ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Экструдер для самостоятельного изготовления филамента. Экструдер для самостоятельного изготовления филамента Изготовление проволоки для 3д принтера

Экструдер является одним из самых важных узлов 3D принтера. От его работы зависит не только качество печатаемой детали, но и успех процесса 3D печати в целом. Ведь известны случаи, когда процесс печати на 3D принтера аварийно прерывается именно из-за неполадок в механизме экструдера 3D принтера, заставляя выбрасывать в мусорную корзину уйму дорогущего пластика.

Именно поэтому создавая экструдер для 3D принтера своими руками, нужно подойти максимально ответственно к этому процессу. И не смотря на то, что экструдер 3D принтера представляет собой довольно примитивную конструкцию, малейший недочет в ней может привести к описанным выше неприятным последствиям.

Я все откладывал и откладывал изготовление экструдера, но вот мой 3D принтер уже почти готов, а экструдера все нет! Откладывать больше нельзя, поэтому начинаем делать экструдер 3D принтера своими руками.

Основная задача экструдера 3D принтера — подача прутка в разогретое сопло (HotEnd). Количество подаваемого пластика должно очень точно совпадать с рассчитанным в слайсере (специальной программе для нарезки печатаемой детали на слои). Если пластика будет подаваться больше, чем надо, деталь получится неровной, волнистой. Ее может вовсе сорвать со стола, если сопло в процессе печати ударится об излишки пластика, которого вообще не должно там быть. Если пластика будет подаваться меньше, чем надо, то слои могут вообще не склеиться между собой, и у печатаемой детали будет одна дорога — в мусорную корзину. Если, конечно, у вас нет собственного . С таким экструдером испорченную деталь можно размолоть на гранулы и надавить из нее пруток повторно.

Еще экструдер может случайно перегрызть пруток. Его может заклинить в канале подачи. В общем, с ним может произойти все, что угодно! Всего и не предусмотришь. Поэтому иногда даже не хочется браться за изготовление экструдера для 3D принтера, но деваться некуда — делать придется!

Конструкция экструдера проста до безобразия. Шаговый двигатель с надетым на его вал зубчатым колесиком проталкивает пластиковый пруток в трубочку. Чтобы колесико не проскальзывало по прутку, его поджимают с другой стороны другой штучкой, обычно подпружиненной.

У меня в качестве зубчатого колесика под рукой оказалась обычная латунная шестеренка. Я пробовал использовать пластиковую шестеренку, но она никак не хотела цеплять пластиковый пруток, и постоянно проскальзывала. Отсюда я сделал вывод, что толкатель прутка должен быть обязательно металлическим, чтобы зубчики вгрызались в пластик.

Но тут есть и опасность. Если мы будем слишком сильно вгрызаться в пруток, то есть вероятность его перегрызть! Поэтому, конечно, хорошо бы иметь колесико с остренькими, но как можно более маленькими зубчиками

В интернете я встречал варианты изготовления экструдера для 3D принтера своими руками, где в шестеренке экструдера протачивали полукруглую канавку. Так по идее должна была увеличиться площадь соприкосновения, да и пруток будет зафиксирован и не съедет никуда с такого экструдера. Я тоже попробовал проточить свою шестеренку, но в результате получил проскальзывание прутка. Еще бы — ведь я в итоге просто сточил остренькие зубчики, и они перестали вгрызаться в пластиковый пруток.

Хорошо у меня был второй моторчик с такой же шестеренкой. На нем я заточил зубчики поострее при помощи надфиля. Но для более острого колесика пришлось ослабить поджим прутка пружинкой, чтобы его зубчики не перекусили пополам.

Шаговый двигатель для экструдера 3D принтера я взял из старого принтера. Маркировка его указана на фото. Угол поворота на один шаг у него оказался 3,6°, поэтому на один оборот он делает всего 100 шагов. Это обязательно надо учитывать при настройке экструдера 3D принтера в прошивке контроллера управления.

Также делая экструдер 3D принтера своими руками никак нельзя рассчитать подачу на один оборот шагового двигателя. Если померить диаметр шестеренки экструдера и применить формулу L = π*D, то мы получим лишь примерное расстояние, которое пройдет пруток пластика при полном обороте подающей шестеренки. Тут совершенно не учитывается глубина «вгрызания» зубчиков в пластик. А какая это глубина — да кто ж его знает! У меня по расчетам получилась подача 28 мм на один оборот, а экспериментально я подобрал что-то около 23 мм.

Теперь про то, куда подается пруток. В своей статье про я писал о том, что для максимального облегчения печатающей головки я решил сделать выносной экструдер с подачей через фторопластовую трубку. Это так называемый Экструдер Боудена (экструдер Эрика Боудена). С такой конструкцией экструдера 3D принтера можно добиться максимальных скоростей печати с высоким качеством, потому как приводным механизмам 3D принтера не придется таскать тяжелые шаговые двигатели.

Каждый 3D-принтер имеет конструктивные особенности. Главную роль в любом устройстве играет экструдер 3d, второе название которого – печатающая головка. Суть ее работы проста: она выдавливает пластик через специальное сопло, благодаря чему и складывается трехмерный рисунок.

Особенности конструкции

3D-принтер работает на основе нитевидного пластика нескольких видов, но чаще всего применяются пластик ABS и PLA. И несмотря на разнообразие расходных материалов, все печатающие головки создаются по одному принципу и мало чем отличаются друг от друга. Устройство экструдера 3d принтера следующее:

  • Блок cool-end подает филамент. Он включает в себя шестерни и привод от электрического мотора, а также прижимной механизм. Под воздействием вращения шестерни из катушки извлекается пластиковая нить, пропускается в нагреватель, где под воздействием высокой температуры пластик становится вязким. Такая структура дает возможность выдавить нить через сопло, чтобы придать ей нужную форму.
  • Блок hot-end представляет собой сопло с нагревателем. Для его создания используются латунь или алюминий, отличающиеся высокой теплопроводностью. В состав нагревательного элемента также входят спираль из нихромовой проволоки, пара резисторов, термопары, регулирующие температуру. Во время работы hot-end разогревается, за счет чего и происходит плавление пластика. Важную роль играет своевременное охлаждение рабочей платформы, что обеспечивается специальной термоизолирующей вставкой между hot-end и cool-end.

Разновидностью печатающей головки является боуден экструдер, который отличается тем, что hot-end и cool-end разнесены с точки зрения расположения: нагреватель с соплом располагаются на печатающей голпринтер промышленныйовке, в то время как подающее устройство расположено на раме принтера. Пластиковая нить подается посредством длинной тефлоновой трубки. Главное ее назначение – оберегать нить от возможных изгибов, чтобы она подавалась в hot-endс оптимальной скоростью и давлением. Боуден экструдер хорош тем, что позволяет сделать меньше и легче печатающую головку, но с другой стороны, передача пластика к соплу не так надежна.

Как выбирать экструдер?

Экструдер для 3d принтера нужно выбирать правильно, учитывая несколько важных моментов:

  1. Материал . современные печатающие головки оснащаются литыми элементами или созданными на основе 3d-печати. Конечно, литые модификации отличаются прочностью, что особенно важно для участков, на которые приходится большая нагрузка. С другой стороны, напечатанные на 3D-принтере детали гораздо дешевле.
  2. Подача филамента . Качество этого механизма играет важную роль, поскольку нить должна подаваться к нагревателю постоянно и аккуратно. Только так можно обеспечить бесперебойную печать. Во время пути к соплу пластик может запутаться, поэтому нужно выбирать принтеры с электрическим двигателем высокой мощности – так запутывания можно свести к минимуму.
  3. Тип подающего ролика . Очень часто в результате плохого сцепления материала с подающим роликом нить начинает проскальзывать. Особенно часто такие ситуации возникают при использовании нейлоновой нити на тех устройствах, где можно применять только ABS или PLA-пластик.
  4. Размер сопла . Экструдер может оснащаться соплами разного диаметра. Важную роль при выборе играет назначение самих изделий. Например, если объекты должны быть тщательно и детализированно прорисованы, то сопло выбираются меньшего диаметра. Чем меньше сопло, тем выше вероятность его засорения, поэтому лучшее выдавливание пластика обеспечивается при мощном электрическом двигателе.

Как сделать своими руками

Чтобы сделать экструдер для 3D-принтера экструдер своими руками, потребуется подобрать шаговый двигатель. Однако в этом качестве можно использовать и моторы от старых сканеров или принтеров. Для крепления двигателя потребуется корпус, прижимной ролик и хот-энд. Корпус создается из разных материалов, при этом его конструкция может быть самой разной. Прижимной ролик должен регулироваться пружиной, поскольку толщина прутка не всегда идеальна. Материал сцепляется с подающим механизмом, но сцепление не должно быть слишком сильным – в ином случае кусочки пластика будут откалываться.

Хот-энд можно купить (покупка обойдется примерно в 100 долларов), а можно скачать чертежи и создать его самостоятельно. Радиатор создается из алюминия и нужен для того, чтобы отвести тепло от ствола хот-энда. Это позволит предотвратить преждевременное нагревание материала для печати. Хорошее решение – светодиодный радиатор, а охлаждение выполнять посредством вентилятора. Ствол хот-энда создается из полой металлической трубки, которая служит для соединения радиатора и нагревательного элемента.

Тонкая часть трубки – это термобарьер, который исключает попадание тепла в верхнюю часть экструдера. Главное в хот-энде – добиться того, чтобы филамент не плавился раньше времени, что приведет к засорению сопла.

Нагревательный элемент в 3d-экструдере своими руками создается из алюминиевой пластины. В ней сверлится отверстие для крепления ствола хот-энда, затем сверлятся еще отверстия для болта крепления, резисторов, терморезистора. Пластина нагревается резистором, а задача темистора – регулировать рабочую температуру. Сопло можно создать из глухой гайки с закругленным концом. Лучше, если гайка латунная или медная – эти металлы отличаются простотой обработки. В тисках крепится болт, затем на него накручивается гайка, а в центре сверлится отверстие. Таким образом, легко создается экструдер в домашних условиях.

Некоторые модели принтеров оснащаются двойными экструдерами – это позволяет печатать двухцветные объекты или создавать структуры поддержки из растворимого полимера. То есть одновременно на таком устройстве можно использовать сразу два вида пластика. Правда, одновременная печать все равно невозможна, поэтому каждый экструдер задействуется в случае необходимости.


Когда дело касается настольных 3d принтеров, мы можем наблюдать, что цены на эти устройства в течение последних нескольких лет значительно упали. Сейчас практически каждый желающий может позволить себе приобрести такое устройство и сделать его частью своей жизни, создавая самые разнообразные трехмерные изделия. Существует лишь одно препятствие, которое становится причиной отказа в покупке 3d принтера – это стоимость материала. Сейчас специалисты побороли эту проблему и сконструировали устройство, позволяющее создавать рабочий материал прямо у себя дома, а его цена, по сравнению со стандартной, выглядит просто смешной.

Средняя цена на пластиковую нить составляет порядка 40 долларов за килограмм. Те люди, кто активно пользуются 3d принтерами, прекрасно знают, что такое количество может быть использовано в течение всего пары дней. Если произвести простые математические расчеты и умножить данную стоимость на недели, месяцы или годы, можно получить в итоге довольно кругленькую сумму.

В последнее время компании озаботились данным вопросом и начали создавать специальные устройства, которые могут снизить цену нити с десятков долларов, до единиц. Эти машины создают рабочий материал путем переплавки специальных пластиковых гранул, с последующей намоткой готовой нити на катушку. Гранулы получить гораздо проще, а соответственно это помогает снизить конечную стоимость эксплуатации 3d принтеров.

Совсем скоро компания 3devo представит миру свое изделие, ранее зарегистрированное на площадке Kickstarter. NEXT 1.0 – это одна из тех машин, которая позволит создавать нити для FFF/FDM принтеров прямо у себя дома.

“Машины для создания материала для FFF/FDM представлены самыми различными компаниями, но 3devo отличается от других тем, что уделяют внимание мелочам и качеству конечного продукта, а также материалу, который будет изготавливаться в процессе эксплуатации. В отличие от других аналогичных устройств, которые создают некачественную нить, с неплотной структурой, NEXT 1.0 предназначен для изготовления профессионального материала. Эта нить в последующем может с легкостью наматываться сразу на катушку 3d принтеров, что позволяет добиться действительно невероятных результатов. 3devo делают все максимально возможное и невозможное, чтобы сделать вашу жизнь действительно комфортной”, — рассказывает Лукас ван Лиувен (Lucas van Leeuwen).

NEXT 1.0 имеет 7 основных функций, которые, по словам специалистов компании, выделяют его среди остальных подобных устройств:

  1. Создание высококачественной нити – специальная система последовательной экструзии позволяет легко транспортировать гранулы внутрь устройства и превращать их в плотные нити.
  2. Система трехмерного обогрева – в отличие от других устройств для создания FDM/FFF нити в домашних условиях, NEXT 1.0 оснащен тремя зонами обогрева, а температура каждой из них может быть отрегулирована независимо друг от друга.
  3. Встроенный датчик Хоппера – он напомнит пользователю о том, что гранулы заканчиваются и пора позаботиться о дозаправке.
  4. Система управления диаметром – пользователь самостоятельно выбирает диаметр изготавливаемой нити.
  5. Система автоматической намотки готовой нити.
  6. Возможность легкой и быстрой заменой катушки.
  7. Доступный и понятный пользовательский интерфейс, которым могут пользоваться даже люди, использующие устройство впервые.

Создание машин для генерации FDM-нити – это не только предоставление пользователям возможности сэкономить, но и очередной шаг в развитии 3d технологий. В дальнейшем, 3devo хотят добавить возможность

Продолжим на тему того, каким образом филамент подается в зону плавления (HotEnd"а).


На фото классический репраповский экструдер - родоначальник всех 3d-печатающих механизмов у самодельщиков.

Стоит отметить тот факт, что редуктор (с отношением не менее1:5) обязательно нужен для привода филамента диаметром 3,0 мм. Назначение редуктора - повысить момент на валу за счет уменьшения частоты вращения. Другими словами, будет крутить сильнее, но медленнее, а нам, как раз, большая частота вращения и не нужна - пластик должен успевать плавиться.
Если имеем дело с прутком 1,75 мм либо еще меньшего диаметра, то редуктор нам делать необязательно. Хотя, если используется совсем слабый двигатель (например, от старого принтера Epson, который я использовал поначалу), то редуктор все-таки придется делать.

На фото как раз такой двигатель и экструдер, сделанный на его основе из деталей от старых принтеров.

В промышленных 3D-принтерах экструдер выглядит очень даже похоже:

На фото сердце принтера компании Stratasys - тех самых товарищей, которые и придумали (и запатентовали) технологию печати расплавленным пластиком.

Есть, конечно, и более навороченные варианты, но они сложноваты в реализации, поэтому не годятся для самостоятельного (кустарного) изготовления:

Так как пластик 3 мм значительно (!) дешевле более тонких вариантов (к тому же распространеннее), то и привод мы будем делать, рассчитывая на более тостый филамент. А уже пластик 1,75 (и подобные) мы сможем "толкать" этим экструдером вообще без проблем. В этом случае потребуется лишь небольшая модификация хотэнда (об этом позже).

Итак.

Для начала нам нужен двигатель. Причем шаговый и очень желательно биполярный, иначе с управлением придется повозиться. Отличить его от униполярного (еще одна разновидность шаговиков) можно по количеству выводов. Их должно быть 4. В этом случае можно будет использовать типовой драйвер управления (Pololu). Схема такого двигателя:

Цвет проводов может быть абсолютно любым, поэтому проверяем где какие обмотки тестером. По поводу начала/конца обмотки - это мы будем определять экспериментально при подключении и движка.

В принципе, можно подключить и двигатель, который имеет 6 выводов - главное правильно определить где какие обмотки, после чего просто останется 2 ненужных провода, которые можно просто отрезать.


В данном случае у нас останутся неподключенными "желтый" и "белый" провода.

Из старых принтеров можно наковырять много полезного, но движки там стоят очень слабые, особенно в новых струйниках, поэтому годятся для применения только с редукторами с очень большим передаточным отношением. Вот пример таких двигателей:


Из всего этого многообразия для использования в качестве привода филамента пойдет разве что Epson EM-257 - он как раз имеет нужное количество выводов (4), а также более-менее неплохой момент на валу. Вот еще несколько подобных двигателей:


Они конечно слабоваты для нашей цели, и, в идеале, лучше использовать аналог Nema17 (тот, что применяется в оригинальном репрапе), зато их можно купить за копейки на любом радиорынке или выковырять из старого железа. К слову - не стоит брать за основу экструдера советские ДШИ-200, которые очень популярны у станкостроителей, т.к. они слишком тяжелые, чтобы их тягать в качестве печатающей головы.

Из доступных в России можно выделить сайт магазина "Электропривод" , на котором продают аналог Nema17 - FL42STH. Я выбрал для принтера двигатели FL42STH47-1684A, которые прекрасно подходят не только для экструдера, но и для привода всех осей.

Теперь нам необходим редуктор.

Понятно, что, чем меньше его габариты, тем лучше для нас - меньше будет общая масса печатающей головки, соответственно и скорость позиционирования (как и скорость печати в целом) будет выше.

Изначально планировалось использовать шаговый двигатель с планетарным редуктором промышленного изготовления, наподобие вот такого:

Но найти его в России по нормальной цене просто нереально, да и в Китае они продаются совсем не по доступным средствам, поэтому, как всегда, все своими силами.

Для себя я определил (в итоге) идеальный вариант - планетарный редуктор, вытащенный из старого шуруповерта, переделанный для использования с шаговым двигателем.

Донор выглядит примерно так как на фото. А в разобранном виде что-то вроде:


Фото не мое, но принципиально эти планетарные редукторы сильно друг от друга не отличаются. Поэтому ищем дохлый шуруповерт и вперед - разбирать.

Как и раньше, нам понадобится толковый токарь, который поможет насадить приводную шестерню от оригинального шуруповертного движка на наш шаговик. Также необходимо будет выточить крышку-корпус для подшипника выходного вала. Фотографии моего варианта выложу позже (придется разобрать готовый экструдер). Можно, в принципе, сделать чертеж крышки, которая была выточена из алюминия, хотя токарю обычно хватает простого объяснения "на пальцах" чего именно мы хотим от него получить.

Вроде бы пора брать фотоаппарат в руки и начинать детальную фотосессию всех тонкостей процесса, а то в интернете кончились картинки, которые идеально подойдут к моему описанию.

Меня очень много спрашивают на тему экструдеров, а именно где купить, как сделать своими руками, и главное — какой из них лучше. Поэтому я решил донести до читателей актуальную на 2015 год информацию на тему экструдеров.

Что такое экструдер 3D принтера

Экструдер 3D принтера — это устройство для дозированной подачи, плавления и выдавливания пластиковой нити через сопло.

На сегодня самый популярный стандарт пластиковой нити — 1,75 мм, а сопла в домашних 3D принтерах чаще всего бывают от 0,25 мм до 0,5 мм.
Экструдер состоит из 2 частей:
1. Механизм подачи (толкания) пластиковой нити
2. Печатающая головка (hot end) (хотэнд)

Про механизм подачи мы в данной статье говорить не будем — если будут желающие, то напишу отдельную статью. А наша задача сейчас разобраться с хотендом.

В качестве примера будет рассматривать популярный сейчас хотенд от фирмы E3D (e3d-online.com)

Устройство хотенда:

1. Ствол хотенда. Эта часть соединяет радиатор и нагревательный блок, но главное что внутри ствола проходит и начинает плавиться пластик. Самый важный момент здесь — узкий участок в середине ствола. Это — термобарьер, он необходим для того чтобы не пустить тепло выше, то есть мы заставляем пластик плавиться в определенной точке и не раньше. Если пластик начнет плавиться раньше, то это повлечет за собой большую силу трения, т.к. придется двигать слишком большое количество расплава. К тому же именно в этой узкой зоне формируется так называемый поршень — твердый нерасплавленный пластик плотно прилегает к стенкам ствола и толкает расплавленный вниз.
Ствол изготавливается из нержавеющей стали, т.к. у неё низкая теплопроводность.

2. Радиатор. Служит для отвода тепла от верхней части ствола. Изготавливается из алюминия.

3. Нагревательный блок. Основная задача — распределять тепло от нагревателя к стволу и соплу, в которых и плавится пластик. Изготавливается из алюминия.

4. Нагреватель. Это нагревательный элемент диаметром 6 мм, который вставляется в нагревательный блок. В качестве нагревателя раньше использовали мощный резистор на 5 Ом, а сейчас — керамический нагреватель в металлической гильзе. Найти такой можно на Ebay по запросу "12v Ceramic Cartridge Heater".

5. Сопло. Диаметры сопел могут быть от 0.2 до 1 мм, сейчас наиболее распространены и практичны сопла 0.4 мм, т.к. это они дают компромисс между скоростью печати и качеством. опло обычно изготавливается из латуни.

Какой хотенд выбрать?

Выбор достаточно велик и сейчас доступно более 10 видов конструкций хотендов, поэтому я не стану описывать всего разнообразия и ограничусь своими рекомендациями.

J-head. В течение 3 лет я испробовал много хотендов типа J-head — это были и оригинальные, нескольких версий и много версий от китайских производителей. Поэтому могу смело заявить — конструкция типа J-head работает хорошо и при том, компактна. В качестве термобарьера используется тугоплавкий пластик, а внутри хотенда находится тефлоновая трубка, поэтому он беспроблемно печатает PLA пластиком в отличие от металлических хотендов, где PLA может застревать, если рсплавится раньше чем нужно.

E3Dv6. Зарекомендовавшие себя хотенды этой фирмы всё еще продолжают набирать популярность. Причину их успеха вижу в том что они просто выложили чертежи в открытый доступ и, собственно, сделали хороший полностью металлический хотенд — он просто работает как надо.

Стоит ли делать своими руками

Сделав хотенд самостоятельно, вы можете довольно неплохо сэкономить, если желаете экспериментировать с разными диаметрами сопел и если вам надо несколько хотендов.

Можно обойтись одним лишь токарным станком и набором тонких свёрел с которыми достаточно сложно работать (0.2-0.4мм). Вам останется докупить нагреватель и термистор. Поэтому давайте мыслить здраво — если вы не мастер по токарной металлообработке, то у вас есть только один вариант — купить готовый хотенд.

При выборе хотенда не стоит экономить, покупая непроверенную конструкцию, либо по странно дешёвой цене — ведь это рабочий инструмент принтера и именно от него зависит качество печати.

Где купить хотенд

В большом ассортименте можно найти на ebay.com по запросу "3d printer hot end", например. А так же в интернет-магазинах, торгующих запчастями для 3D-принтеров. Внимательно следите за тем, что бы в комплектацию входили термистор и нагревательный элемент, иначе вам придется искать их отдельно.