ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Физиологическая роль фосфора в растениях.  Фосфор для растения: источник энергии

Влияние фосфора на жизнь растений весьма многосторонне. При нормальном фосфорном питании значительно повышается урожай и улучшается его качество. У хлебных культур возрастает доля зерна в общем урожае, улучшается его выполненность. В овощах, плодах, корнеплодах увеличивается содержание сахаров, а в клубнях картофеля - крахмала, у льна и конопли повышается качество волокна - увеличивается его длина и прочность, волокно становится более тонким, с прекрасным жирным блеском. Фосфор повышает зимостойкость растений, ускоряет их развитие и созревание. Например, созревание зерновых культур ускоряется на 5-6 дней, что особенно важно для районов, где они не вызревают до наступления низких температур.

Оптимальное фосфорное питание способствует развитию корневой системы растений - она сильнее ветвится и глубже проникает в почву. Это улучшает снабжение растений питательными веществами и влагой, что особенно важно для засушливых условий. Без фосфора, как и без азота, жизнь невозможна. Он входит в состав различных органоидов и ядра клеток. В растениях фосфор находится в нуклео-протеидах, нуклеиновых кислотах, которые наряду с белками играют важную роль в самом проявлении сущности жизни - синтезе белка, росте и размножении, передаче наследственных свойств. В растениях содержание нуклеиновых кислот составляет от 0,1 до 1%. Фосфор содержится также в фосфатидах, сахарофосфатах, фитине, липоидах и в минеральных соединениях, входит в состав ферментов и витаминов.

Фосфопротеиды - соединения белковых веществ с фосфорной кислотой, которые катализируют течение биохимических реакций.

Фосфатиды (или фосфолипиды) - сложные эфиры глицерина, высокомолекулярных жирных кислот и фосфорной кислоты. Они образуют белково-липидные мембраны, которые регулируют проницаемость клеточных органелл и плазмолеммы для различных веществ. Следовательно, они играют очень важную биологическую роль в жизни растений.

Фитин - производное циклического соединения шестиатомного спирта инозита и является кальциево-магниевой солью инозит-фосфорной кислоты. Это запасное вещество. Фосфор фитина используется при прорастании развивающимся зародышем.

Сахарофосфаты - фосфорные эфиры сахаров. Они играют важную роль в процессах фотосинтеза, дыхания, биосинтеза сложных углеводов и т.д. Благодаря фосфорной кислоте сахарофосфаты обладают высокой лабильностью и большой реакционной способностью.

Кроме этого, фосфорная кислота является носителем энергии благодаря образованию макроэргических связей. Основная роль среди макроэргических соединений принадлежит аденозинтрифосфорной кислоте (АТФ). АТФ принимает участие в процессах фотосинтеза, дыхания, в биосинтезе белков, жиров, крахмала, сахарозы, аминокислот и многих других соединений.

Таким образом, процессы фотосинтеза, связанные с образованием первичных органических веществ и запасной энергией, процессы дыхания и синтез сложных азотсодержащих органических веществ, играющих важнейшую роль в жизнедеятельности растений, а также образование запасных органических веществ вторичного происхождения протекают при непосредственном участии фосфорной кислоты.

Значительная часть фосфорной кислоты содержится в растениях в минеральной форме. Обычно эти фосфаты находятся в различных частях растений: в корнях, стеблях и листьях их больше, в семенах - меньше. Минеральный фосфор растений является запасным
веществом, резервом для синтеза фосфорсодержащих органических соединений; он повышает буферность клеточного сока, поддерживает тургор клетки и другие жизненно важные процессы в растениях.

Фосфор ослабляет вредное действие подвижных форм алюминия на кислых дерново-подзолистых почвах. Подвижные формы алюминия отрицательно влияют на обмен веществ у растений, тормозят процессы превращения моносахаридов в сахарозу и более сложные органические соединения, задерживают процесс образования белков, в связи с чем накопление небелковых форм азота в растениях заметно возрастает. Подвижные формы алюминия подавляют образование фосфатидов и нуклеопротеидов. Фосфор же связывает алюминий почвы, фиксирует его в корневой системе, благодаря чему улучшается углеводный, азотистый и фосфорный обмен в растениях.

Фосфор находится в тесном взаимодействии с азотом и белковыми соединениями, является их спутником. Распределение фосфора в различных органах растения аналогично распределению азота. В репродуктивных органах (семенах) фосфора содержится в 3-6 раз больше, чем в вегетативных (табл. 4.9).

Визуальные признаки фосфорного голодания для некоторых культур представлены на цветных иллюстрациях 3, 4, 30.

Естественных источников пополнения запасов фосфора в природе нет, поэтому нарушение баланса его в биологическом круговороте веществ может наступить раньше, чем азота.

В разных почвах содержится неодинаковое количество фосфора - от 0,01% Р2О5 в бедных песчаных до 0,20% в мощных высоко-гумусных почвах. Верхние слои почвы обычно содержат значительно больше Р2О5, что связано с накоплением фосфора в зоне отмирания главной массы корней. Вниз по профилю почвы содержание Р2О5

уменьшается. Больше фосфора в почве находится в минеральной форме (табл. 4.10). Почвы северной лесостепи европейской части России беднее фосфором, чем почвы южной зоны. К северу и югу от мощных черноземов относительное количество органических фосфатов в почве уменьшается, а минеральных - возрастает.
Органические фосфаты находятся главным образом в составе гумуса. Содержание Р2О5 в гумусовом веществе лесостепных почв составляет 1,78-2,46%, мощных черноземов - 0,81-1,25, обыкновенных черноземов - 0,90-1,27, выщелоченных черноземов - 1,10-1,43, а темно-каштановых почв - 0,97-1,30%. Часть органического фосфора находится в составе фитина, нуклеиновых кислот, фосфатидов, сахарофосфатов и других органических соединений почвы. Некоторая часть его находится в плазме микроорганизмов. После их отмирания этот фосфор становится доступным растениям. В гумусе масса сухого вещества микробов достигает 1%, в окультуренных длительным унавоживанием дерново-подзолистых почвах вес органических веществ микробов составляет 2-3% от массы гумуса. При разложении гумуса и других органических фосфорсодержащих веществ воднорастворимый фосфор обычно не накапливается в почве, а связывается в результате химического, физико-химического и биологического поглощения.

Минеральные фосфаты находятся в почве в виде солей кальция, железа и алюминия, т.е. состав их в значительной мере определяется составом катионов в поглощенном комплексе почвы. Например, фосфаты кальция преобладают в нейтральных и щелочных почвах, а фосфаты полуторных окислов алюминия и железа распространены в кислых почвах. Кальциевые соли фосфорной кислоты характеризуются более высокой растворимостью, а соли алюминия и железа растворимы хуже и поэтому менее доступны растениям. При длительном применении удобрений с изменением агрохимических свойств почв может несколько изменяться и состав фосфорных соединений.

Источники питания растений фосфорной кислотой различны. Органические фосфаты становятся доступными для растений лишь после минерализации органических веществ. Если в органическом веществе содержится 0,2-0,3% Р2О5, то при его разложении вообще не происходит накопления доступных растениям фосфорных соединений. В этом случае фосфор полностью связывается почвенной микрофлорой.

В мировой науке и практике все больше внимания уделяется роли почвенной биоты в улучшении питания растений фосфором. Почвенная микрофлора, образующая симбиотические ассоциации с высшими растениями, значительно улучшает рост растений в тех случаях, когда в почве недостаточно доступного фосфора. Благодаря ее деятельности существенно улучшается фосфорное питание растений.

Из естественных и рекультивированных почв выделены культуры эндомикоризных грибов. Установлено их положительное влияние на урожай овса, ячменя, сои, вики и поступление в растения фосфора при их выращивании на почве с низким содержанием подвижного фосфора в рекультивированном грунте. На Ротамстед-ской опытной станции (Великобритания) обобщены результаты полевых опытов по инокуляции пшеницы, ячменя, клевера белого, лука специально подобранными микоризными грибами. В результате урожай зерна в среднем по яровым культурам (пшеница, ячмень) возрос на 23% при урожае на контроле (без микоризации и внесения фосфора) 27,5 ц/га, а по озимым - на 11% при урожае на контроле

51 ц/га. Это позволило сэкономить на каждом гектаре почти 60 кг Р2О5.

Микоризация семян клевера белого, высеваемого в злаковый травостой, способствовала повышению урожая сена на 17% (при урожае на контроле 17,8 ц/га) и была эквивалентна действию Р% в виде суперфосфата. При этом в составе травостоя возрастала доля клевера. Влияние инокуляции лука особенно ярко проявилось на поливных землях: урожайность увеличилась на 97% по отношению к контролю. В неполивных условиях она равнялась 30%.

Интересны результаты инокуляции клевера и других бобовых микоризой и клубеньковыми бактериями: первая улучшает фосфорное питание растений, вторые благодаря азотфиксирующей способности - азотное питание бобовых растений. Например, в Уэльсе при известковании и подкормке фосфором клевер, инокулированный микоризой, дал втрое больший урожай сухого вещества, вдвое увеличилось образование побегов и в 5 раз увеличилось образование клубеньков ризобиума.

Некоторые растения способны усваивать фосфорную кислоту из несложных фосфорорганических соединений. Корни ряда растений выделяют фермент фосфатазу, который и отщепляет фосфорную кислоту от органических соединений. Внеклеточной фосфатазной активностью обладают горох, кукуруза, бобы и другие культуры. Отмечается даже повышение фосфатазной активности у растений при их фосфорном голодании, что, видимо, связано с приспособительной способностью растительных организмов. Говорить же об усвоении растениями фосфорорганических соединений без предварительного отщепления минеральных фосфатов ферментами микроорганизмов и корневых систем пока нет основания из-за отсутствия экспериментов, выполненных в строго контролируемых условиях. Главным же источником фосфорного питания растений являются минеральные соединения фосфора в почве. Для питания растений пригодны соли ортофосфорной (Н3РО4) и метафосфорной (НРОз) кислот. Наиболее доступны соли одновалентных катионов фосфорной кислоты. Растворимы в воде и легко усваиваются растениями соли двухвалентных катионов при замещении одного водорода ортофосфорной кислоты (однозамещенные фосфаты кальция). Соли метафосфорной кислоты и в этом случае плохо растворимы в воде.

Двузамещенные соли двухвалентных катионов (СаНРО4) ортофосфорной кислоты нерастворимы в воде, но растворяются в слабых кислотах. Это дает основание считать их вполне усвояемыми растениями. Они через корни выделяют слабые кислоты, что вызывает местное подкисление почвы в прикорневой зоне.

Трехзамещенные фосфаты двухвалентными катионами слабо растворимы в воде, поэтому большинством растений в заметном количестве не усваиваются; Свежеосажденные трехзамещенные фосфаты кальция в аморфном состоянии несколько лучше усваиваются растениями. А по мере их «старения» и перехода в кристаллическое состояние усвояемость растениями резко снижается. Природные трехзамещенные фосфаты кальция могут непосредственно использоваться на удобрения лишь в кислых почвах. В этом случае при взаимодействии фосфорита с поглощающим комплексом почвы трех-замещенная кальциевая соль фосфорной кислоты переходит в дву-замещенную и даже однозамещенную, т.е. в формы фосфатов, вполне доступные для питания растений. Повышения растворимости, а следовательно, и усвояемости трехкальциевых фосфатов растениями
можно добиться при совместном их внесении с физиологически кислыми азотными удобрениями. Существует, однако, группа растений, хорошо поглощающих фосфор из трехзамещенных труднорастворимых фосфорнокислых солей. К ним относятся люпин, гречиха, горчица, несколько в меньшей мере обладают способностью усваивать фосфор из фосфоритов эспарцет, донник, горох и конопля. Это объясняется следующими причинами.

1. Корневые выделения у этих растений отличаются повышенной кислотностью (например, pH раствора, окружающего корневые волоски люпина, составляет 4-5, клевера - 7-8).

2. Растения этой группы обладают повышенной способностью усваивать кальций. В связи с этим соотношение СаО и Р205 в фазе цветения у растений, хорошо усваивающих фосфор из труднорастворимых фосфатов, составляет больше 1,3, а у злаков, например, меньше 1,3.

Кальций, интенсивно поглощенный растениями, переводит фосфор в раствор и делает его доступным для растений. Однако установленную зависимость между соотношением СаО и Р205 в растениях и усвояющей способностью нельзя считать абсолютной, так как некоторые культуры не подходят под это правило. Например, у льна и могара соотношение окислов кальция и фосфора больше, чем 1,3, но они не способны разлагать фосфорит и усваивать фосфор.

3. Растворение трехзамещенных нерастворимых фосфорных солей физиологически кислыми минеральными удобрениями и потенциальной кислотностью почвы.

Особенно плохо доступен растениям фосфор основных солей трехвалентных катионов ортофосфорной кислоты (AIPO4, FeP04). Растение может усваивать в небольшом количестве и фосфор органических соединений. Это объясняется тем, что растения через корни выделяют фермент фосфатазу, которая обладает заметной активностью при гидролизе органических фосфорсодержащих соединений.

Без предварительного отщепления минеральных фосфатов ферментами микроорганизмов или корневых систем фосфор из высокомолекулярных органических соединений растениями практически не усваивается. Люцерна, клевер и другие бобовые, в меньшей степени рожь, кукуруза могут растворять труднодоступные соединения фосфора благодаря относительно мощной корневой системе (табл. 4.11). Объяснить усвоение растениями фосфора из труднорастворимых трехзамещенных фосфатов кислой реакцией корневых выделений не удалось, так как pH в прикорневой части в пределах 4-5 отмечен лишь у люпина, а у остальных культур она была близка к нейтральной.
Источником фосфорного питания растений могут быть также фосфат-ионы, обменно-поглощенные почвами. Некоторые глинистые минералы минеральной части почвы могут в значительном количестве поглощать ионы фосфорной кислоты, которые способны к обмену на другие анионы. Например, анионы бикарбоната и органических кислот хорошо вытесняют в раствор адсорбированные твердой фазой почвы фосфатные анионы. Способность растений питаться фосфат-ионами, адсорбированными почвой, подтверждается также и тем, что в почве в результате их жизнедеятельности образуется достаточное количество анионов угольной кислоты (НСОз). Например, при дыхании корни растений постоянно выделяют углекислый газ (С02), который, растворяясь в воде, образует угольную кислоту, диссоциирующую на Н+ и НС03. Анион же угольной кислоты постоянно обменивается с коллоидами почвы на Н2РО4.

Существуют и другие источники анионов в почве, способных десорбировать обменно-связанные фосфаты почвы в раствор, предопределяя высокую их доступность растениям. Это гуминовые и другие кислоты, входящие в состав гумусовых веществ, органические и минеральные кислоты, образующиеся при разложении растительных и животных остатков, а также органических удобрений. Нельзя не учитывать и возможность экзоосмоса органических кислот корневой системы растений. Следовательно, при определении возможных источников питания фосфором растений следует учитывать и наличие обменно-адсорбированных фосфат-ионов в почве.

Поступивший в корни растений фосфор очень быстро включается в синтез сложных органических соединений. В опытах с тыквой фосфор из меченого двузамещенного фосфата натрия уже в первые 30 с после поглощения корнями превращался на 30% в органические вещества, а через 3-5 мин - на 70%. При этом фосфаты появились главным образом в составе нуклеотидов - сложных компонентов фосфорных кислот. Для этого необходим постоянный приток ассимилятов из листьев. Поэтому на поглощение фосфатов корнями растений благоприятное влияние оказывают свет, оптимальная температура, влажность воздуха и почвы, достаточная аэрация почвы и другие факторы, определяющие нормальную жизнедеятельность растений.

При подкормке растений раствором солей фосфора через листья передвижение его в другие органы идет очень медленно и в небольших количествах. Поэтому нормальное фосфорное питание растений обеспечивается только через корни.

В природе не существует естественных источников пополнения запасов фосфора в почве, как, например, азота, поэтому единственно возможный путь повышения содержания в почве Р2О5 - применение фосфорных удобрений. Вследствие слабой подвижности фосфора в почве практически отсутствуют естественные пути потерь фосфорных соединений. Более чем столетние наблюдения Ротамстедской опытной станции в Англии, исследования в нашей стране и за рубежом показывают, что соли фосфорной кислоты из тяжелых почв практически не вымываются, из легких почв их теряется очень немного. Почти все почвы России фосфором обеспечены хуже, чем азотом и калием. Валовые запасы фосфатов в почвах являются одним из показателей, характеризующих уровень их плодородия. Валовое содержание фосфора в почве в значительной мере определяется гранулометрическим составом почв и содержанием в них гумуса: чем легче почвы по гранулометрическому составу и чем меньше содержание гумуса, тем меньше в них запасов фосфорной кислоты.

В настоящее время большой интерес представляет изыскание способов определения содержания подвижных фосфатов в почве, которые наиболее объективно отражали бы обеспеченность растений на данной почве усвояемыми фосфатами, а следовательно, и потребность культур в фосфорных удобрениях. При разработке разных методов определения содержания фосфатов, доступных растениям, применялись различные растворители: вода, слабые кислоты (1-2%-я лимонная, 2-3%-я уксусная, 0,2 н. НС1, 0,002 н. H2SO4). Для извлечения из почвы усвояемых фосфатов применяется также дистиллированная вода, насыщенная углекислотой. Все методы рассчитаны на имитацию воздействия на почву корневых систем растений, которые выделяют угольную и некоторые органические кислоты, создавая местную слабокислую реакцию.

Однако сравнение действия слабокислых растворов и корневых систем на растворимость фосфатов почвы носит лишь условный характер, так как при взаимодействии раствора с почвой создается равновесие. Растения же смещают это равновесие вследствие поглощения корневой системой фосфорной кислоты из раствора, тем самым стимулируется появление в растворе новых количеств фосфатов. Что же касается фосфорнокислых солей, растворимых в воде, то их бывает настолько мало, что нельзя судить о степени обеспеченности растений фосфором. Слабокислые растворы нельзя применять на карбонатных почвах. В этих условиях используют щелочные соли (10%-е растворы карбоната калия или аммония). Это объясняется тем, что растворы слабых кислот расходуются на разложение карбонатов почвы, а более концентрированные кислоты могут переводить в раствор фосфаты, недоступные растениям.

Для определения усвояемых фосфатов в почве применяют также методы микробиологические, ионитный, изотопный и метод проростков. Однако они не получили широкого распространения по разным причинам. Методы проростков и микробиологические уступают химическим главным образом из-за длительности их проведения. Использование ионитов - синтетических полимерных адсорбентов -дает вполне удовлетворительную корреляцию при сравнении количества фосфора, усвоенного растениями из почвы в вегетационном опыте и извлеченного анионитом. Ионитный метод позволяет создать условия, наиболее приближенные к тем, которые складываются при взаимодействии почвы и корней растений. Из-за дороговизны этот метод применяется лишь в научно-исследовательских учреждениях. Изотопный метод позволяет также вычислить содержание в почве усвояемых фосфатов, процент их усвоения из почвы и т.д. Однако данные этих методов нуждаются в уточнении путем закладки полевых опытов. Метод определения усвояемых фосфатов в почве считается хорошим, когда наблюдается тесная корреляция данных анализа с отзывчивостью растений на фосфорные удобрения.

Определяемое разными методами содержание подвижной Р205 в почве дает представление о ее фосфатной емкости, но не о фосфатном уровне исследуемой почвы, который может понижаться при усвоении Р205 растениями и повышаться при паровании почвы или внесении фосфорных удобрений. Методы определения фосфатного уровня почвы, предложенные Н.П. Карпинским и В.Б. Замятиной, основаны на обработке навесок почвы слабым 0,3 н. K2SO4 (при соотношении почва: раствор = 1: 10 и взаимодействии в течение часа). Фосфатный уровень после уборки урожая был ниже, чем до посева культур, в результате выноса фосфора растениями. Периодические лабораторные анализы с помощью этого метода позволяли определить сроки изменений фосфатного уровня под влиянием внесенных удобрений, парования почвы и других агротехнических приемов.
За последние годы значительно повысился интерес к изучению фосфатного режима почв, что требует и совершенствования методов его исследования для более объективной оценки плодородия почв по содержанию в них фосфора и отзывчивости сельскохозяйственных культур на фосфорные удобрения.

Около 95% фосфатов в земной коре представлено фторапатитом (Ca5F(P04)3), а 5% - фосфатами полуторных окислов и другими соединениями. В результате жизнедеятельности высших растений и микроорганизмов в почвах накапливаются также органические фосфорные соединения. Среднее содержание фосфорной кислоты в почве от 0,05 до 0,20% Р2О5 от массы почвы (зависит от наличия гумуса, гранулометрического состава, внесения удобрений). Верхний слой почвы содержит больше Р2О5, чем нижележащие слои. В гумусе ее 1-2%.

Основная доля фосфорной кислоты почвы находится в форме соединений, малодоступных для растений. Поэтому валовое содержание фосфорной кислоты в почве не может быть показателем обеспеченности растений фосфором, но оно характеризует потенциальное ее плодородие. Содержание Р205 в почвенном растворе достигает 1-2 мг/л. Фосфор из раствора поглощается растениями, микроорганизмами, а также почвой вследствие вторичного образования малорастворимых соединений Р205 с кальцием, магнием и полуторными окислами. Чрезмерно высокая концентрация Р205 в растворах почвы также нежелательна. Так, в водной культуре проростки овса выделяли наружу ранее поступивший фосфор, если содержание его в растворе почвы превышало 5 мг/л.

На черноземе, т.е. на почвах, насыщенных основаниями, образуются соли СаНР04, Саз(Р04)2, MgHP04. На почвах кислых, не насыщенных основаниями, фосфорная кислота связана в форме AIPO4, FeP04. Углекислота и органические соединения почвы могут снова переводить эти соединения в доступную для растений форму.

Фосфаты полуторных окислов устойчивы не только в нейтральной, но и в кислой среде, обладают малой растворимостью и доступностью для растений.

Фосфор входит в состав органического вещества почвы, а также в пожнивные остатки и навоз. При их разложении в почве высвобождающийся фосфор может использоваться растениями.

При минерализации в почве органических веществ, бедных фосфатами, содержание в ней легкорастворимых солей не только не повышается, но даже уменьшается.
Процессы трансформации и миграции фосфора в системе почва-растение, его круговорот в управляемых человеком и природных экосистемах довольно наглядно представлены на рис. 4.6 (Орлов и др. 2002). Регулирование цикла фосфора в биологическом круговороте путем применения фосфорсодержащих удобрений весьма важно, так как естественные источники пополнения его запасов в экосистемах отсутствуют.

Рис. 4.6. Цикл фосфора в экосистеме

Фосфорные удобрения — относятся к минеральным органическим удобрениям.

Для изготовления употребляют руды фосфора и продукты их переработки.

Главным сырьем являются апатиты и фосфориты.

Фосфорные удобрения, как и другие имеют важное значение для подкормки растений.

Значение фосфора для растений

Фосфор необходим для питания растений. Он принимает активное участие в большинстве обменных процессов — энергетических, метаболических, размножении и делении. Без него невозможно течение процессов дыхания, фотосинтеза, брожения. Помогает регулировать проницаемость клеточных оболочек.

Особенно фосфор нужен для плодов и цветов , например таких декоративно цветущих, как . Он ускоряет их образование, повышает декоративные качества растений.

Корневой системе обеспечивает хорошее ветвление и правильный рост, в результате чего растение приобретает в достаточном количестве все необходимые вещества. Увеличивает холодостойкость и придает устойчивость к полеганию.

Недостаток фосфора

Основное количество элемента содержится в молодых и репродуктивных частях растений, в них проходит активный синтез органических веществ. Из состарившихся листьев он переходит к активным областям развития.

Именно поэтому, первые признаки дефицита появляются на более зрелых листовых пластинах. Они покрываются типичными пятнами красного, голубоватого или фиолетового окраса. При сильном недостатке фосфора листья чернеют и закручиваются. Происходит угнетение роста и замедление созревания цветов.

Молодые растения больше всего страдают от нехватки этого элемента и приобретают такие признаки, которые необратимы.

Второй важный период для обязательной подкормки фосфором — это время образования репродуктивных органов растения.

Излишек фосфора

Приводит к форсированному развитию растения, пожелтению как отдельных частей, так и всего цветка. Он теряет листья, приобретает очаги некроза (омертвения).

Кроме того, переизбыток фосфора может провоцировать недостаток других необходимых элементов — магния, меди, кобальта, железа, цинка.

То есть, излишек также опасен для растения, как и его дефицит. Поэтому следует соблюдать сроки внесения удобрения и правильную дозировку, если хотите получить здоровое и красивое растение.

Растворимость удобрений

Все фосфорные удобрения подразделяются на такие группы :

  • растворимые в воде;
  • растворимые в лимонной кислоте;
  • нерастворимые в других жидкостях.

Чаще всего используют водорастворимые удобрения из-за их легкодоступности для растений. Нерастворимые удобрения оседают в земле и создают кислую среду, которая полезна далеко не всем растениям. Удобрения, которые растворяются в кислоте, также относятся к легкодоступным для цветов.

Виды фосфорных удобрений (с фото)

По классификации фосфорные удобрения можно отнести к группе минеральных, которые могут быть простыми и сложными, что зависит от наличия других элементов в составе.

Простые удобрения

Фосфоритная мука.
Порошок бурого или серого цвета, продукт тонкого помола фосфоритов. Не растворим в воде, только в кислотах. Имеет нейтральную реакцию, применяется на кислых почвах. Фосфорной кислоты содержит 19 — 25%.

Смешивать можно со всеми удобрениями, за исключением извести. На объем в 10 сантиметров приходится 17г, на спичечный коробок — 34г, на стакан — 340г.

Суперфосфат простой.
Порошок или гранулы белого или светло-серого цвета. В составе имеет 15-20% фосфорной кислоты. Относится к водорастворимым удобрениям, не слеживается, не гигроскопичен.

Нельзя смешивать с томасшлаком, известью, цианамидом кальция. Перед применением нужно перемешать с аммиачной селитрой. В земле вскоре переходит в труднодоступный вид для растения.

Суперфосфат двойной.
Порошок и гранулы с повышенным содержанием фосфора — до 50% фосфорной кислоты. В воде хорошо растворим, не гигроскопичен. Для растворения лучше использовать теплую воду.

Томасшлак.
Порошок темно-серого цвета, не растворим в воде, только в лимонной кислоте. В состав входит 9 — 20% фосфорной кислоты. Его не смешивают с аммиачными и калийными солями. Побочный продукт мартеновского производства переработки чугунов на сталь.

Сложные удобрения

Имеют в своем составе комплекс элементов.

Гранулы, состоящие из фосфора, калия и азота.

Аммофос.
Относится к группе азотно-фосфорних удобрений. Смесь из 11% азота и 50% фосфора.


Гранулы, состоящие из 15% фосфора, 15% калия и 18% азота.

Диаммонитрофоска.
Концентрат, состоящий из калия, азота, фосфора по 18% каждого.

В настоящее время популярны комплексные удобрения , которые выпускаются в форме таблеток, жидкостей, спреев, палочек, гранул и шариков. Все они удобны и просты в использовании, содержат необходимое количество микроэлементов для растений.

Для уточнения дозировки достаточно внимательно прочитать инструкцию , прилагаемую к удобрению.

Правила внесения удобрений

Существуют правила использования, общие для всех видов подкормки.

    • Лучше добавить меньше удобрения, чем передозировать.
    • В конце периода отдыха плавно увеличивать дозу.
    • В конце активного периода — также плавно снижать ее.
    • Если вносить удобрение в сухую землю — есть риск обжечь корневые волоски, прежде нужно проводить полив растения.
    • Полезнее часто давать удобрения в маленькой концентрации, чем редко, но в большой.
    • Удобрения не следует вносить в период отдыха растения.
    • Не подкармливать заболевший цветок.

Если нет возможности подкармливать растения в положенное время, можно использовать пролонгированные подкормки (то есть длительного срока действия).

Фосфор играет исключительно важную роль в жизненных явлениях. Он содержится в растениях в минеральных и орга­нических веществах.
В минеральной форме фосфор находится в виде солей ортофосфорной кислоты с кальцием, магнием, калием, аммо­нием и другими катионами. Хотя они содержатся в неболь­ших количествах, но участвуют в образовании многих фос­форсодержащих органических соединений и жизненно необхо­димы для растений. К таким органическим соединениям от­носятся нуклеиновые кислоты, нуклеопротеиды, фосфопротеиды, фосфатиды, фитин, сахарофосфаты, макроэргические и другие соединения.

Нуклеиновые кислоты — рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК) представляют собой сложные высокомолекулярные вещества, участвующие в самых важных про­цессах жизнедеятельности: РНК — в синтезе специфических для данного организма белков, ДНК — в передаче наследственных свойств и переносе биологической информации.
Нуклеиновые кислоты с белками образуют сложные белки нуклеопротеиды, содержатся в эмбриональных тканях и кле­точном ядре. Важной группой являются фосфопротеиды — соединения белковых веществ с фосфорной кислотой. Сюда относятся белки-ферменты — катализаторы многих биохимиче­ских реакций.

Фосфатиды (или фосфолипиды) — сложные эфиры глицери­на, жирных кислот и фосфорной кислоты, которая, в свою очередь, связана с другими азотсодержащими органическими соединениями, например холином. Они способствуют прони­цаемости в клетку различных веществ; более богаты фосфатидами семена бобовых и масличных культур.
Фитин — производное шестиатомного спирта инозита и яв­ляется кальциево-магниевой солью инозитфосфорной кислоты. Содержится во всех частях и тканях растений, но главным образом в семенах, в виде запасного вещества (при про­растании семян освобождается фосфорная кислота, которая используется молодым растением).

Сахарофосфаты — фосфорные эфиры сахаров вследствие своей мобильности играют большую роль в процессах фо­тосинтеза, дыхания и при взаимных превращениях углеводов (сахарозы, крахмала). Не случайно, что фосфор содержится в небольших количествах в крахмале.
Исключительно большую роль играют макроэргические соединения, содержащие фосфор, например аденозинтрифосфорная кислота (АТФ). Это своеобразный аккумулятор энергии и в дальнейшем ее поставщик (датчик) для многих синте­тических процессов. При распаде АТФ разрывается макро-эргическая связь и высвобождается энергия, во много раз превосходящая энергию гидролиза обычных связей.

Фосфор ускоряет созревание растений. Под его влиянием в листьях ускоряются процессы распада белков и переход продуктов распада в репродуктивные органы, в зерно. Фосфор улучшает водный режим растений, способствуя более эко­номному расходованию воды. Не случайно суперфосфат обес­печивает прибавки урожая не только в условиях хорошей обеспеченности почвы влагой, но и при относительном ее не­достатке в полузасушливые годы. Кроме того, хорошее фосфорное питание способствует лучшей перезимовке культур. Фосфор способствует развитию корневой системы, более быстрому росту в первые периоды жизни растения (ускоряется распад веществ семени и передвижение продуктов распада в растущие части). Поэтому припосевное внесение гранулированного суперфосфата в небольших дозах обеспечи­вает значительные прибавки урожайности самых разнообраз­ных культур.

Недостаток фосфорного питания сказывается на внешнем виде растений, например листья кукурузы приобретают фиоле­товый оттенок, сахарной свеклы — интенсивно пурпурный, у кар­тофеля края листьев закручиваются вверх, окраска становится темной, у томатов на нижней стороне листьев появляется багровая окраска.
Фосфорные удобрения существенно изменяют структуру урожая в желательном направлении: повышается доля наиболее ценной, репродуктивной части. У зерновых повышается процент зерна в общем урожае, у корнеплодов - выход корней и т. д. Количество фосфора в растениях составляет примерно около одной трети количества содержащегося в них азота.

В различные периоды жизни растения потребляют неоди­наковое количество фосфора. В начальный период после появ­ления всходов растениям фосфор крайне необходим, хотя и в небольшом количестве. Недостаток фос­фора в начале роста растения нельзя компенсировать внесе­нием его в последующие периоды. Наибольшее количество фосфора зерновые потребляют в фазах трубкования и колоше­ния, лен — в период цветения, корнеплоды, картофель, капуста используют фосфор более или менее равномерно на протяжении вегетационного периода.
В фазе образования и особенно созревания репродуктивных органов у всех культур отмечается энергичное передвижение к ним фосфатов из вегетативных частей растения.

. Он входит в состав как минеральных (5 – 15%), так и органических (85 – 90%) соединений, находящихся в растениях. Наиболее биологически важные фосфорсодержащие соединения – это нуклеиновые кислоты (ДНК и РНК), макроэргические соединения (АТФ), нуклеотиды, нуклеопротеиды, фосфолипиды, ферменты, витамины, фитин и пр. Фосфор участвует в большинстве обменных процессов растений. Энергия солнечного света и полученная в результате расщепления ранее созданных органических соединений аккумулируется в растениях в виде энергии фосфатных связей (в АТФ), а затем используется культурами для поглощения питательных веществ, роста, развития, синтеза новых органических веществ и их транспортирования.

Хотя фосфор не входит в состав жиров, углеводов да и многих простейших белковых молекул растительных клеток, образование этих органических соединений без его участия становится невозможным. В процессе фотосинтеза происходит поглощение растением углекислого газа и воды, которые являются базовыми элементами для синтеза сложных органических молекул. Именно с участием фосфатов, находящихся в хлоропластах, осуществляется преобразование углекислого газа в анионы угольной кислоты – основополагающий "строительный элемент" всех органических соединений. Фосфор стимулирует формирование корневой системы: корни активнее ветвятся и глубже проникают в почву. Это помогает растениям лучше обеспечивать себя питанием.

Наибольшую потребность в фосфоре растения испытывают на самых ранних этапах своего развития, во время формирования корневой системы, а также в фазе цветения и образования плодов. Критической в отношении фосфорного питания для всех культур является фаза всходов, когда относительно слабая корневая система способна поглощать фосфорные соединения лишь на ограниченной территории. Недостаток элемента в этот период вызывает в дальнейшем патологические изменения в ростовых и репродуктивных процессах растений.

М аксимальная потребность в фосфоре у различных культур наблюдается в разный период, но происходит это, главным образом, во время цветения, формирования плодов и их созревания. Недостаточное количество доступного фосфора негативно отражается на развитии культур и формировании урожая. Из-за снижения продуктивности растений, значительного ухудшения органолептических качеств плодов сельскохозяйственные производители терпят большие убытки. Поэтому получить хорошие урожаи с высокими качественными показателями возможно лишь при обеспечении растений полноценным фосфорным питанием.


Содержание фосфора в пахотном слое непостоянно и составляет от 0,05 до 0,25%, причем около 75 – 90% его общего количества представлены неорганическими труднорастворимыми соединениями (фосфаты железа, кальция, алюминия). Низкая подвижность фосфатов затрудняет их миграцию в почвенных горизонтах, вымывание, выветривание, поэтому они остаются в плодородных шарах грунта, но усваиваться культурами такие формы фосфора не могут. Доступным для растений остается только фосфор, который находится в почвенном растворе. При общем содержании элемента 1 т/1 га почвы его подвижные соединения составляют не более 1 кг/1 га. Поэтому из общих запасов фосфора, находящегося в корнеобитаемом слое, культуры способны усвоить лишь доступные для них 3 – 5% от общего количества.

Усваиваемость растениями фосфора, находящегося в почвенном растворе, полностью зависит от кислотной реакции грунта. Как в кислых, так и в щелочных почвах фосфор образует нерастворимые соединения: с кальцием (при рН > 7,5), с алюминием (рН < 4,8 – 5,0), железом (рН < 3,8 – 4,5). Поэтому наиболее эффективны фосфорные соединения в грунтах с нейтральной реакцией кислотно-щелочной среды. Для повышения доступности элемента нередко прибегают к раскислению почв известкованием.

Ежегодно во всём мире вместе с урожаями из почв выносится более 10 миллионов тонн фосфорной кислоты. При этом ситуация осложняется тем, что в природе не существует естественных источников пополнения запасов фосфора в грунте. Основные фосфорсодержащие минералы – апатиты и фосфориты, объемы которых в мире ограничены, служат сырьем для получения необходимых фосфорных соединений. Чтобы решить проблему с обеспечением растений достаточным количеством фосфора, аграрии используют фосфорные удобрения . По степени растворимости в воде, а следовательно и доступности, их классифицируют на три группы: легкорастворимые (суперфосфаты), слаборастворимые (преципитат) и труднорастворимые (фосфоритная, костная, рыбная мука). Удобрения, входящие в две последние группы, способны легко растворяться в слабокислой и кислой среде.

Показателем эффективности каждого удобрения является выраженное в процентном соотношении количество в нем действующего вещества (д. в.) , т. е. количество главного элемента (фосфора), который может усваиваться растениями. Для суперфосфата эта величина составляет 20%, в обогащенном суперфосфате содержится до 24% доступного фосфора, максимальное количество действующего вещества (40 – 50%) присутствует в двойном гранулированном суперфосфате. Количество доступного фосфора (д. в.) в фосфоритной муке может колебаться от 20% до 30%, в костной муке – от 15% до 33%. Для преципитата показатель действующего вещества – 38%. В аммофосе и диаммофосе содержание доступного фосфора достигает 45 – 52%, а в термофосфатах – от 20 % до 30%.




Пожалуй, самым распространенным минеральным фосфорным удобрением является суперфосфат . Легкоусваиваемый растениями оксид фосфора (P 2 O 5) составляет в нём до 20% (в более концентрированном двойном суперфосфате – более 45%). Также в суперфосфате содержатся кальций, цинк, сера, бор и другие полезные элементы. Удобрение выпускается в виде мелкодисперсного порошка и гранул. Подходит для всех видов культур. Вносится осенью, под вспашку или весной, во время предпосевных работ. Хорошо сочетается с другими удобрениями, потому может применяться в комплексе с ними. Требует тщательного перемешивания с грунтом. Наиболее эффективен в растворенном состоянии, на нейтральных почвах. Его систематическое применение не вызывает каких-либо изменений кислотно-щелочной реакции грунтов.



Аммофос и диаммофос (гидрофосфат аммония) представляют собой сложные азотнофосфорные минеральные удобрения, содержащие более 60% азота и фосфора. Входящие в их состав фосфаты в своём большинстве хорошо растворяются в воде. Препараты предназначены для применения в любой почвенно-климатической зоне. Фосфор в аммофосе более подвижен и лучше усваивается культурами по сравнению с содержащимся в суперфосфате. Применение аммофоса и диаммофоса на почвах с нейтральной и слабощелочной реакцией более предпочтительно, так как они создают растениям лучшие условия для фосфорного питания, чем суперфосфат.



Природными источниками фосфора органического происхождения служат костная и рыбная мука , которые представляют собой универсальные натуральные подкормки, применяемые практически для всех видов садовых, огородных и полевых культур. Эти удобрения абсолютно безвредны, поэтому вносить их можно в любой вегетационный период растений. Но осуществить оперативное устранение дефицита фосфора путем внесения костной или рыбной муки невозможно. Для них характерен длительный период действия, так как разложение их компонентов под воздействием почвенных микроорганизмов и переход подвижной формы фосфора в почвенный раствор происходит постепенно. Вместе с тем, достаточно однократного внесения муки, чтобы обеспечить растения необходимым количеством фосфора на период 5 – 8 месяцев.




Костная мука богата не только фосфором, но и другими ценными соединениями и элементами, в том числе азотом, кальцием и калием, железом, магнием, цинком и др. Особенность её применения заключается в способности снижать кислотность почвы, поэтому костную муку желательно применять на грунтах с кислой реакцией. Рыбная мука превосходит костную по количеству содержащегося в ней азота (до 10%), и она меньше выщелачивает почву, чем костная. Рекомендуется для внесения на известковых и суглинистых почвах. Хороший результат достигается при смешивании костной и рыбной муки. Использовать удобрение можно в течение всего сезона. Внесение костной и рыбной муки в почву одновременно с другими органическими удобрениями (навоз, перегной, коровяк, компост) во время осенней или весенней вспашки помогает повысить плодородность земель и обеспечить увеличение будущих урожаев.




представляет собой минеральное фосфорсодержащее удобрение, получаемое из апатитов и других осадочных пород. Отличается низкой стоимостью, экологической безопасностью и продолжительностью действия. Количество содержащегося в ней фосфора достигает 17 – 30%, но он представлен неорганическим трикальцийфосфатом (Ca 3 (PO 4 ) 2 ), который в кислой среде постепенно переходит в доступное для растений соединение дигидрофосфат (Ca(H 2 PO 4 ) 2 H 2 O). Именно поэтому применение фосфоритной муки наиболее целесообразно на кислых почвах (торфяники, подзолистые грунты), а также в комплексе с органическими (навоз, перегной, компост) или кислыми удобрениями (сульфат аммония, аммиачная селитра, хлористый аммоний). Вносится удобрение до посева, средняя норма расхода фосфоритной муки: 1,5 – 2 т/га.


Преципитат относится к труднорастворимым фосфорсодержащим удобрениям: очень слабо растворяется в воде, но отличается хорошей растворимостью в органических и минеральных кислотах. Это негигроскопичный порошкообразный препарат, концентрация фосфора в котором достигает 30%. Может использоваться на любых видах почв и, практически, для всех культур. По степени эффективности действия не уступает суперфосфату. Обладает побочным действием – снижает уровень кислотности при закислении почв.




Термофосфаты включают удобрения, получаемые в результате прокаливания природных минералов (апатитов и других фосфатов) с содой, карбонатами, силикатами и пр. Также к ним относятся некоторые отходы металлургической промышленности (томасшлак, бесфторный фосфат, мартеновский шлак). Содержание фосфора в термофосфатах может колебаться от 15% до 30%. Большая часть термофосфатов относится к слаборастворимым удобрениям, поэтому их следует вносить в почву заблаговременно, чтобы содержащийся в них фосфор успел раствориться в почвенном растворе.


Практика применения фосфорных удобрений показывает, что более благоприятные условия для питания культур, а следовательно для получения высоких урожаев создаются при регулярном дозированном пополнении запасов фосфора в почвах, чем в случае одноразового внесения значительного количества фосфорсодержащих препаратов.

Фосфорные удобрения относятся к категории минеральных удобрений. Их внесение необходимо для правильного роста и полноценного развития растений. Фосфорсодержащие комплексы могут быть представлены разными составами, оказывающими различное воздействие на культуры.

Значение фосфорных удобрений для развития растений

Фосфор относится к категории составляющих компонентов сложных белковых соединений , имеющих очень важное значение в жизнедеятельности различных садово-огородных растений, а также декоративных и кормовых культур. В результате воздействия таких белковых комплексов экономится расход влаги и повышается устойчивость растений к низкотемпературным режимам.

Применение обязательно предполагает правильное определение нормы внесения удобрений, так как дефицит или избыточное внесение фосфора вредны для растительности.

Кроме всего прочего основополагающие факторы, влияющие на определение необходимости вносить фосфор, следующие:

  • важное значение имеет глубина заделки активных компонентов. Особенностью фосфорной кислоты является способность перемещаться. Верхние почвенные слои очень часто быстро пересыхают, поэтому недостаточно глубокое внесение не позволяет корневой системе растений полноценно поглощать компоненты;
  • внесение азотно-фосфорных комплексов в почву позволяет очень существенно улучшить ее биологические характеристики и физические показатели, что благоприятно сказывается на ростовых процессах и формировании урожая выращиваемых культур;
  • фосфор активно участвует в бактериальных и коллоидно-химических процессах, поэтому способствует повышению уровня прочности структурных характеристик грунта. Почвы, отличающиеся достаточным количеством этого элемента, имеют хорошую структуру и характеризуются повышенной активностью всех биологических процессов.

Основной фосфорных удобрений являются апатитовые руды, содержащиеся в фосфорных ископаемых. На сегодняшний день используется пара способов производства фосфорсодержащих подкормок. В первом случае изготовленные комплексы полностью готовы к использованию.

Второй вариант отличается образованием промежуточной продукции в виде элементарного фосфора и фосфорной кислоты, которые применяются в производстве удобрений.

Фосфорные удобрения: особенности применения (видео)

Внешние признаки и причины недостатка фосфора

Дефицит тех или иных элементовхорошо заметен. Фосфорное голодание заметить сложнее, чем азотное, но вполне возможно самостоятельно определить по следующим, очень характерным внешним признакам:

  • при недостатке элемента окрашивание листьев огородных растений и листвы садовых культур имеет слишком темное зеленое или голубоватое окрашивание;
  • при незначительном недостатке листья становятся блеклыми и тусклыми;
  • выраженная нехватка элемента чаще всего сопровождается не только изменением интенсивности окрашивания листьев и черешков, но и появлением пурпурного или достаточно выраженного фиолетового оттенка;
  • при отмирании листовых тканей наблюдается появление темных, а иногда и черных многочисленных пятен;
  • вся засыхающая листва обладает темным, практически черным, нехарактерным для вида и сорта окрашиванием, а периоды цветения и вызревания урожая сильно затормаживаются;
  • первые признаки фосфорной недостаточности проявляются изначально на более старой или нижней листве.

Следует отметить, что недостаток фосфора может проявляться на любых типах почвы, но наиболее часто он наблюдается на слишком кислых грунтах, которые богаты повышенным содержанием подвижных форм алюминия и железа, а также на дерново-подзолистой земле и красноземах.

Природные способы восполнения недостатка фосфора у овощных и садовых культур

В условиях современного приусадебного садоводства и огородничества чаще всего применяется припосевной способ обогащения грунта фосфором. С этой цельюиспользуются уже готовые виды фосфорсодержащих удобрений, которые делают улучшение почвы не только быстрым, но и максимально эффективным. Вносимые близко к семенам в малой дозе элементы усиливают стартовый рост и ускоряют появление всходов, а также очень ощутимо повышают продуктивность. Рядковое внесение таких компонентов позволяет повысить устойчивость к основным неблагоприятным внешним факторам.

Целью основного внесения является устранение дефицита фосфора в процессе питания растений в вегетационный период . Нормы такого внесения варьируются в зависимости от показателей плодородия грунта и ботанических особенностей выращиваемых культур. Повышенная норма необходима плодовым и техническим культурам, средняя норма требуется кукурузе, картофелю, овощным и кормовым культурам.

Минимальное количество подходит для выращивания зерновых и зернобобовых культур. Повысить эффективность таких подкормок удаётся при использовании элементов каждые три-четыре года. Внекорневые подкормки обладают вспомогательным значением и хорошо восполняют недостаток элемента, который обнаружен при визуальном осмотре растений.

Следует отметить, что атмосферу нельзя рассматривать в качестве фосфорного резервуара, а основным природным источником являются горные породы и многовековые геологические отложения. Горные породы содержат минеральный вид фосфора , который из гидросферы в процессе гипергенеза, оседает на мелководье или составляет глубоководный ил. Поступающий в почву элемент – этоостатки растительного и животного происхождения, а также почвообразующая порода. Незначительная часть поступает вместе с атмосферными осадками и пылью, а также техногенным способом.

Нормы внесения удобрений (видео)

Виды и особенности применения фосфорных удобрений

  • растворимые составы в виде суперфосфата вносятся в грунт в весенний и осенний период, и отлично сочетаются с другими видами минеральных удобрений;
  • малорастворимыми составами в виде фосфоритной и костной муки, которые вносятся исключительно в осенний период;
  • нерастворимыми составами в виде преципитата и томасшлака, предназначенными исключительно для слишком кислых грунтов и применяемыми под перекопку или предпосадочную и предпосевную подготовку почвы. Томасшлак нельзя смешивать с любыми аммиачными удобрениями.

Широкое распространение в условиях приусадебного садоводства и огородничества получили также простой и двойной суперфосфат, который выпускается в виде удобных мелких гранул, применяемых при необходимости выполнить обогащение почвы или произвести внекорневую подкормку. Простой или двойной суперфосфаты рекомендуется использовать совместно с перегноем.

Также очень популярна у отечественных садоводов-огородников и цветоводов фосфоритная мука , применяемая отдельно от таких компонентов, как известь, кальций и древесная зола. Фосфоритная мука вносится в кислые почвы. В грунтах, имеющих нейтральную и щелочную реакцию, фосфорсодержащие удобрения очень плохо растворяются и практически не усваиваются.

Вид удобрения

Норма внесения

Простой суперфосфат на посадку

посадка плодовых деревьев - 800-1200г на растение

посадка картофеля - 6-8г на растение

Простой суперфосфат на подкормку

подкормка плодовых деревьев - 80-12г на кв. метр

подкорма овощных культур - 30-40г на кв. метр

Двойной суперфосфат на подкормку

подкормка молодых яблонь - 60-75г на растение

подкормка взрослых яблонь - 170-220г на растение

подкормка косточковых - 50-70г на растение

подкормка крыжовника и смородины - 35-50г на куст

подкормка малины - 20г на кв. метр.

Фосфоритная мука

80г на каждый квадратный метр

Аммоний фосфорнокислый

подкормка картофеля - 2г на лунку

подкормка свеклы - 5г на погонный метр

Гидрофосфат аммония

под перекопку гряд - 20-30г на кв. метр

подкормка деревьев - 15-25г

посадке картофеля - чайная ложка в лунку

подкормка земляники - 5-6г на погонный метр

перекопка тепличных гряд - 30-40г на кв. метр

Монокалийфосфат

10-15г на каждый квадратный метр

Трехкальциевый фосфат

посадка овощных культур - 2-3 ст. ложки в лунку

подкормка плодовых культур - 200г на кв. метр

посадка плодовых культур - 50-70г на яму

посадка ягодников - 70-110г на яму

Интенсивность агротехники и длительное выращивание садово-огородных или декоративных растений на одном месте способствуют обеднению почвы. Своевременное внесение правильно подобранных минеральных фосфорсодержащих удобрений позволяет получать высокий урожай вне зависимости от типа грунта.

Виды удобрений (видео)