ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Интересные факты про невесомость. Жизнь с гравитацией и без нее

НЕВЕСОМОСТЬ - отсутствие веса, т. е. силы, с к-рой тело под влиянием тяготения давит на опору и испытывает со стороны этой опоры ответное противодавление; вызывает ряд изменений в биологических объектах. Теоретически Н. может возникать при отсутствии тяготения или при отсутствии опоры. Первое условие характерно для точки пространства, где силы тяготения либо отсутствуют, либо взаимно уравновешиваются (так наз. статическая невесомость). Отсутствие опоры (второе условие) означает отсутствие внешних сил, прилагаемых к поверхности тела и способных вызвать его деформацию. При соблюдении этого условия тело свободно движется (падает) под действием гравитационных или инерционных сил и становится невесомым (динамическая невесомость). Динамическая Н. может возникать не только в условиях свободного падения, но и при движениях по более сложным траекториям, обусловленных взаимодействием гравитационных и инерционных сил. Подброшенное какой-либо силой тело невесомо на тех отрезках траектории своего полета, где оно не испытывает влияния внешних сил и движется под воздействием сил инерции или тяготения. Космический корабль вместе с расположенными в нем предметами, приобретя необходимую скорость, при определенных соотношениях между силами инерции и тяготения становится либо спутником планеты, либо удаляется от нее в космическое пространство, пребывая в обоих случаях в состоянии полной Н. Приложение внешних сил, напр, включение двигательной установки, прерывает Н., воспроизводит местные напряжения и деформации в конструкциях корабля, приводит к перемещению подвижных предметов до положения, при к-ром они обретают опору. Возникающие при контакте с опорой силы могут быть меньше или больше веса данного предмета в наземных условиях, что зависит от величины ускорения, сообщаемого космическому кораблю работающим двигателем. В зависимости от величины сил, действующих на тело в процессе движения с ускорением, пользуются понятиями «невесомость», «пониженная весомость», «сила земной гравитации», «повышенная весомость» (перегрузка К С точки зрения механики, вес, невесомость, перегрузка - это частные явления одного и того же порядка, различающиеся наличием или отсутствием внешних сил, прилагаемых к поверхности тела. В связи с этим физические и биол, проявления Н. целесообразно рассматривать в сопоставлении с проявлениями весомости. Физические свойства тел в статике и динамике, а также протекание ряда физ.-хим. процессов существенно зависят от наличия или отсутствия веса. Для Н. характерно: отсутствие напряжений и деформаций, к-рые в наземных условиях вызываются силами взаимодействия с опорой; изменение поведения жидкостей (оно определяется преимущественно силами поверхностного натяжения и сцепления); отсутствие распределения взвешенных частиц по плотности; снижение роли тепловой конвекции в механизмах теплообмена; невозможность протекания разнообразных физических и физ.-хим. процессов, осуществляемых в наземных условиях с участием веса (колебания маятника, горение и др.).

Для биол, объектов Н. представляет собой в первую очередь необычную среду обитания, хотя в повседневной жизни человек встречается с частичной Н. при качании на качелях, при прыжках, беге, спуске на лифте и т. д. Структура, функция, форма и поведение всех представителей животного и растительного мира, населяющих нашу планету, обусловлены, в частности, длительным приспособлением к весу, или гравитации. Поэтому Н. не может быть безразличной для живых организмов и должна вызывать у них возникновение ряда функциональных и структурных перестроек.

Попытки оценить влияние Н. на биол, объекты предпринимались еще К. Э. Циолковским. Успехи в развитии космической техники и наметившиеся реальные возможности осуществления полетов человека в космическое пространство привели к необходимости проведения экспериментальных исследований по проблеме Н. Моделирование нек-рых явлений, характерных для Н., достигалось погружением тела в жидкость с плотностью, равной плотности тела, или длительным пребыванием человека на постельном режиме (см. Гиподинамия , Гипокинезия). Вертикальные запуски баллистических ракет позволили на достаточно продолжительное (до 10 мин.) время воспроизводить реальное состояние Н., что дало возможность впервые провести исследование ее влияния на живые организмы (культуры тканей, растения, млекопитающие). Большой практический интерес представляет также метод воспроизведения состояния Н. с помощью самолетов - при полете по параболической кривой. Продолжительность невесомости в этом случае обычно составляет 20- 30 сек. Воздействие длительной Н. изучалось при полетах биоспутников и пилотируемых космических кораблей.

Анализ проведенных экспериментов с водной иммерсией и гиподинамией, а также результатов медико-биологических исследований в космических полетах позволил с достаточной достоверностью выделить ряд характерных изменений в организме человека, обусловливаемых воздействием Н. Различают первичные и опосредованные реакции биол, объектов на невесомость. К первичным реакциям относятся снятие весовой нагрузки на опорные структуры, отсутствие гидростатического давления крови и других биол, жидкостей, изменения в деятельности афферентных систем, гл. обр. специфических гравирецепторов. Каждая из таких первичных реакций в свою очередь служит пусковым механизмом в цепи вторично обусловленных сдвигов - опосредованных реакций. Отсутствие веса тела предрасполагает к развитию общей детренированно-сти и к связанному с этим снижению физической работоспособности и устойчивости по отношению к рабочим нагрузкам; развиваются деструктивные изменения со стороны костномышечной системы (деминерализация костной ткани, уменьшение мышечной массы, отрицательный азотистый баланс). Н. способствует снижению газо энергообмен а, уменьшает требования к системе транспорта кислорода, меняет условия функционирования сердечно-сосудистой системы, вызывая ее детренированность. Лишенная веса кровь переполняет органы верхней половины тела, что создает ощущение тяжести в голове и вызывает отечность тканей лица. Ответная защитная реакция организма в этом случае состоит в уменьшении объема циркулирующей крови за счет возрастания водопотерь и уменьшения водопотребления. Это в свою очередь ухудшает переносимость человеком вертикальной позы при возвращении на Землю. Потеря мышечной массы, а также воды и ряда минеральных веществ служит причиной уменьшения веса (точнее массы) тела. Невесомость в сочетании с другими факторами полета вызывает астенизации), изменение реактивности и иммунитета, снижение устойчивости по отношению к стрессовым воздействиям, появление неврол, расстройств, изменений гормональных функций, а также морфол, и физ.-хим. показателей крови и органов кроветворения. Изменения в деятельности афферентных систем приводят к возникновению иллюзий пространственного положения тела, к вестибулярным расстройствам (см. Вестибулярный симптомокомплекс) и сопровождаются перестройкой двигательных навыков.

Т. о., физиол, последствия пребывания человека в условиях Н. чрезвычайно обширны, а многие признаки адаптационных изменений в различных системах организма проявляются совершенно отчетливо. Н. является причиной таких изменений саморегуляции целостного организма, к-рые приводят к установлению новых взаимоотношений с окружающей средой. Адаптация к Н. выражается в форме постепенно (обычно в течение 3 - 7 сут.) угасающих дискомфортных ощущений и в существенно более длительном процессе функциональных и структурных перестроек, протекающих по типу «неупотребления» или «атрофии от бездействия». При этом, хотя состояние адаптированного организма адекватно условиям Н., оно одновременно характеризуется еще и потенциальной недостаточностью по отношению к гравитационным и другим (стрессовым в данных условиях) воздействиям.

После возвращения на Землю эта недостаточность проявляется в ощущении излишней тяжести тела, в затруднениях по поддержанию вертикальной позы, в нарушениях координации движений, в т. ч. при ходьбе, в быстрой утомляемости. Адаптационные перестройки развиваются во времени и, судя по опыту, накопленному в длительных космических полетах (продолжительностью до полу-года), являются обратимыми, хотя теоретически нельзя исключить возникновения более глубоких изменений, могущих возникнуть при длительном пребывании живых организмов в невесомости, в т. ч. со сменой поколений. Поэтому необходимо дальнейшее проведение исследований по разработке мед. прогнозов и определению допустимых с точки зрения сохранения здоровья и работоспособности космонавтов сроков пребывания в условиях Н. Большое значение имеет также установление взаимосвязи между характером и степенью функц, перестройки организма в Н. и выраженностью реадаптационных сдвигов после возвращения на Землю.

Борьба с отрицательными последствиями длительного пребывания человека в состоянии Н. основана на совр, представлениях о патогенезе нарушений, возникающих при этом в организме. Для предупреждения сдвигов, обусловленных преимущественно неблагоприятным влиянием на организм состояния гиподинамии, экипажи космических кораблей используют различные методы и средства физической тренировки.Особенно оправдал себя в этом отношении комплексный тренажер для физических упражнений, обеспечивающий статическую нагрузку в направлении продольной оси тела, динамические нагрузки (ходьба, бег, приседания), а также инерционно-ударные воздействия (прыжки). Дополнительным средством тренировки служит постоянное ношение * космонавтами специальных костюмов, конструкция к-рых способствует распределению нагрузки на различные мышечные группы. Для профилактики гиподинамического синдрома используют и другие тренажеры (велоэргометр, эспандеры), а также методы аутогенной тренировки (см. Психотерапия) и электростимуляции (см.). Для имитации гидростатического давления крови в условиях Н. применяется специальное устройства (вакуумная емкость), обеспечивающее декомпрессию нижней части тела. Создаваемое при этом отрицательное давление притягивает кровь к нижней половине тела, как это имеет место на Земле. Методика воздействия отрицательного давления на нижнюю половину тела может периодически применяться как функц, проба (см. Ортостатические пробы) и как тренирующее средство гл. обр. на заключительном этапе космического полета.

Из других средств профилактики отрицательного действия Н. следует отметить использование фармакологических и гормональных препаратов, оказывающих общетонизирующий стимулирующий эффект и нормализующих водно-солевой и белковый обмен организма. Немаловажное значение имеет рационально построенный режим труда, отдыха и питания космонавтов в полете, соблюдение требований личной гигиены, а также другие мероприятия, направленные на повышение неспецифической сопротивляемости организма. Важно объединение различных профилактических воздействий в единый защитный комплекс, к-рый позволит получить наибольший профилактический эффект. К этому следует добавить систему врачебного контроля за состоянием космонавтов в полете и возможность досрочного прекращения полета по мед. показаниям.

Изменения в организме человека после длительного пребывания в условиях Н. требуют проведения специальных мероприятий и при возвращении на Землю. В первые часы и сутки пребывания на Земле космонавты обычно надевают специальный противоперегрузочный костюм, препятствующий оттоку крови в нижнюю половину тела. Восстановительные мероприятия в послеполетный период включают постепенное увеличение нагрузок, применение общеукрепляющих и тонизирующих средств, регламентацию режима труда, отдыха и питания.

Библиография: Коваленко Е. Л. Основные методы моделирования биологических эффектов невесомости, Косм, биол, и авиакосм, мед., т. И, № 4, с. 3, 1977; JI а вник ов А. А. Основы авиационной и космической медицины, М., 1975; Невесомость (медико-биологические исследования), под ред. В. В. Парина и др., М., 1974; Основы космической биологии и медицины, под ред. О. Г. Газенко и М. Кальвина, т. 2, кн. 1, с. 324, М., 1975; Пестов И. Д. Экспериментальные подходы к исследованию регуляции внутренней среды организма в состоянии невесомости, Труды Третьих чтений, посвящен. разработке науч. наследия К. Э. Циолковского, с. 48, М., 1969, библиогр.; Савин Б. М. Гипервесомость и функции центральной нервной системы, JI., 1970, библиогр.; Человек в космосе, под ред. О. Г. Газенко и X. Бюрстедта, с. 76, М., 1974.

Астронавты на Международной космической станции

Невесомость - состояние тела, при котором отсутствует внутреннее напряжение, обусловленное силой тяжести. Хотя термин нулевая гравитация часто используется как синоним, невесомость на орбите не является результатом отсутствия силы тяжести или даже ее значительному уменьшению (фактически, сила притяжения Земли на высоте 100 км только на 3% меньше, чем на поверхности). Причина невесомости заключается в том, что сила тяжести придает телу и его опоре одинаковое ускорение. Этот вывод истинный для всех тел, движущихся только под действием силы тяжести.


Влияние невесомости на здоровье человека

После появления космических станций, которые имеют возможность для жизни людей в течение долгих промежутков времени, было продемонстрировано, что пребывание в невесомости имеет некоторые вредные последствия на здоровье человека. Люди хорошо адаптируются к физическим условиям на поверхности Земли, но после длительного периода пребывания в среде невесомости различные физиологические системы начинают меняться и атрофироваться. Хотя эти изменения являются обычно временными, они могут привести к более серьезным болезням.

Во время первых часов в невесомости примерно 45% всех людей испытывают симптомов синдрома космической адаптации (СКА), также известный как космическая болезнь. К признакам космической болезни относятся тошнота и рвота , головокружение , головная боль , вялость или полное недомогание. Первый случай СКА был уведомлен космонавтом Германом Титовым в году. Продолжительность космической болезни меняется, но не было зафиксировано случаев, когда она продолжалась более 72 часов.

Значительные негативные воздействия от долгосрочной невесомости - атрофия мышц и ухудшение скелета . Эти эффекты можно минимизировать путем осуществления специальных упражнений. Другими существенными последствиями является перераспределение жидкостей в теле, замедление сердечно-сосудистой системы , уменьшение производства эритроцитов , нарушения равновесия и ослабление иммунной системы . Менее опасными последствиями, которые исчезают после возвращения на Землю, является потеря массы тела, носовая гиперемия , нарушение сна, избыточное скопление газов в кишечника и отечность лица.

Многие из осложнений, вызванных невесомостью, похожи на признаки старения . Ученые считают, что исследование пагубных воздействий невесомости может извлечь пользу для медицины, например, возможно лечение остеопороза и улучшенное медицинское обслуживание о старых людях, прикованных к постели.


Эффекты на нечеловеческие организмы

Российские ученые наблюдали различия между тараканами , рожденными в космосе и их земных родственниками. Выращенные в космосе тараканы росли быстрее и также были большими и сильными.

Яйца домашней птицы, которые были оплодотворены в микрогравитации очень редко развивались должным образом.

Всякий раз, запинаясь и падая, мы проклинаем гравитацию самыми последними словами, но в состоянии невесомости человеку тоже приходится несладко. Последствия влияния невесомости на человека очень существенны.

Влияние на рост


Одна из интересных особенностей воздействия невесомости на организм человека - это увеличение роста. Из-за невесомости ослабевают мышцы, обеспечивающие плотное прилегание позвонков друг к другу, мышечный корсет постепенно атрофируется, позвоночный столб теряет свои естественные изгибы. Чтобы минимализировать эти эффекты, космонавты во время пребывания на космической станции одеты в специальные костюмы "Пингвин", которые тонизируют мышцы и специальными встроенными амортизаторами создают нагрузку на опорно-двигательный аппарат.
В среднем космонавты вырастают за время работы в космосе на 3-5 см. Это создает определенные сложности. Дело в том, что для возвращения космонавтов на Землю в посадочной капсуле устанавливает ложемент, который отливается для каждого космонавта индивидуально, с подгонкой до миллиметра. Несоответствие размеров ложемента росту космонавта может угрожать его безопасности. В интервью "Российской газете" Валерий Богомолов рассказывал о том, как в спешном порядке однажды пришлось убирать лишний рост бортинженеру МКС-30 Анатолию Иванишину. И это не единичный случай.

Старение


Влияет невесомость и на процессы старения организма. Исследование , опубликованное в журнале The FASEB в августе прошлого года показали, что ускоренное старение в условиях невесомости связано даже не с процессами, происходящими с опорно-двигательным аппаратом, а с эндотелиальными клетками, которые выстилают изнутри все сосуды человека.
В условиях невесомости они испытывают серьезный окислительный стресс, при котором воспалительные процессы ускоряются, ускоряется и процесс старения. Всё это прямым образом влияет на сердечно-сосудистую систему человека.

Главный редактор журнала The FASEB Геральд Вейсманн, человек эволюционировал в условиях гравитации, которая использовалась для регулирования биологических процессов. Без гравитации, как сказал Вайсманн, ткани теряются и быстро стареют.

Невесомость и кости


Невесомость губительным образом влияет на состояние костей человека, кости теряют кальций и постепенно разрушаются. За один месяц пребывания в невесомости костная масса у космонавтом может снизиться на 1-2 %. Это происходит из-за нарушения фосфорного обмена, а также из-за того, что организму нет необходимости поддерживать тело и он почти перестает вырабатывать костный материал. Этот синдром получил название космической остеопатии.

Необходимо сказать и о том, что избыток кальция в крови может негативно сказываться на почках. К счастью, при возвращении на Землю космонавты снова набирают костную массу, но долгое пребывание в невесомости может сказаться на здоровье человека самым фатальным образом. Так, за время трехлетнего путешествия на Марс, космонавт может потерять до 50% костной массы, вернуться на Землю и восстановиться он больше не сможет.

Круглое сердце

Коль идет речь об атрофии мышц в космосе, то необходимо сказать и о главной мышце организма - сердце. Тем более, что не так давно НАСА провело исследование, давшее очень интересные результаты. Оказалось, что сердце не только ослабевает и уменьшается в объемах, но и... округляется. Во время проведения исследования кардиологи НАСА изучали сердца 12 космонавтов, работавших на МКС. Анализ снимков показал, что в условиях невесомости сердце округляется на 9,4 %. Впрочем, при возвращении на Землю сердце в течение полугода возвращает свою обычную форму и возобновляет "земную" активность. Чтобы представить снижение активности работы сердца, достаточно сказать, что полуторомесячное лежание на кровати равнозначно недельной работе в условиях невесомости.

Не заплачешь


Как Вы уже поняли, жизнь в невесомости мало похожа на сказку, но если на Земле человек может дать себе психологическую разгрузку просто заплакав, то в состоянии невесомости это невозможно. Слезы не только не польются ручьем, они даже не покинут глаз. Шарики из слез останутся внутри и будут не только затруднять зрение, но и ухудшать его, вызывая жжение. Для того, чтобы удалять из глаз лишнюю влагу, космонавты используют специальные "совочки".





ВЛИЯНИЕ НЕВЕСОМОСТИ НА ЧЕЛОВЕКА Сенсорные изменения проявляются в нарушении или зат­ руднении ориентации возникает ощущение крена, «перевернутости», головокружение и пр. Артериальное давление неустойчиво, чаще снижено. Дыхание, вна­чале несколько учащенное, быстро нормализуется, а в дальнейшем за­медляется. После длительного пребывания в невесомости значительно уменьшается _масса.тела, главным образом за счет потери воды (усиле­ние диуреза) Длительное состояние невесомости сопровождается усиленным вы­ведением кальция из организма точность движений может несколько снижаться. Чаще нарушаются тонкие координационные акты. Несколько уменьшается мышечная сила. увеличению мочеотделения, потере натрия, дегид­ратации и уменьшению объема циркулирующей крови.


1) лица, которые переносят невесомость без ухудшения общего самочувствия; 2) лица, испытывающие в состоянии невесомости иллюзорные ощущения положения тела в пространстве; 3) лица, у которых быстро развиваются симптомы воздушной болезни (слюнотечение, тошнота, рвота)


М ЕТОДЫ БОРЬБЫ С ПОСЛЕДСТВИЯМИ НЕВЕСОМОСТИ. интенсивные физические упражнения, профилактический костюм, имитирующий земное притяжение, нагружающий кости человека в продольном направлении, который приходится носить в течение 12 часов в сутки. тренировки на тренажере «бегущая дорожка» при тяге 60 кг. Все это по часу утром и вечером.

Первичными эффектами невесомости являются снятие гидростатического давления крови и тканевой жидкости, весовой нагрузки на костно-мышечный аппарат, а также отсутствие гравитационных стимулов специфических гравирецепторов афферентных систем. Реакции организма, обусловленные длительным пребыванием в невесомости, выражают, по существу, его приспособление к новым условиям внешней среды и протекают по типу «неупотребления» или «атрофии от бездействия»

Состояние невесомости в начальный период часто вызывает нарушения пространственной ориентации, иллюзорные ощущения и симптомы болезни движения (головокружение, дискомфорт в желудке, тошнота и рвота), что связывают главным образом с реакциями вестибулярного аппарата и приливом крови к голове. Наблюдаются также изменения субъективного восприятия нагрузок и некоторые другие изменения, вызываемые реакциями чувствительных органов, которые настроены на земную силу тяжести. В течение первых десяти дней пребывания в невесомости в зависимости от индивидуальной чувствительности человека, как правило, происходит адаптация к указанным проявлениям невесомости и самочувствие восстанавливается.

В условиях невесомости происходит перестройка координации движений, развивается детренированность сердечно-сосудистой системы.

Невесомость влияет на баланс жидкости в организме, обмен белков, жиров, углеводов, минеральный обмен, а также на некоторые эндокринные функции. Наблюдаются потери воды, электролитов (в частности, калия, натрия), хлоридов и другие изменения в обмене веществ.

Ослабление действия внешних сил на структуры, несущие весовую нагрузку, приводит к потере кальция и других веществ, важных для поддержания прочности костей. После длительного воздействия невесомости возможны явления легкой мышечной атрофии, некоторая слабость мускулатуры конечностей и т. д.

К числу наиболее общих проявлений неблагоприятного влияния невесомости на организм в сочетании с другими особенностями условий жизни на космическом корабле относится астенизация, отдельные признаки которой (ухудшение работоспособности, быстрая утомляемость) обнаруживаются уже в процессе самого полета. Однако наиболее заметно астенизация сказывается при возвращении на Землю. Снижение массы тела, мышечной массы, минеральной насыщенности костей, уменьшение силы, выносливости, физической работоспособности ограничивают переносимость стрессовых воздействий, характерных для этого периода перегрузок, и действия земной силы тяжести.

Нарушения двигательной функции в условиях космического полёта, по-видимому, не являются критическими, так как выработка навыков координации движений в невесомости протекает относительно успешно. Значительно более неблагоприятными представляются нарушения координации движений, которые могут развиваться в реадаптационный период в зависимости от продолжительности воздействия гиподинамии и невесомости.

Ортостатическая неустойчивость, характеризующаяся выраженным усилением физиологических изменений, появлением головокружения, слабости, тошноты, и особенно возможностью обморочного состояния при вертикальной позе, представляет весьма серьезную проблему, типичную для послеполетного периода, хотя после кратковременных полетов эти признаки были непродолжительными и легко обратимыми.

Изменения иммунологических реакций и устойчивости к инфекциям сопровождаются возрастанием восприимчивости к заболеваниям, что может привести к возникновению критической ситуации во время полета. В кратковременных полетах значительных изменений со стороны иммунологической реактивности не отмечалось.

Существует определенная вероятность того, что и некоторые другие сдвиги в функциональном состоянии организма могут влиять на продолжительность безопасного пребывания в условиях длительной невесомости. Одни из них определяются процессами перестройки механизмов нервной и гормональной регуляции вегетативных и двигательных функций, другие зависят от степени структурных изменений (например, мышечной и костной ткани), детренированности сердечно-сосудистой системы и обменных сдвигов. Разработка и внедрение системы мероприятий по профилактике этих расстройств являются одной из важных задач медицинского обеспечения длительных космических полетов.

В принципе возможны два способа профилактики влияния невесомости. Первый состоит в том, чтобы предотвратить адаптацию организма к невесомости, создавая на КА искусственную силу тяжести, эквивалентную земной; это наиболее радикальный, но сложный и дорогостоящий способ, причем исключающий прецизионные наблюдения за внешним пространством и возможности экспериментов в условиях невесомости. Второй способ допускает частичную адаптацию организма к невесомости, но вместе с тем предусматривает и принятие мер по профилактике или уменьшению неблагоприятных последствий адаптации. Профилактическое действие защитных средств рассчитано в первую очередь на поддержание достаточного уровня физической работоспособности, двигательной координации и ортостатической устойчивости (переносимости перегрузок и вертикальной позы), поскольку по современным данным изменения этих функций, возникающие в реадаптационный период, представляются наиболее критическими.

Естественным и практически осуществимым является профилактическое воздействие на такие первичные пусковые эффекты невесомости, как снятие гидростатического давления крови я весовой нагрузки на костно-мышечный аппарат, что позволяет исключить или ослабить длинную цепочку вторично обусловленных сдвигов, в том числе и вызывающих наибольшую озабоченность в реадаптационном периоде. Значительно более сложно парирование тех изменений, которые возникают в деятельности афферентных систем в невесомости. Восполнить отсутствие гравитационных стимулов для специфических гравирецепторов, не прибегая к созданию искусственной тяжести, невозможно. Профилактические и терапевтические воздействия могут быть адресованы не только к первичным, или пусковым, эффектам невесомости, но и к более низким уровням патогенетической цепи.

Профилактика реакций, связанных с отсутствием гидростатического давления крови в невесомости во время полета, может состоять, во-первых, в использовании средств и методов, искусственно воспроизводящих эффект гидростатического давления: дыхание под избыточным (выше атмосферного на 15 - 22 мм рт. ст.) давлением, воздействие отрицательным (ниже атмосферного на 25 - 70 мм рт. ст.) давлением на нижнюю половину тела и др., во-вторых, в профилактическом воздействии на некоторые промежуточные звенья патогенетической цепи с помощью фармакологических и гормональных препаратов. В послеполетный период рекомендуется ношение противоперегрузочных костюмов, обычно используемых летчиками (при давлении в камерах 35 - 50 мм рт. ст.), и установление щадящего режима с постепенным, дозированным увеличением времени пребывания в вертикальной позе.

Восполнение дефицита весовой нагрузки на костно-мышечный аппарат в условиях невесомости относится к числу весьма перспективных направлений в разработке профилактических мероприятий и обеспечивается за счет физической тренировки с использованием пружинных или резиновых эспандеров, велоэргометров, тренажеров типа «бегущей дорожки» и нагрузочных костюмов, создающих статическую нагрузку на тело и отдельные мышечные группы за счет резиновых тяг.

В системе профилактики сдвигов, преимущественно обусловленных отсутствием весовой нагрузки на опорно-двигательный аппарат, могут найти применение и другие методы воздействия, в частности, электростимуляция мышц, применение гормональных препаратов, нормализующих белковый и кальциевый обмен, а также различные способы повышения устойчивости организма к инфекциям.

В общей системе защитных мероприятий должна быть учтена также возможность повышения неспецифической сопротивляемости организма за счет снижения неблагоприятного воздействия стресс-факторов космического полета (снижение уровня шумов, оптимизация температуры, создание надлежащих гигиенических и бытовых удобств), обеспечения достаточного водопотребления, полноценного и хорошо сбалансированного питания с повышенной витаминной насыщенностью, обеспечения условий для отдыха, сна и т. д. Увеличение внутреннего объема космических кораблей и создание на них улучшенных бытовых удобств заметно способствуют смягчению неблагоприятных реакций на невесомость.

Следует отметить, что в системе мероприятий по профилактике неблагоприятного влияния на организм человека длительной невесомости самостоятельное значение принадлежит предполетному отбору и тренировке, а также восстановительной терапии, используемой в послеполетном периоде.

На современном уровне знаний достижение относительно гармоничного профилактического эффекта может быть обеспечено лишь при использовании комплекса профилактических средств, адресованных различным звеньям патогенетической цепи. Правильность такого подхода к построению системы профилактических мероприятий наглядно продемонстрировали полеты экипажей орбитальных станций «Салют» (30, 63, 96, 140, 175, 185 и 211 сут) и «Скайлэб» (28, 59 и 84 сут). Эти полеты подтвердили способность человека существовать и функционировать на современных КА при использовании соответствующих средств профилактики, однако необходимо дальнейшее исследование влияния невесомости на организм человека.

Космическое пространство не является однородной средой с постоянными (хотя бы в среднем) свойствами в каждой своей точке, поэтому конкретные условия полета КА будут зависеть от области пространства, траектории и продолжительности полета.

В общем случае полет КА будет происходить:

вне планеты, когда все необходимое для нормального существования КА и его экипажа должно находиться на его борту;

в условиях глубокого вакуума, что вызывает необходимость подбора и разработки удовлетворяющих этому условию конструкционных материалов и смазок, обеспечения герметичности отсеков КА, разработки особых средств обеспечения теплового режима КА и т. п.;

в условиях невесомости, что исключает нормальный конвективный теплообмен и гидростатическое давление жидкостей, вызывает изменение или нарушение жизненно важных функций человеческого организма;

в условиях метеорной опасности, которая требует разработки конструкции, устойчивой к воздействию метеорных частиц;

в условиях радиационной опасности, обусловленной электромагнитным и корпускулярным излучениями солнечного и галактического происхождения, в связи с чем необходимо обеспечение радиационной защиты экипажа и устойчивых к воздействию радиации материалов и аппаратуры.

Следует отметить, что при увеличении длительности космических полетов как в околоземном пространстве, так и при полетах к другим планетам роль фактора внешних физических условий существенно возрастает.

Кроме рассмотренных выше условий полета в космическом пространстве при разработке КА следует учитывать условия полета на участке выведения на орбиту в составе ракетно-космической системы, а для аппаратов, возвращаемых на Землю, - условия полета на участке спуска в атмосфере и приземления.