перейти от абсолютного к избыточному давлению необходимо вычесть из абсолютного давления атмосферное, которое в приближенных расчетах можно принять равным 1ат :

.

Иногда избыточное давление называют манометрическим.

Вакуумметрическим давлением или вакуумом называется недостаток давления до атмосферного

.

Избыточное давление показывает либо избыток над атмосферным, либо недостаток до атмосферного. Ясно, что вакуум может быть представлен как отрицательное избыточное давление

.

Как видно, эти три шкалы давления различаются между собой либо началом, либо направлением отсчета, хотя сам отсчет может вестись при этом в одной и той же системе единиц. Если давление определяется в технических атмосферах, то к обозначению единицы давления (ат ) приписывается ещё одна буква, в зависимости от того, какое давление принято за «нулевое» и в каком направлении ведется положительный отсчет.

Например:

- абсолютное давление равно 1,5 кг/см 2 ;

- избыточное давление равно 0,5 кг/см 2 ;

- вакуум составляет 0,1 кг/см 2 .

Чаще всего инженера интересует не абсолютное давление, а его отличие от атмосферного, поскольку стенки конструкций (бака, трубопровода и т.п.) обычно испытывают действие разности этих давлений. Поэтому в большинстве случаев приборы для измерения давления (манометры, вакуумметры) показывают непосредственно избыточное (манометрическое) давление или вакуум.

Единицы давления. Как следует из самого определения давления, его размерность совпадает с размерностью напряжения, т.е. представляет собой размерность силы, отнесенную к размерности площади.

За единицу давления в Международной системе единиц (СИ) принят паскаль — давление, вызываемое силой , равномерно распределенной по нормальной к ней поверхности площадью , т.е. . Наряду с этой единицей давления применяют укрупненные единицы: килопаскаль (кПа) и мегапаскаль (МПа).