ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Как можно заработать с помощью станка на ЧПУ управлении? Первый запуск станка с ЧПУ. Пошаговая инструкция

Рассмотрим работу станков с системой ЧПУ по упрощенной схеме (рис. 7.1), включающей основные блоки систем ЧПУ и основные элементы кинематической схемы станка. Система ЧПУ состоит из устройств ввода информации, блока запоминания информации БЗИ, блока интерполяции БИ, блока управления приводами подач в виде цифроаналоговых преобразователей ЦАП и двух следящих приводов по осям X и V станка. Следящие приводы состоят из усилителей мощности УМ Х и УМ У, сравнивающих устройств УС Х и УС У , датчиков обратной связи в виде вращаю­щихся трансформаторов ВТ Х и ВТ У , кинематически связанных с ходовыми винтами станка, и двигателей подач М х и М у , которые приводят во вращение ходовые винты станка. В результате вра­щения винтов перемещаются стол станка и его ползун с фрезой, совместное движение которых определяет конфигурацию изготовляемой детали согласно заложенной программе.

Все современные устройства ЧПУ выполняются на базе ка­кой-либо микроЭВМ или микропроцессоров (одного или несколь­ких), позволяющих значительно увеличить степень автоматизации станка, т.е. обеспечить: индикацию большого числа параметров на экране дисплея, быстрое диагностирование неисправностей и удобное редактирование программ, запоминание большого объема управляющих программ и т.д.

7.1. Состав системы чпу

Все устройства ЧПУ имеют развитую цикловую автоматику с большим числом входов-выходов, а также связь с ЭВМ высшего уровня, необходимую при создании гибких производственных систем.

Вместе с тем наблюдается разделение устройств ЧПУ по числу управляемых координат, связанное с их назначением: для токар­ных станков обычно требуется две координаты; для обычных фре­зерных – три; для фрезерных станков, предназначенных для объемной обработки, – пять; для многооперационных станков – от четырех до восьми. В настоящее время созданы устройства ЧПУ на 10–12 координат для управления ГПМ. Число координат весьма существенно влияет на конструкцию и стоимость устрой­ства ЧПУ.

Функциональная схема типовой универсальной системы ЧПУ (рис. 7.2) состоит из двух основных устройств: устройства число­вого программного управления, конструктивно оформленного в виде отдельного шкафа или пульта и исполнитель­ных устройств с приводами и датчиками обратной связи, разме­щенными на станке. Основные блоки системы ЧПУ описаны ниже.

Рис. 7.1. Упрощенная схема станка с ЧПУ

Устройство ввода информации вводит числовую информацию с программоносителя.

Блок запоминания считанной информации. Помимо запоминания входной информации в этом блоке выполняются ее контроль и формирова­ние соответствующего сигнала в момент обнаружения ошибки. Этот блок, как правило, имеет возможность получать информацию от ЭВМ верхнего уровня, что необходимо при объединении стан­ков в ГПС.

Пульт управления и индикации служит для связи человека-оператора с системой ЧПУ. С помощью этого пульта проводится пуск системы и ее останов, переключение режимов работы с авто­матического на ручной и т.д., а также коррекция скорости подачи и размеров инструментов и изменение начального положения инструмента по всем или некоторым координатам. На этом пульте находится световая сигнализация и цифровая индикация о со­стоянии системы.

В современных ЧПУ индикация обычно осуществляется с помощью встроенного дисплея, позволяющего выводить значительно большее число параметров, а также проводить отработку про­грамм непосредственно на станке.

Блок интерполяции формирует частичную траекторию движе­ния инструмента между двумя или более заданными в программе точками. В большинстве случаев используют линейную и круговую интерполяцию, хотя иногда применяют винтовую или цилиндри­ческую интерполяцию.

Приводы подач, чаще всего следящие, служат для обеспече­ния перемещения управляемых элементов станка (столов, суппор­тов, кареток и т.п.) с необходимой скоростью и точностью при заданном моменте. Под следящим приводом будем понимать систему, состоящую из двигателя (электрического, гидравличе­ского), усилителя мощности, снабжающего этот двигатель не­обходимой энергией, которая регулируется в широких пределах, датчика обратной связи по положению, служащего для измерения фактического перемещения (или положения) управляемого объ­екта, и сравнивающего устройства, сравнивающего фактическое положение объекта с заданным и выдающего сигнал ошибки, по­ступающий на вход усилителя мощности, в результате чего угло­вая скорость вала двигателя оказывается пропорциональной ошибке системы. В процессе работы эта система перемещает управ­ляемый объект таким образом, чтобы поддерживать минимальное значение ошибки. Если ошибка по каким-либо причинам превы­шает заранее установленный допустимый предел, то система ЧПУ автоматически отключается с помощью специальных устройств защиты.

Блоки управления приводами подач служат для преобразования информации, получаемой с выхода интерполятора, в форму, пригодную для управления приводами подач, так, чтобы при поступлении каждого импульса управляемый объект перемещался на определенное расстояние, называемое ценой импульса, кото­рая обычно составляет 0,01 или 0,001 мм. В зависимости от типа приводов (замкнутые или разомкнутые, фазовые или амплитуд­ные), применяемых на станках, блоки управления существенно различаются.

В разомкнутых приводах, использующих шаговые двигатели, блоки управления представляют собой специальные кольцевые коммутаторы, на выходе которых включены мощные усилители, питающие обмотки шаговых двигателей, которые служат для циклического переключения обмоток ШД, что заставляет вра­щаться его ротор. В замкнутых приводах фазового типа, исполь­зующих датчики обратной связи в виде вращающихся трансфор­маторов (ВТ) или индуктосинов в режиме фазовращателей, блоки управления представляют собой преобразователи импульсов в фазу переменного тока и фазовые дискриминаторы, которые сравни­вают фазу сигнала на выходе фазового преобразователя с фазой датчика обратной связи и выдают разностный сигнал ошибки на усилитель мощности привода.

В этом же блоке обычно расположены усилители для питания датчиков обратной связи, а также устройства защиты, отключаю­щие приводы при превышении допустимой ошибки слежения.

Датчики обратной связи ДОС являются измерительными устройствами, служащими для определения фактического поло­жения (абсолютного значения координаты) или перемещения (от­носительного значения координаты) управляемого объекта в пре­делах шага системы. При этом суммирование шагов производит система ЧПУ. Перемещения объекта определяют как непосредственно с помощью каких-либо линейных измерительных устройств, например, индуктосинов, так и косвенно, измеряя, например, угол поворота вала двигателя подач с помощью какого-либо углового измерительного устройства, например, обычного ВТ или резольвера (точный ВТ синусно-косинусного типа, применяемый в счетно-решающих устройствах).

Помимо индуктосинов, для непосредственного измерения ли­нейных перемещений иногда используют и другие измерительные устройства, например, прецизионные зубчатые рейки с много­полюсными ВТ, или для достижения особо высокой точности – оптические штриховые измерительные шкалы с соответствующими импульсными датчиками. Обычно одно и то же устройство ЧПУ может работать с раз­личными типами ДОС.

Рис. 7.2. Функциональная схема системы ЧПУ

Блок скоростей подач обеспечивает заданную скорость подачи, а также разгон и торможение в начале и конце участков обработки по заданному закону, чаще всего – линейному. Скорость подачи задается либо номером скорости соответствующего ряда скоростей, составляющих геометрическую прогрессию со знаменателем по­рядка 1,25, либо непосредственно в миллиметрах в минуту через 1 или даже через 0,1 мм/мин. Помимо рабочих скоростей подач, составляющих обычно 5–2000 мм/мин, этот блок выполняет, как правило, и установочное движение с повышенной скоростью, на которой производится установка координат при позиционной обработке или переход инструмента из одного участка заготовки в другой при контурной обработке. Эта скорость в современных системах ЧПУ составляет 10–15 м/мин.

Блок коррекции программы вместе с пультом управления слу­жит для изменения запрограммированных параметров обработки, т.е. скорости подачи и размеров инструмента (длины и диаметра). Изменение скорости движения (обычно 5–120 %) сводится к руч­ному изменению частоты задающего генератора в блоке подач. Изменение длины инструмента (обычно от 0 до 100 мм) сводится к изменению заданного значения перемещения вдоль оси инстру­мента, без изменения его начального поло­жения.

Блок технологических команд предназначен для управления цикловой автоматикой станка, включающего поиск и смену до­статочно большого числа инструментов (до 100), смену частоты вращения шпинделя, зажим направляющих при позиционирова­нии и разжим их при движении, различные блокировки, обеспе­чивающие сохранность станка. Цикловая автоматика станка со­стоит в основном из исполнительных элементов типа пускателей, электромагнитных муфт, соленоидов и других электромагнитных механизмов, а также дискретных элементов обратной связи типа концевых и путевых выключателей, реле тока, реле давления и других элементов, контактных или бесконтактных, сигнализи­рующих о состоянии исполнительных органов. Часто эти элементы с дополнительными устройствами типа реле реализуют местные циклы (например, цикл поиска и смены инструмента), команды, на исполнение которых подаются из устройства программного управления. Современные устройства ЧПУ, как правило, осу­ществляют эти циклы внутри, выдавая сигналы на исполнитель­ные элементы станка через согласующе-усилительные устройства, которые могут находиться как в станке, так и в устройстве ЧПУ. Для этого часто используют программируемые контроллеры в виде отдельного блока, размещаемого внутри или вне устройства ЧПУ.

Блок стандартных циклов служит для облегчения программи­рования и сокращения длины программы при позиционной обра­ботке повторяющихся элементов заготовки, например, при свер­лении и растачивании отверстий, нарезании резьбы и других операций.

Помимо этих блоков, применяют блоки адаптации, которые служат для увеличения точности и производительности обработки при изменяющихся по случайному закону внешних условиях (например, припуск на обработку, твердость обрабатываемого материала, затупление инструмента). Это объясняется тем, что любая система ЧПУ является разомкнутой системой управления, так как она не «знает» результата своей работы. В системе ЧПУ с обычной обратной связью заготовка ею не охвачена; задается только перемещение инструмента относительно заготовки. В то же время на точности размеров детали сказывается, например, де­формация инструмента, которая в обычных системах ЧПУ может учитываться при программировании только тогда, когда она по­стоянна или изменяется по заранее известному закону, чего на практике нет.

Прежде чем понять принцип работы ЧПУ систем, для начала стоит почитать техническое описание автоматизированных систем. Подробно о принципе ЧПУ внутри статьи.

Основы числового программного управления

Для более четкого понимания всех возможных проблем, связанных с успешным применением данных, для выполнения механической обработки или резания с применением станков с ЧПУ, вам необходимо иметь представление о процессе и принципах числового программного управления. Надеемся, что этот небольшой справочный материал поможет вам понять принцип работы станков с ЧПУ.

Для начала - несколько определений

ЧПУ - Числовое Программное Управление. Принцип ЧПУ заключается в получении оцифрованных данных, после чего компьютер или САМ-программа обеспечивает управление, автоматизацию и мониторинг движений элементов машины. В роли машины может выступать токарный или фрезерный станок , роутер, сварочный автомат, шлифовальный станок, установка лазерной или водоструйной резки, листоштамповочный автомат, робот либо оборудование других типов. На крупногабаритных промышленных станках в качестве встроенного устройства управления обычно выступает компьютер. Но на большинстве станков любительского уровня или некоторых модернизированных моделях устройством управления может являться отдельный персональный компьютер. Контроллер ЧПУ функционирует совместно с электродвигателями и Настольный ЧПУ станок бывает нескольких разновидностей, предназначенных для любителей/макетчиков/моделистов. Такие станки имеют меньшую массу и уровень прочности, точности обработки и скорости работы и, кроме того, они дешевле своих промышленных аналогов, но при этом могут хорошо справляться с механической обработкой различных предметов, изготовленных из мягких материалов (пластик, пенопласт, воск). Работа некоторых настольных станков с ЧПУ может во многом напоминать работу принтера. Другие же имеют собственную замкнутую систему управления или даже встроенную специализированную CAM-программу. Некоторые модели также могут принимать данные в виде стандартного g-кода. Существуют промышленные станки настольного типа, предназначенные для выполнения мелких работ, требующих особой точности обработки, оснащенные специализированными устройствами числового программного управления.

CAM - автоматизированная механическая обработка или автоматизированное производство. Данный термин относится к применению различных пакетов ПО для управления траекторией движения режущего инструмента и генерации управляющей программы для работы станков с ЧПУ, основанных на использовании данных, получаемых путем компьютерного 3D-моделирования (CAD-файлы). В случаях когда два описанных понятия используются вместе, обычно применяется сокращение CAD/CAM.

Примечание: CAM-программа фактически не управляет станком с ЧПУ, а только создает программный код, которому следует станок.

Также это не автоматическая операция, которая импортирует 3D-модель и генерирует корректную управляющую программу. CAM-программирование, как и 3D-моделирование, требует наличия определенных знаний и опыта использования ПО такого типа, разработки технологий механической обработки, а также знаний о том, какие виды инструментов и технологических операций необходимо применять в той или иной ситуации для достижения наилучших результатов. Существует ряд несложных программ, позволяющих начинающим пользователям начать работать с ними без особых затруднений. Но есть и более сложные версии, которые требуют вложений времени и финансов для достижения максимальной эффективности их использования.

Управляющая программа - особый относительно простой машинный язык, который может понимать и исполнять станок с ЧПУ. Чтобы понимать принцип работы ЧПУ, очень важно понимать как подобная система управляется. Такие машинные языки изначально разрабатывались для непосредственного программирования обработки деталей путем ввода команд с клавиатуры станка без использования CAM-программ. Они указывают станку, какие движения он должен совершать, одно за другим, также осуществляют контроль выполнения станком других его функций, таких как скорость подачи, частота вращения шпинделя, подача СОЖ. Наиболее распространенным языком подобного рода является G-код или ISO-код - простой буквенно-цифровой язык программирования, разработанный в начале 1970-х годов для первых станков с ЧПУ. Подробнее о G-кодах в статье «Описание G»

Постпроцессор. В то время как g-код рассматривается в качестве стандартного машинного языка для станков с ЧПУ, любой производитель может изменять отдельные его части, такие как использование дополнительных функций, создавая ситуации, при которых g-код, разработанный для одного станка, может не работать для другого. Существует также множество производителей станков, разработавших собственные языки программирования. В связи с этим, для перевода данных траекторий движения инструмента, рассчитанных внутри CAM-программы, в особый код управляющей программы с тем, чтобы станок с ЧПУ мог понимать эти данные, существует связующее программное обеспечение, называемое постпроцессором. Постпроцессор, единожды сконфигурированный должным образом, генерирует соответствующий код для выбранного станка, который, по крайней мере теоретически, позволяет управлять любым станком с помощью любой CAM-программы. Принцип работы ЧПУ станков позволяет поставлять постпроцессоры вместе с CAM-программой бесплатно либо за отдельную плату.

Общие сведения о станках с ЧПУ

Станки с ЧПУ могут иметь несколько осей перемещения, а сами движения могут быть линейными либо поворотными. Многие станки совмещают в себе оба вида движения. Станки, предназначенные для резки, такие как установки лазерной или водоструйной резки, как правило, имеют всего две линейные оси - X и Y. Фрезерные станки обычно имеют как минимум три оси - X, Y и Z, а также могут иметь дополнительные поворотные оси. Фрезерный станок, имеющий пять осей перемещения - это станок с тремя линейными и двумя поворотными осями, позволяющий фрезе совершать технологические операции под углом 180º (в полусфере), а иногда и под большими углами. Также существуют установки лазерной резки, имеющие пять осей перемещения. Робот-манипулятор может иметь более пяти осей.

Некоторые ограничения для станков с ЧПУ

В зависимости от возраста и сложности конструкции, станки с ЧПУ могут иметь определенные ограничения в части функциональных возможностей систем управления и приводных систем. Большинство контроллеров ЧПУ понимают только движения строго по прямой линии или по кругу. Во многих станках перемещения по кругу ограничены главными плоскостями координатных осей XYZ. Перемещения по поворотной оси могут восприниматься контроллерами как линейные перемещения, только вместо расстояния будут использоваться градусы. Для создания перемещений по круговой дуге или линейных перемещений, проходящих под углом по отношению к главным координатным осям, две или более оси должны интерполироваться (их движения должны быть точно синхронизированы) между собой. Линейные и поворотные оси могут также одновременно интерполироваться. В случае использования станка, имеющего пять координатных осей, все пять осей должны быть идеально синхронизированы друг с другом, что является непростой задачей.

Скорость, с которой контроллер станка способен получать и обрабатывать входящие данные, передавать команды на драйверы, а также отслеживать скорость и положение рабочих органов, является критически важным показателем. Более старые и бюджетные модели станков, очевидно, обладают менее высокими показателями, что во многом схоже с тем, насколько менее производительными являются старые модели компьютеров в части выполнения требуемых операций по сравнению с их более современными аналогами.

Сначала интерпретируйте данные 3D-моделей и сплайнов

Наиболее часто возникающая проблема заключается в организации файлов и кода CAM-программы таким образом, чтобы станок, выполняющий обработку заготовок, работал с заложенными в него данными плавно и эффективно. Так как многие контроллеры ЧПУ понимают только формы дуги и прямой линии, любую другую геометрическую форму, которую невозможно описать в данном языке программирования, необходимо конвертировать в более применимую. Обычно конвертации подвергаются сплайны, то есть общие неоднородные рациональные B-сплайны, которые не являются дугами или линиями, а представляют собой трехмерные поверхности. Некоторые станки настольного типа также не способны воспринимать дуги окружности, поэтому все подобные фигуры необходимо конвертировать в полилинии.

Сплайны могут быть разбиты на ряд линейных сегментов, касательных дуг или их сочетание. Вы можете представить себе первый вариант в виде серии хорд на вашем сплайне, касающихся его концами и имеющих определенное отклонение в середине. Другим способом конвертации является преобразование вашего сплайна в полилинию. Чем меньше сегментов вы используете в процессе преобразования сплайна, тем грубее будет аппроксимация, а результат преобразования будет состоять из отрезков большего размера. Использование более мелкого масштаба сглаживает аппроксимацию, но при этом значительно увеличивается и количество сегментов. Представьте себе, что серия дуг могла бы сгладить ваш сплайн в пределах допустимых значений с использованием небольшого количества длинных отрезков. Данный факт является главной причиной того, что преобразование сплайнов в дуги предпочтительнее, нежели преобразование в полилинии, особенно в если вы работаете на станках старых моделей. С более современными моделями станков в этом плане возникает меньше проблем.

Представьте себе поверхности с тем же уровнем аппроксимации сплайнов, только многократно увеличенные и с разрывом между ними (обычно называемым перемещением инструмента между проходами). Обычно поверхности создаются с применением только линейных сегментов, но бывают ситуации, при которых могут также использоваться дуги или сочетания прямых линий и дуг.

Размер и количество сегментов определяются требуемым уровнем точности обработки, а также применяемым методом, и напрямую влияют на качество обработки. Слишком большое количество коротких сегментов может привести к сбою в работе станков старых моделей, а слишком малое - к появлению на заготовке слишком больших граней. CAM-программы обычно применяются в тех случаях, когда необходим подобный уровень аппроксимации. У опытных операторов станков, понимающих требования к детали и знающих, какие операции способен выполнить станок, обычно не возникает с этим проблем. Но некоторые CAM-программы не способны выполнить обработку тех или иных сплайнов или определенных типов поверхностей, поэтому вам может понадобиться предварительное конвертирование данных в CAD-программе (Rhino) перед использованием CAM-программы. Процесс перевода данных из CAD-программы в CAM-программу (посредством использования нейтрального файлового формата - IGES, DXF и т.д.) также может вызвать определенные проблемы, в зависимости от качества функций импорта/экспорта самих программ.

Общепринятые термины, используемые при описании станков с ЧПУ

Поняв принцип ЧПУ, следует убедиться, что вы имеете представление об основных терминах, часто использующихся в станкооборудовании. Следует понимать, что ваш проект может быть:

2-осевым, в случае если резание производится в одной плоскости. В данном случае инструмент не имеет возможности двигаться по плоскости оси Z (вертикальной). В целом координатные оси X и Y могут быть одновременно интерполированы между собой для формирования линий и дуг окружностей.

2,5-осевым, если резание производится в плоскостях, параллельных главной плоскости, но необязательно на той же высоте и глубине. При этом для изменения уровня инструмент может двигаться по плоскости оси Z (вертикальной), но не одновременно с перемещением по осям X и Y. Исключение могут составлять случаи, когда траектория движения инструмента может интерполироваться спирально, то есть описывать круг в плоскостях X и Y, одновременно двигаясь по оси Z для создания винтовой линии (например, при резьбофрезеровании).

Разновидностью вышеуказанного способа интерполяции является способ, при котором станок может интерполировать движение в двух любых плоскостях одновременно, но не в трех. Данный способ интерполяции позволяет проводить обработку ограниченного количества разновидностей трехмерных объектов, напрмиер, путем фрезерования в плоскостях XZ или YZ, но является более ограниченным по сравнению с трехосевой интерполяцией.

3-осевым , если для необходимой технологической операции требуется одновременное управляемое перемещение режущего инструмента в трех координатных осях - X,Y,Z, что необходимо для обработки большинства поверхностей произвольной формы.

4-осевым, если он включает в себя перемещение по трем осям, указанным выше, плюс перемещение по одной поворотной оси. Тут есть два варианта: одновременная 4-осевая интерполяция (полноценная 4-я ось) либо только позиционирование по 4-й оси, при котором 4-я ось может менять положение заготовки, перемещая ее между тремя координатными осями, фактически не перемещаясь в процессе обработки. 5-осевым, если он включает в себя перемещение по трем осям, указанным выше, плюс перемещение по двум поворотным осям. Кроме полноценной обработки в 5 осях (5 осей перемещаются одновременно), в вашем распоряжении часто есть вариант обработки с применением 3-х осей плюс еще 2 дополнительные оси или 3-осевая механическая обработка + позиционирование с помощью 2-х независимых осей. Также в редких случаях есть вариант обработки с применением 4-х осей плюс одной дополнительной оси или непрерывная механическая обработка по 4 осям + позиционирование по 5-й оси. Звучит запутанно, не правда ли?

Если вы хоть раз задавались вопросом «что можно сделать на ЧПУ фрезерного станка», тогда эта статья для вас. На сегодняшний день интересные товары ручной работы очень высоко ценятся и пользуются большим спросом.

Изделия на продажу, или для собственного пользования могут быть качественно и быстро изготовлены с помощью .

На выходе можно получить разнообразную продукцию из дерева:

  • предметы декора;
  • мебель;
  • сувениры и другие изделия.

Также на сайте у нас выложена статья о , которая может быть полезна при производстве такого вида изделий. Для данного производства необходимо лишь определенное оборудование и некоторый опыт работы на нем.
И, кстати, это довольно хороший способ заработка. Ведь такие изделия всегда пользуются спросом и имеют высокую цену.

Подготовка сырья для продукции

В качестве сырья можно использовать почти все твердые материалы:

  • древесину (включая фанеру, ДВП, ДСП, МДФ);
  • различные виды пластика (акрил, ПВХ);
  • металлы;
  • поликарбонаты;
  • пенопласт;
  • полистирол и другие материалы, поддающиеся механической обработке.

Очень популярна сейчас , так как с ее помощью делают модные детали интерьера, предметы быта и многие другие изделия для дома.

Древесина – это наиболее распространенное сырье для обработки на станках с числовым программным управлением.


Оптимальным вариантом будет использование таких пород:

  • Ясень: имеет много общего с дубом. Однако степень сопротивления к деформации, вязкость, ударная стойкость выше у данного вида древесины. Ясеневая порода высоко ценится в производстве мебели, там ее приравнивают к красному дереву.
  • Сосна : отличается смолистостью, прочностью и твердостью, стойкостью к гниению и поражению грибком, отлично подходит для обработки. Высоко ценится из-за малого количества сучков и небольшого изменения диаметра по длине ствола.
  • Лиственница: для нее характерна высокая прочность, стойкость к внешним воздействиям, приятный цвет и структура.

Выбор породы зависит от изделий. Особое внимание следует обратить на такие характеристики дерева, как влажность и прочность. Поскольку они сильно влияют на качество готового продукта.

Преимущества работы с фрезерным станком ЧПУ

У фрезеров достаточно большое количество плюсов, среди которых:

  • возможность изготавливать самые разнообразные изделия из совершенно непохожих между собой материалов (которые невозможно обработать другим путем);
  • точность и ровность реза, благодаря чему изделие получается аккуратным и красивым;
  • возможность делать нужную форму, глубину и даже фасонные резы;
  • работа может проводится как на вертикальной, горизонтальной, так и наклонной поверхности;
  • высокая скорость работы;
  • большое разнообразие деталей: плоские, объемные, и даже 3D;
  • повторяемость большего количества изделий, что практически невозможно при других методах обработки;
  • возможность резать, делать черновую калибровку, фрезеровать пазы и другие виды соединений, используемых при сборке изделия.

Основные изделия

На сегодняшний день существует огромное количество предметов, которые можно сделать с помощью станка ЧПУ, таких как:

  1. Уникальная мебель из различных материалов, включая ценные породы дерева.
  2. Сувениры: различные шкатулочки, рамочки для фото, статуэтки и прочее.
  3. Рекламная продукция: красивые массивные буквы, таблички и т.д.

Давайте более детально разберем каждый из предложенных вариантов.

Дизайнерская мебель. Она окружает нас повсюду: спальные комнаты, кухня, детская. Современное мебельное производство очень продумано и имеет высокую точность.

Шаги для создания изделия на станке ЧПУ:

  1. Разработка эскиза. Для данного пункта существует большое количество программ, которые помогают виртуально моделировать обстановку. Для того, чтобы создать 3х мерный макет рисунка используйте вычислительные программы, такие как САПР. Подготовленные компьютерные файлы дадут возможность получить мебельное изделие на фрезерном станке ЧПУ.
  2. Подготовка модели для станка. Готовый эскиз в 3D – базисе для изготовления любого комплекта деталей. К данному эскизу необходимо добавить функцию луча (вектор, который будет отвечать за направление фрезы относительно заготовочной детали). Существует также автоматическая формировка модели, которая является достаточно удобной и поможет сэкономить ваше время. Современное оборудование упрощает процесс изготовления, и передает даже самые маленькие и трудные линии.
  3. Подборка типа режущих инструментов, настройка мощности и режима обработки.
  4. Загрузка файлов в память машины, установка инструмента для резки, закрепление заготовки и запуск производства. Дальнейшую работу фрезерный станок ЧПУ делает самостоятельно по уже заданной программе.
  5. Окончательная сборка. Займет незначительное количество времени, нет надобности подгонки деталей.

Сувенирная продукция. Это могут быть следующие сувениры:

  • шкатулочки из дерева, которые можно украсить орнаментом;
  • коробки для бисера или швейных принадлежностей;
  • ящички для украшений;
  • иконы и многое другое.

Наиболее популярными продуктами среди сувениров являются те изделия, которые изготовлены по 3D или 2D векторным рисункам.

Также сейчас массово внедряются в производство многошпиндельные станки (2-16 шпинделей).

Рекламная продукция. Ее создание – это актуальный на сегодняшний день вид деятельности, в котором большую популярность имеет применение фрезерных станков с числовым программным управлением. Такие машины отлично справляются с такими задачами, как производство световых коробов, стендов, панна, фигурных надписей и наружных рекламных вывесок, а также с приготовлением конструкций для выставок.

ЧПУ станок помогает выполнять следующие операции, которые связаны с рекламной продукцией:

  • раскрой дерева, акрила и прочих материалов;
  • гравировка/вырезка массивных надписей;
  • создание логотипа, эмблемы;
  • изготовление табличек, подставок и др.

Подводя итоги, можно сказать, что количество изделий, который можно сделать на фрезерном ЧПУ станке огромное количество. От вас лишь требуется оборудование, желание работать и небольшой опыт.

Станки с ЧПУ – современные устройства, которые позволяют работать с большим количеством заготовок и обрабатывать их в быстром темпе. Для работы с таким станком не надо иметь специального образования. Наличие минимального опыта работы в подобной сфере позволяет эффективно справляться с таким устройством. В этой статье мы расскажем о том, как можно заработать на станке с ЧПУ.

Обработка дерева

Фрезерные станки с ЧПУ позволяют быстро и виртуозно обрабатывать деревянные заготовки. Такое устройство позволяет создавать криволинейные рельефы традиционной и нетрадиционной формы. Хороший станок для обработки дерева позволяет распиливать деревянные заготовки, создавать на них пазы и канавки.

Такие аппараты чаще всего применяют:

  1. На предприятиях по изготовлению мебели. Позволяет создавать довольно оригинальные изделия с самых разных материалов.
  2. Разработка различных форм для других производств.
  3. Изготовление сувениров и оригинальных предметов быта, подарков.
  4. Маркетинговая сфера – производство логотипов и т. п.

Наиболее широкие перспективы для заработка с помощью ЧПУ-станков открываются на поприще разработки самых разных форм и моделей. Специфика данных устройств позволяет с наименьшей затратой времени и средств изготовить необходимую (даже довольно сложную) деталь или форму. При этом они делают все быстро и качественно. Изготовленные формы можно использовать для массового производства необходимых товаров.

Обработка металла

Фрезерные станки с ЧПУ для обработки металлических изделий мало чем отличаются от таких же станков по обработке дерева. С другой стороны, такие устройств обладают более широкой сферой применения, а их продукция очень востребована на современном рынке. Существует несколько способов заработать при помощи этих аппаратов:

  • Создайте интернет-объявления на рекламных ресурсах. Детально пишите там продукцию которую вы можете производить, добавьте к этому объявлению максимальное количество фотографий ваших изделий. Особое внимание обратите на выделение преимуществ вашей работы. Если вы указываете цену своей продукции, обязательно ее аргументируйте. Укажите максимальный объем товаров, которые вы можете изготовить за определенный отрезок времени.
  • Сотрудничайте с другими мастерскими. Не стесняйтесь искать союзников. Среди других мастеров вы можете найти не только конкурентов, но и потенциальных и постоянных заказчиков. Они не только будут покупать вашу продукцию для собственного производства, но и могут ее посоветовать своим клиентам. В этом случае большую роль играет умение показать себя и свою продукцию с самой лучшей стороны, описать все преимущества от возможного сотрудничества.
  • Старайтесь специализироваться на отдельном сегменте рынка. Лучше делать одну деталь, на которую есть большой спрос, чем множество деталей с проблемным сбытом. С каждым новым выполненным заказом вы будете повышать качество своей продукции, и приобретать все новых клиентов. В этом случае огромное значение имеет правильный анализ рынка и своего потенциального места в нем.

Видео: что можно сделать на станке с ЧПУ?

Учитывайте эти рекомендации перед покупкой станков или перед началом серьезного производства. Старайтесь получить максимальный объем информации в будущей сфере своей работы. Не стесняйтесь и не бойтесь спрашивать советов на профильных форумах и у людей, которые уже добились определенных успехов на этом поприще.

Системы управления ЧПУ (УЧПУ) позволяют задать программу работы станка в виде ряда чисел и букв, которыми кодируют технологические команды и команды на перемещение рабочих органов. Программа работы станка может быть записана на различных программоносителях.

На перфолентах каждая технологическая команда или числовая информация кодируется определенной комбинацией отверстий в одной или нескольких строках программоносителя. Для считывания такой информации обычно используются считывающие устройства с фотоэлементами. Свет попадает через отверстие на фотоэлемент, в результате чего на его выходе появляется импульс тока. Высокое быстродействие фотоэлектрического считывающего устройства позволяет считывать информацию во время движения программоносителя со скоростью до 1000 строк в секунду.

Для подачи команды на считывание в определенный момент, когда место пробивки кодирующих отверстий находится над соответствующими фотоэлементами, служит синхронизирующая дорожка, в которой отверстие пробивается в каждой строке. Прочитанные строчки одного кадра управляющей программы заносятся в запоминающее устройство УЧПУ; команды, записанные в кадре, расшифровываются и исполняются рабочими органами станка. Отрабатывая управляющие команды одного кадра за другим, станок без участия рабочего производит обработку заготовки по программе.

Устройства ЧПУ

Устройства ЧПУ на базе микро-ЭВМ позволяют вводить программу и корректировать ее, используя клавиатуру на пульте управления станком. В памяти ЭВМ может храниться несколько программ, что упрощает переналадку станка. Таким образом, станок с ЧПУ работает по полуавтоматическому циклу. После того как станок настроен на обработку заданной детали, рабочий только устанавливает заготовки и снимает со станка обработанные детали, а также наблюдает за работой станка, получением размеров с заданной точностью и в случае необходимости поднастраивает инструмент с помощью соответствующего корректора.

Переналадка станка на обработку другой детали проста и занимает немного времени. Для этого вводят в систему управления станком новую управляющую программу, переналаживают или меняют установочно-зажимное приспособление и устанавливают соответствующий комплект инструментов. Таким образом, наряду с автоматизацией цикла обработки станок сохраняет гибкость универсального станка с ручным управлением. Вместе с тем станок с ЧПУ гораздо производительнее этого станка. Автоматическое изменение величины и направления рабочей подачи, быстрое изменение частоты вращения шпинделя, смена инструмента, высокая скорость (до 10 мин) холостых перемещений - все эти действия производятся по командам, записанным в управляющей программе, что позволяет существенно сократить вспомогательное время на их выполнение.

Высокая точность движения инструмента по запрограммированной траектории исключает надобность в пробных заходах с последующим измерением получаемых размеров и корректировкой положения резца. Принцип действия УЧПУ рассмотрим на примере двух систем. В шагово-импульсной системе ЧПУ записанное в виде комбинации отверстий на перфоленте число преобразуется интерполятором пульта управления станка в непрерывную последовательность электрических импульсов. Каждый импульс заставляет ротор шагового (дискретного) двигателя повернуться на небольшой угол. Выходной вал шагового двигателя через гидроусилитель крутящего момента поворачивает на этот же угол ходовой винт, в результате чего рабочий орган станка перемещается по направляющим станины на величину, называемую дискретностью.

Результирующая величина перемещения рабочего органа определяется числом, закодированным на перфоленте, так как интерполятор, размещенный в пульте управления станка, преобразует это число в непрерывную последовательность электрических импульсов, равномерно следующих один за другим. Число импульсов на выходе интерполятора соответствует закодированному на перфоленте числу. Таким образом, величина перемещения рабочего органа станка равна числу импульсов, умноженному на цену одного импульса. Например, если на перфоленте закодировать число 13500, то при цене одного импульса, равной 0,01 мм, рабочий орган переместится на 135 мм.

Так как управляющие электрические импульсы следуют один за другим с высокой частотой, то пульсирующее вращение ротора шагового двигателя становится почти равномерным с частотой вращения, определяемой частотой следования управляющих импульсов от пульта управления. Следовательно, скорость движения рабочего органа (рабочий, или вспомогательный ход) зависит от частоты управляющих импульсов. Например, при частоте управляющих импульсов 300 и дискретности импульса 0,01 мм подача составит 300X0,01X60=180 мм/мин. Частота импульсов задается интерполятором пульта управления в соответствии с кодом подачи на перфоленте УП.

Небольшие размеры шагового двигателя, обусловленные требованием минимальной инерционности его ротора, не позволяют получить на выходном валу требуемый для механизма подачи крутящий момент, поэтому между шаговым двигателем и винтом механизма подачи станка встроен гидроусилитель крутящего момента 4, образующий вместе с шаговым двигателем электрогидравлический шаговый привод подачи станка.

С появлением низкоскоростных электрических двигателей на постоянных магнитах, обладающих широким диапазоном регулирования частоты вращения, большим крутящим моментом и высокой перегрузочной способностью, следящий привод подач практически вытеснил в современных станках шагово-импульсный.

Записанное на программоносителе число импульсов преобразуется интерполятором устройства ЧПУ 2 в непрерывную последовательность импульсов, которая направляется в реверсивный счетчик. Счетчик суммирует импульсы, поступившие на его первый вход. Наличие в счетчике определенного числа вызывает появление на выходе устройства управления соответствующего напряжения, пропорционального числу импульсов. Это напряжение управляет частотой вращения двигателя, который через редуктор и передачу винт-гайка перемещает рабочий орган станка.

Датчик обратной связи выполнен на фотоэлементах. При движении рабочего органа подвижная линейка, связанная с ним непрозрачными участками, периодически перекрывает светлые участки шкалы измерительной линейки, в результате чего при движении рабочего органа фотоэлемент датчика обратной связи посылает в систему управления на второй вход реверсивного счетчика импульсы, которые вычитаются из суммы импульсов, находящихся в счетчике. В результате работы системы управления устанавливается равновесие между количеством вновь поступающих от устройства управления управляющих импульсов и импульсов обратной связи, что соответствует движению рабочего органа с запрограммированной скоростью.

Аналогичный принцип работы использован в импульсно-фазовой системе ЧПУ, где в качестве датчика обратной связи используется, как правило, индуктосин - линейный индуктивный датчик с точностью отсчета перемещений 0,02-0,03 мм.