ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Механизмы коагуляции. Коагуляция и факторы ее вызывания. Правило Шульце-Гарди. Значение процессов коагуляции для жизнедеятельности организмов Механизм коагуляции воды заключается в

Коллоидные частицы имеют сложное строение. Они состоят из ядер и адсорбированных и притянутых ионов. Рассмотрим строение коллоидной частицы кремниевой кислоты, которая образовалась в результате взаимодействия очень разбавленных растворов силиката натрия и соляной кислоты (Na2 Si03 + 2HCl = H2 Si03 + 2NaCl). Если Na2 Si03 находится в избытке, то кремниевая кислота не выпадает в осадок, а образуется прозрачный коллоидный раствор H2 Si03 . Ядро коллоидной частицы нейтрально, оно состоит из m молекул H2 Si03 . На поверхности ядра адсорбируются n ионов Si03 2- , это потенциалопределяющие ионы, так как они обуславливают заряд частицы коллоидного раствора.

Адсорбированные потенциалопределяющие ионы притягивают из раствора ионы противоположного знака - противоионы. В данном случае это ионы Na+ , причем часть их 2(n - х) адсорбируется на частице. Адсорбированные ионы Si03 2- вместе с противоионами Na+ образуют адсорбционный слой. Другая часть противоионов 2xNa+ находится в жидкой фазе и образует подвижный диффузный слой.

Ядро вместе с адсорбционным слоем называется гранулой.

В нашем примере гранула заряжена отрицательно, так как адсорбция ионов Si03 2- происходит сильнее, чем ионов Na- .

Коллоидная частица вместе с противоионами диффузионного слоя называется мицеллой. Это отдельная частица коллоидного раствора.

Мицелла (коллоидная частица)

Коагуляция (лат. coagulatio - свёртывание, сгущение, укрупнение) - объединение мелких диспергированных частиц в бо́льшие по размеру агрегаты.

Коагуляция представляет собой комплекс химических и физических взаимодействий между отрицательно заряженными коллоидными частицами и катионами, т.е. положительно заряженными химическими реагентами. Она использует различные силы отталкивания и притяжения, которые обеспечивают устойчивость или, наоборот, неустойчивость коллоидной взвеси, а именно:

  • силы электростатического отталкивания
  • броуновское движение
  • силы притяжения Ван дер Ваальса
  • силу всемирного тяготения
  • Коагуляция дестабилизирует коллоидную взвесь посредством двух различных механизмов:

    1. Нейтрализация заряда

    Положительно заряженные коагулянты нейтрализуют отрицательный заряд, окружающий коллоидные частицы. Когда заряд вокруг каждой частицы нейтрализован, они постепенно сближаются, уменьшая свой эффективный радиус, становятся в конце концов неустойчивыми и могут сталкиваться друг с другом. При столкновении частицы соединяются друг с другом за счет водородных связей или, например, сил Ван дер Ваальса, образуя большие массы, или хлопья. Энергия перемешивания, применяемая в процессе очистки, увеличивает количество и частоту этих столкновений частиц, усиливая агломерацию твердого вещества и способствуя образованию хлопьев.

    2. Химическое связывание

Образованию хлопьев способствует полимерная природа коагулянтов. Их длинные молекулярные цепочки подхватывают агломерированные частицы, образуют мостики от одной поверхности к другой, связывая вместе отдельные хлопья в крупные, легко удаляемые массы.

Правило Шульце - Гарди.

Коагулирующая способность иона-коагулятора возрастает с увеличением его заряда (правило Шульце).

Способность дисперсных систем сохранять определенную степень дисперсности называется агрегативной устойчивостью.

Частицы дисперсной фазы сопротивляются слипанию за счет разных механизмов. Данная способность обусловлена во-первых образованием на поверхности частиц дисперсной фазы двойного электрического слоя,обеспечивающего электрическую стабилизацию дисперсной системы.Во-вторых, работаетмолекулярно-адсорбционный механизм стабилизации, заключающийся в образовании вокруг частиц слоёв адсорбции, состоящих из молекул дисперсной среды и растворённых в ней веществ. В-третьих, существует кинетический фактор устойчивости - малая частота столкновений дисперсных частиц.

Золи (коллоидные растворы) отличаются от грубодисперсных и молекулярных систем агрегативной неустойчивостью, поэтому они меняются как во времени, так и при добавках различных веществ.

Суть механизма очистки воды от взвешенных коллоидных частицсостоит в нарушении равновесного состояния системы - устранения баланса сил, не позволяющихчастицам осесть.

Для достижения этой цели использует процесс коагуляции коллоидных примесей (упрощённо - коагуляция воды).

Коагуляция - процесс слипания коллоидов в более крупные агрегаты, происходящее в результате их столкновенийприброуновском движении, смешении или направленном перемещении во внешнем силовом поле, добавлении коагулянтов. При этом происходит выпадение осадка - коагулята.

Коагулянты (обычно это растворимые соли железа или алюминия) интенсифицируютпроцесс коагуляции. Введение в воду этих веществ способствует образованию новой малорастворимой фазы (в результате гидролиза - взаимодействия вещества с водой). Таким образом, процесскоагуляции заключается в прогрессирующем укрупнении частиц и уменьшении их численности в объёме дисперсионной среды.

Коагуляция бывает медленная и быстрая. При медленной коагуляции только незначительная часть соударений частиц-коллоидов приводит их к слипанию, а коагулят не выпадает. При быстрой коагуляции каждое соударение обладает эффективностьюи влечёт слипание частиц, а в коллоидном растворе постепенно образуется осадок.

Минимальную концентрацию дозируемого вещества (электролита или не электролита), инициирующего процесс коагуляции в системе с жидкой дисперсионной средой, называют порогом коагуляции. При определенных условиях коагуляция обратима. Процесс перехода коагулята обратно в золь называютпептизацией, а провоцирующие этот процессвещества - пептизаторами. Пептизаторы, являясь стабилизаторами дисперсных систем, адсорбируются на поверхностичастиц, ослабляя взаимодействие между ними, в результате чего происходит распад агрегатов. Особенно эффективно возврат в первичное состояние проходитпри вводе в среду поверхностно-активных веществ, снижающих поверхностную межфазную энергию и облегчающих диспергирование.

Коагуляция с применением солей железа

Рассмотрим, какие процессы протекают при добавлении в коллоидный раствор сульфата железа (III). Этот коагулянт в водном растворе диссоциирует на ионы железа и сульфат-ион :

Fe 2 (SO 4) 3 → 2 Fe 3+ + 3 SO 4 2-

Fe 3+ + H 2 O ↔ Fe(OH) 2+ + H +

Fe(OH) 2+ + H 2 O ↔ Fe(OH) 2 + + H +

Fe(OH) 2 + + H 2 O ↔ Fe(OH) 3 ↓ + H +

Fe 3+ + 3H 2 O ↔ Fe(OH) 3 ↓ + 3H +

Мицелла - структурная единица лиофобных (слабо взаимодействующих с жидкостью) коллоидов, не имеющая определенного состава. Схематически ее строение на примере мицеллы гидроксида железа (III) может быть изображено схемой:

{mFe(OH) 3 2nFe(OH) 2+ (2n - x) SO 4 2- }2x+ xSO 4 2-


Микрокристалл гидроксида железа,образующий коллоидную частицу (см. рисунок), избирательно адсорбирует из окружающей среды ионы, идентичные ионам его кристаллической решетки. В зависимости от химического состава раствора (избыток сульфат - ионов илиизбыток ионов железа) микрокристаллприобретает отрицательный или положительный заряд. Такой заряженный кристалл называется ядром мицеллы, а сообщают ему этот заряд потенциалопределяющие ионы.

Электрическое поле заряженной поверхности кристалла притягивает из раствора противоионы - ионы, несущие противоположный заряд. На границе раздела фаз образуется двойной электрический слой, толщину которого определяет внешняя граница облака противоионов.

Двойной электрический слой состоит из адсорбционой и диффузной частей. Адсорбционный слой включает в себя потенциалобразующие ионы и часть противоионов, адсорбированных на поверхности ядра. Диффузный слой достраивают остальные противоионы в количестве, способствующем электронейтральности мицеллы.

Двойной электрический слой, окружающий коллоиды, под воздействием коагулянтов (электролитов), перестраивается: противоионы начинают вытесняться из диффузной в адсорбционную часть, и толщина всего электрического слоя со временем уменьшается до толщины адсорбционного слоя. Дисперсные частицы попадают в область взаимного притяжения, инаступает быстрая коагуляция.

Коагуляция с применением солей алюминия

Чаще всего для очистки воды коагуляцией на отечественных станциях водоподготовки и вбассейнах используют 18-ти водный кристаллогидрат сульфата алюминия - Al 2 (SO 4) 3 . 18 H 2 O.

Процессы, протекающие при введении в воду солей алюминия, аналогичны вышеописанным при добавлении солей железа:

Al 3+ + H 2 O ↔ Al(OH) 2+ + H +

Al(OH) 2+ + H 2 O ↔ Al(OH) 2 + + H +

Al(OH) 2 + + H 2 O ↔ Al(OH) 3 ↓ + H +

Суммарное уравнение гидролиза:

Al 3+ + 3H 2 O ↔ Al(OH) 3 ↓ + 3H +

Образование осадка гидроксида алюминия происходит при значениях рН в диапазонеот 5 до 7,5. При рН < 5 осадок не образуется. При рН > 8,5 идет растворение образованного гидроксида алюминия с образованием алюминатов.

Al 2 (SO 4) 3 + 6 NaOH = 2 Al(OH) 3 ↓ + 3 Na 2 SO 4

Al(OH) 3 + NaOH = Na или (NaAlO 2 . 2H 2 O)

Современные коагулянты

Все большее распространение в процессах водоподготовкии очистки сточных вод получаюткоагулянты на основе полиоксихлорида алюминия.

Преимущества этих коагулянтов по сравнению с сульфатом алюминия:


Поставка в виде растворов, что делает более удобным их применение (не надо растворять);

Большее процентное содержание активного вещества;

Получение очищенной воды более высокого качества;

Сокращение объёма вторичных отходов;

Низкое остаточноесодержание алюминия (< 0,2 мг/л);

Не требуется корректировать рН;

Широкий диапазон рабочих температур.


Технические характеристики таких коагулянтов производства ОАО «АУРАТ»:


Контактная коагуляция


Один из вариантов очистки методом коагуляции - контактная коагуляция. Контактная коагуляцияпроисходит на зёрнах загрузки напорных вертикальных фильтров механической очистки. При этом введение коагулянта осуществляется непосредственно перед механическим фильтром. Зерна загрузки и частицы, адсорбированные на них, служат центрами коагуляции. Процесс хлопьеобразования в этом случае значительно ускоряется.

Протекание процесса коагуляции с более высокой скоростью и отсутствие необходимости в отстойниках для формирования и осаждения хлопьев осадка являются несомненными преимуществами контактной коагуляции.

К недостаткам контактной коагуляции относится ускоренное загрязнение напорных фильтров и потребность в частой регенерации загрузки, а также опасность проскока реагента в случае неправильного подбора режима коагуляции/фильтрования.

Чтобы проверить - осуществляется ли контактная коагуляция или нет, воду после механических фильтров проверяют на содержание коагулянта.

Уважаемые господа, если у Вас имеется потребность реализации очистки воды с помощью коагулянтов для доведения качества воды до определённых нормативов, сделайте запрос специалистам компании Waterman . Мы разработаем для Вас оптимальную технологическую схему очистки воды.

Лиофобные коллоидные растворы, как термо­динамически неустойчивые системы, могут разрушаться само­произвольно или под влиянием внешних воздействий. Разру­шение коллоидных растворов начинается с их коагуляции.

Коагуляцией называется процесс слипания коллоидных частиц с образованием более крупных агрегатов из-за по­тери коллоидным раствором агрегативной устойчивости.

В результате коагуляции укрупненные частицы дисперсной фазы легко седиментируют, и происходит расслоение системы. Та­ким образом, причиной коагуляции является потеря агрегатив­ной устойчивости коллоидным раствором, а следствием коагуля­ции - уменьшение его седиментационной устойчивости.

Практически коагуляцию можно вызвать различными внеш­ними воздействиями: добавлением небольших количеств электро­лита, концентрированием коллоидного раствора, изменением тем­пературы, действием ультразвука, электромагнитного поля и др.

Явление коагуляции лежит в основе многих патологических процессов, протекающих в живых системах. Коагуляция колло­идных растворов фосфата кальция и холестерина в крови при­водит к образованию осадков и отложению их на внутренней поверхности кровеносных сосудов (атеросклеротические изменения сосудов).

Коагуляция проявляется в процессе свертывания крови. Свер­тывание крови играет в организме две противоположные роли: с одной стороны, уменьшает потерю крови при повреждении ткани, с другой - вызывает образование тромбов в кровеносной систе­ме. Свертывание крови - очень сложный ферментативный про­цесс. Одновременно в крови действует антисвертывающая систе­ма, основой которой является гепарин - антикоагулянт крови.

Природу крови необходимо учитывать при ее консервирова­нии. Так как свертыванию крови способствуют катионы кальция, то их удаляют из крови, предназначенной для консервирования, используя различные физико-химические способы. Например, добавка цитрата натрия переводит кальций в осадок, после чего кровь сохраняется в охлажденном состоянии, оставаясь пригод­ной для переливания в течение 30 суток. Цельную кровь можно декальцинировать также методом ионообмена, используя для этого Na-катиониты.

Коагуляция под действием электролитов . В биологических системах наибольшее практическое значение имеет коагуляция при добавлении небольших количеств электролита, поскольку коллоидные растворы клеток и биологических жидкостей нахо­дятся в соприкосновении с электролитами. Коагуляцию колло­идного раствора может вызвать любой электролит. Однако для каждого электролита необходима своя минимальная концен­трация, называемая порогом коагуляции (С пк).

Порогом коагуляции называется минимальное количе­ство электролита, которое надо добавить к коллоид­ному раствору, чтобы вызвать явную коагуляцию (за­метную на глаз) - помутнение раствора или изменение его окраски. Порог коагуляции можно рассчитать по формуле:

где Сэл - исходная концентрация раствора электролита; Vэл - объем раствора электролита, добавленного к коллоидному раствору; Vкp -объем коллоидного раствора.

Величина, обратная порогу коагуляции, называется коагули­рующим действием (у): у=1/Спк

Коагулирующее действие электролитов на коллоидные рас­творы с ионным стабилизатором подчиняется правилу Шульце-Гарди : коагуляцию коллоидных растворов вызывают любые ионы, которые имеют знак заряда, противоположный заряду гранул. Коагулирующее действие ионов (у) тем сильнее, чем выше заряд иона-коагулянта.

Коагулирующее действие иона-коагулянта прямо пропорци­онально его заряду в шестой степени: у = f(z 6). Например, ко­агуляция золя AgI с отрицательно заряженными гранулами (потенциалопределяющие ионы - анионы I -) происходит за счет действия положительно заряженных ионов. Поэтому при добав­лении к этому золю растворов NaCl, CaCl 2 , AlCl 3 коагулирую­щее действие катионов Na + , Са 2+ , А1 3+ будет резко возрастать; y(Na +):у(Са 2+):у(Аl 3+) = 1:64:729. Коагуляция золя AgI с положи­тельно заряженными гранулами (потенциалопределяющие ионы-катионы Ag +), наоборот, идет за счет отрицательно заряженных ионов. Добавление к золю растворов КCl, K 2 SO 4 , К 3 вызовет увеличение коагулирующего действия анионов в сле­дующем порядке: у(Сl -):y(SO 4 (2-)):y 3- = 1:64:729.

От правила Шульце-Гарди встречаются отклонения, по­скольку на коагулирующее действие иона кроме заряда влияют радиус коагулирующего иона, а также природа иона, сопутст­вующего иону-коагулянту.

Сильное влияние электролита на коагуляцию коллоидных растворов следует учитывать при введении растворов солей в живые организмы. При этом имеет значение не только концентрация, но и заряд вводимых ионов. Так, физиологический раствор хлорида натрия (0,9%) нельзя заменить изотониче­ским раствором сульфата магния, поскольку в этой соли име­ются двухзарядные ионы Mg 2+ и SО 4 (2-), обладающие более высо­ким коагулирующим действием, чем ионы Na + и Сl - .

При инъекциях электролита в мышечную ткань или кровь человека необходимо вводить его постепенно, медленно, чтобы не вызвать коагуляцию биологических коллоидных систем. Быстрое введение электролита из-за малой скорости диффузии его в крови или мышечной ткани приводит к накоплению электро­лита, локальному (местному) превышению его пороговой кон­центрации и вызывает коагуляцию биосубстратов, которую труд­но остановить. При медленном введении электролит успевает уноситься с током крови и диффундировать в соседние ткани, поэтому пороговая концентрация не достигается и коагуляция не наступает. Это явление в живых тканях называется «привыканием».

Механизм коагуляции . Роль электролитов при коагуляции заключается в уменьшении расклинивающего давления между сближающимися коллоидными частицами. Это может происхо­дить двумя путями: за счет уменьшения заряда поверхности твердой фазы (заряда поверхности ядра), т.е. за счет снижения межфазного потенциала Ф мф, или за счет уменьшения толщины (сжатия) ионных атмосфер мицелл при неизменном заряде по­верхности их ядер. В связи с этим возможны два вида коагуля­ции: нейтрализационная и концентрационная.

Нейтрализационная коагуляция наступает под действием электролита, который химически взаимодействует с потенциалопределяющими ионами, связывая их в прочное соедине­ние (например, переводя в осадок) и тем самым уменьшая заряд поверхности ядра. Нейтрализационная коагуляция наблюдается, например, при добавлении K 2 S к коллоидному раствору AgI с положительно заряженными гранулами (потенциалопределяю­щие ионы - катионы Ag +). Между коагулирующими анионами S 2- и потенциалопределяющими катионами Ag + происходит реакция с образованием малорастворимого соединения Ag 2 S, что приводит к разрушению мицеллы AgI:

В результате связывания потенциалопределяющих катионов Ag + межфазный потенциал Ф мф падает и число противоионов NO 3 (-), необходимых для компенсации заряда поверхности ядра, уменьшается. Таким образом, ионные атмосферы вокруг ядер становятся тоньше, снижается расклинивающее давление меж­ду сближающимися частицами, а это в свою очередь приводит к их слипанию в более крупные агрегаты.

Концентрационная коагуляция наступает под действием электролита, который химически не взаимодействует с ионами стабилизатора и не изменяет заряд поверхности ядра мицеллы. Однако в этом случае коагулирующее действие про­являют те ионы добавленного электролита, которые являются противоионами для данных мицелл, так как за счет повышения их концентрации они проникают внутрь гранулы, сжимая (уплотняя) ионную атмосферу мицеллы вокруг ядра. Концентра­ционная коагуляция происходит при неизменном межфазном потенциале Ф мф, но сопровождается, как правило, уменьшением ζ-потенциала. Концентрационная коагуляция наблюдается, на­пример, при добавлении нитратов к коллоидному раствору AgI, мицеллы которого содержат противоионы NО 3 (-):

По мере увеличения концентрации добавляемых ионов NO 3 (-) они способствуют внедрению противоионов диффузного слоя в ад­сорбционный слой. При этом диффузный слой сжимается, и мо­жет наступить такое состояние, при котором диффузный слой исчезнет вовсе и гранула станет электронейтральной. В таком состоянии расклинивающее давление между сближающимися частицами минимально, и это приводит к слипанию частиц в более крупные агрегаты.

Поскольку заряд гранул в этих условиях равен 0, то в электри­ческом поле они не приобретают направленного движения к элек­тродам, так как гранула находится в изоэлектрическом состоянии.

Изоэлектрическим состоянием называется состояние коллоидных частиц, при котором электрокинетический потенциал ζ равен 0 и которое характеризуется отсутствием направленного движения гранул в электри­ческом поле.

В агрегативно-устойчивом состоянии коллоидного раствора зна­чение колеблется в пределах 50-70 мВ. При умень­шении ζ-потенциала под действием электролита до 25-30 мВ в системе не наблюдается никаких внешних изменений (помут­нения или изменения окраски), так как скорость коагуляции еще очень низкая, вследствие чего эта стадия (I) коагуляции на­зывается «скрытой» коагуляцией (рис. 6.10). Дальнейшее добавле­ние электролита свыше Спк вызывает еще большее сжатие диф­фузного слоя и уменьшение ζ-потенциала, что сопровождается помутнением раствора, и начинается «явная» коагуляция. Внача­ле скорость коагуляции быстро увеличивается (стадия II), а затем становится постоянной, когда значение ζ-потенциаластанет равным нулю и наступит стадия быстрой коагуляции (III).

Коагуляция смесями элек­тролитов. На практике коа­гуляция часто вызывается действием смеси электроли­тов. При этом существует три возможных варианта взаимо­действия между электролита­ми: аддитивное действие, ан­тагонизм и синергизм.

Рис. 6.10. Влияние концентра­ции электролитана скорость коагуляции

Аддитивность - это суммирование коагулирующего действия ионов, вызывающих коагуляцию.

Аддитивное действие проявляется в тех случаях, когда элек­тролиты, содержащие коагулирующие ионы, не взаимодейству­ют химически между собой. Например, смесь солей КСl и NaNО 3 проявляет аддитивное действие по отношению к коллоидным растворам как с отрицательно, так и с положительно заряжен­ными гранулами. В первом случае коагуляцию вызывают ка­тионы К + и Na + , во втором - анионы Сl - и NO 3 (-).

Антагонизм - это ослабление коагулирующего действия одного электролита в присутствии другого.

Pb 2+ + 2Cl - = PbCl 2 ↓

Антагонизм действия наблюдается в тех случаях, когда в результате химической реакции между электролитами коагу­лирующие ионы связываются в нерастворимое соединение (выпадают в осадок) либо в прочный комплекс, который не обладает коагулирующей способностью. Например, коагулирующее дей­ствие катионов Рb 2+ по отношению к отрицательно заряжен­ным гранулам ослабляется в присутствии NaCl, так как проте­кает реакция, в результате которой уменьшается концентрация коагулирующих ионов Рb 2+ в растворе из-за выпадения в оса­док РbСl 2:

Синергизм - это усиление коагулирующего действия одного электролита в присутствии другого.

Синергизм действия возможен, когда между электролитами происходит химическое взаимодействие, в результате которого образуется многозарядный ион, обладающий очень высокой коагулирующей способностью. Например, коагулирующее дей­ствие FeCl 3 и KCNS по отношению к положительно заряжен­ным гранулам (коагулирующие ионы Сl(-) и CNS -) усиливается во много раз, так как происходит реакция, в результате кото­рой образуются многозарядные анионы 3- , проявляющие высокую коагулирующую способность:

FeCl 3 + 6KCNS → K 3 + 3KCl

Используя электролиты в лабораторной и медико-санитар­ной практике, необходимо всегда учитывать возможность коа­гуляции в биологических средах. Так, при введении различных лекарственных веществ в организм (в виде инъекций) следует предварительно убедиться в том, что эти вещества не являются синергистами, чтобы избежать возможной коагуляции. С дру­гой стороны, при очистке промышленных вод вредным может оказаться антагонизм вводимых электролитов, препятствующий разрушению коллоидных загрязнений.

В природных во­дах, как и в промышленных сточных водах, коагуляция нередко происходит в результате смешивания дисперсных систем, содержащих разнородные частицы. Гетерокоагуляцией называется коагуляция коллоидных растворов, содержащих разнородные частицы, отличаю­щиеся по химической природе, знаку или величине заряда.

Частным случаем гетерокоагуляции является взаимная коа­гуляция - слипание разноименно заряженных гранул коллоид­ных растворов. При этом коагуляция происходит тем полнее, чем полнее нейтрализуются заряды гранул.

Гетерокоагуляции широко используется на практике в связи с проблемой очистки природных и промышленных вод. В воду, содержащую коллоидные примеси, добавляют соли алюминия или железа (3), которые являются хорошими коагулянтами. Эти соли в результате гидролиза дают малорастворимые гидроксиды Аl(ОН) 3 или Fe(OH) 3 , образующие коллоидные растворы с по­ложительно заряженными гранулами. В результате происходит коагуляция, сопровождающаяся образованием хлопьев из агре­гированных разнородных мицелл, которые выпадают в осадок.

В процессе коагуляции, связанной с потерей агрегативной устойчивости, происходит разрушение коллоидного раствора, сопровождающееся выпадением осадка - коагулята. Однако, если коагуляту возвратить агрегативную устойчивость, то может произойти обратный процесс - пептизация.

Пептизацией называется процесс, обратный коагуля­ции - превращение осадка, образовавшегося в результа­те коагуляции, в устойчивый коллоидный раствор.

Пептизация может проводиться двумя путями, каждый из ко­торых приводит к увеличению агрегативной устойчивости за счет восстановления достаточно рыхлых ионных атмосфер у мицелл:

· промыванием коагулята чистым растворителем (дисперси­онной средой), что приводит к вымыванию из системы ионов, вызвавших коагуляцию, и разрыхлению ионных атмосфер во­круг частиц;

· добавлением специального электролита-пептизатора, ионы которого, адсорбируясь на поверхности частиц коагулята, вос­станавливают рыхлые ионные атмосферы вокруг этих частиц и способствуют переходу их в коллоидное состояние.

Однако не всякий полученный при коагуляции осадок под­дается пептизации. Важнейшие условия эффективной пептизации заключаются в следующем:

· к пептизации способны только свежеполученные осадки, так как увеличение продолжительности контакта частиц дис­персной фазы между собой приводит к постепенному уплотне­нию осадка и вытеснению жидкой фазы из его структуры;

· необходимо добавление небольших количеств электролита-пептизатора, в ином случае может вновь наступить коагуляция;

· пептизации способствуют перемешивание и нагревание.

Процесс пептизации лежит в основе лечения ряда патологи­ческих изменений в организме человека: рассасывания атеросклеротических бляшек на стенках кровеносных сосудов, почечных и печеночных камней или тромбов в кровеносных сосудах под действием антикоагулянтов. При этом необходимо учитывать своевременность введения лекарственных веществ (антикоагу­лянтов) в кровь: застарелые тромбы в кровеносных сосудах, а также уплотнившиеся камни практически не пептизируются, т.е. не рассасываются.

6.9. Грубодисперсные системы: суспензии, эмульсии, аэрозоли

Грубодисперсные системы делятся на три группы: эмульсии, суспензии и аэрозоли.

Эмульсии – это дисперсные системы с жидкой дисперсионной средой и жидкой дисперсной фазой.

Их можно также разделить на две группы:

1. прямые – капли неполярной жидкости в полярной среде (масло в воде);

2. обратные (вода в масле).

Изменение состава эмульсий или внешнее воздействие могут привести к превращению прямой эмульсии в обратную и наоборот. Примерами наиболее известных природных эмульсий являются молоко (прямая эмульсия) и нефть (обратная эмульсия). Типичная биологическая эмульсия – это капельки жира в лимфе. В химической технологии широко используют эмульсионную полимеризацию как основной метод получения каучуков, полистирола, поливинилацетата и др.

Суспензии – это грубодисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой.

Особую группу составляют грубодисперсные системы, в которых концентрация дисперсной фазы относительно высока по сравнению с ее небольшой концентрацией в суспензиях. Такие дисперсные системы называют пастами. Например, вам хорошо известные из повседневной жизни зубные, косметические, гигиенические и др.

Аэрозоли – это грубодисперсные системы, в которых дисперсионной средой является воздух, а дисперсной фазой могут быть капельки жидкости (облака, радуга, выпущенный из баллончика лак для волос или дезодорант) или частицы твердого вещества (пылевое облако, смерч).

Коллоидные системы занимают промежуточное положение между грубодисперсными системами и истинными растворами. Они широко распространены в природе. Почва, глина, природные воды, многие минералы, в том числе и некоторые драгоценные камни, – все это коллоидные системы.
Большое значение имеют коллоидные системы для биологии и медицины. В состав любого живого организма входят твердые, жидкие и газообразные вещества, находящиеся в сложном взаимоотношении с окружающей средой. С химической точки зрения организм в целом – это сложнейшая совокупность многих коллоидных систем.

Коллоидные системы подразделяют на золи (коллоидные растворы) и гели (студни).

Большинство биологических жидкостей клетки (цитоплазма, ядерный сок – кариоплазма, содержимое вакуолей) и живого организма в целом являются коллоидными растворами (золями).

Для золей характерно явление коагуляции, т.е. слипания коллоидных частиц и выпадение их в осадок. При этом коллоидный раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (яичный белок, клеи) или при изменении кислотно-основной среды (пищеварительные соки).

Гели – это коллоидные системы, в которых частицы дисперсной фазы образуют пространственную структуру.

Гели – это дисперсные системы, которые встречаются вам в повседневной жизни.

Со временем структура гелей нарушается – из них выделяется жидкость. Происходит синерезис – самопроизвольное уменьшение объема геля, сопровождающееся отделением жидкости. Синерезис определяет сроки годности пищевых, медицинских и косметических гелей. Очень важен биологический синерезис при приготовлении сыра, творога.

По внешнему виду истинные и коллоидные растворы трудно отличить друг от друга. Чтобы это сделать, используют эффект Тиндаля – образование конуса «светящейся дорожки» при пропускании через коллоидный раствор луча света. Частицы дисперсной фазы золя отражают своей поверхностью свет, а частицы истинного раствора – нет. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатре при прохождении луча света от киноаппарата через запыленный воздух зрительного зала.

6.10. Электрокинетические явления в дисперсных системах: электрофорез, электроосмос

Электрический заряд может возникать на любой твердой поверхности, находящейся в контакте с жидкостью. Значение удельного заряда сравнительно небольшое: например, для глины на границе с водой оно составляет несколько десятков милликулонов, поэтому поверхность куска глины массой 1 кг, равная сотым долям квадратного метра, будет иметь ничтожно малый электрический заряд. Частицы глины общей массой 1 кг реализуют поверхность в миллионы раз большую, чем ее сплошной кусок, что приводит к резкому увеличению заряда поверхности. Появление значительного заряда поверхности является причиной возникновения особых электрокинетических явлений, характерных только для дисперсных систем.

Электрокинетическими называют такие явления, которые возникают при воздействии электрического поля на дисперсные системы и в результате перемещения частиц дисперсной фазы или дисперсионной среды. Несмотря на различие электрокинетических явлений все они связаны с наличием двойного электрического слоя и определяются ζ-потенциалом, который именно поэтому и называют электрокинетическим.

Внешнее электрическое поле вызывает такие электрокинетические явления дисперсных систем, как электрофорез и электроосмос.

Электрофорез - это перемещение под действием электрического поля частиц дисперсной фазы относительно дисперсионной среды. Схема электрофореза показана на рис. 6.11, где частица дисперсной фазы для наглядности дана в увеличенном масштабе. При наложении внешнего электрического поля частицы дисперсной фазы начинают двигаться к электроду, знак заряда которого противоположен знаку ζ-потенциала; направление движения частицы на рисунке показано стрелкой.

Движение частиц при электрофорезе обусловлено притяжением разноименных зарядов. Диффузный слой не препятствует взаимодействию разноименных зарядов. Противоионы в этом слое подвижны, распределяются неравномерно и не в состоянии экранировать действие внешнего электрического поля на частицы дисперсной фазы. Движение частиц происходит по границе скольжения.

В процессе электрофореза нарушается сферическая симметрия диффузного слоя противоионов, и он начинает двигаться в сторону, противоположную движению частиц. Противоположно направленный поток частиц диффузного слоя тормозит движение частиц. Этот эффект называют электрофоретическим торможением (короткая стрелка на рис. 6.11).

Рис. 6.11. Схема электрофореза:

При электрофорезе происходит движение частиц дисперсной фазы в направлении силовых линий электрического поля. Электрофорез используют для получения новых материалов, нанесения покрытий, очистки веществ от примесей и выделения продуктов. В медицине электрофорез применяют для введения лекарственных веществ. На кожу пациента накладывают тампон, смоченный раствором лекарственного препарата, а сверху - электроды, к которым приложен низкий, безопасный для организма потенциал. В ходе этой процедуры частички лекарственного препарата под действием электрического поля переходят в ткани организма человека.

Электроосмосом называют перемещение дисперсионной среды под действием внешнего электрического поля (рис. 6.12). Движение дисперсионной среды обусловлено притяжением разноименных зарядов. Оно происходит зачастую в капиллярах и в каналах пористых тел. Когда ζ-потенциал отрицательный, то положительно заряженные противоионы диффузного слоя притягиваются к отрицательному электроду. Противоионы увлекают за собой жидкость, составляющую дисперсионную среду. В результате этого происходит движение жидкости, причем перемещение жидкой дисперсионной среды относительно частиц дисперсной фазы, как и в случае электрофореза, происходит по границе скольжения.

Рис. 6.12. Схема электроосмоса

1 - дисперсная система; 2 - перегородка

Электроосмос используют, например, для обезвоживания древесины и других пористых материалов: строительных, грунта, продуктов питания, сырья для пищевой промышленности и др. Влажную массу помещают между электродами, а вода в зависимости от структуры ДЭС движется к одному из них и собирается в специальной емкости.

Для осуществления электрофореза или электроосмоса необходимо внешнее электрическое поле, т.е. движение частиц при электрофорезе или среды при электроосмосе является следствием воздействия этого поля.

Следует отметить, что явление электрофореза характерно главным образом для коллоидных растворов (золей), т.е. для систем, у которых размеры частиц дисперсной фазы не превышают 0,1 мкм. Электроосмос может наблюдаться не только в отношении коллоидных растворов, которые являются высокодисперсными системами, но и в отношении средне- и грубодисперсных систем.

Коагуляция коллоидных растворов.

Коагуляция

Коллоидные системы обладают различной устойчивостью. Все они стремятся к уменьшению свободной поверхностной энергии за счёт сокращения удельной поверхности коллоидных частиц, что происходит при их стремлении к объединению.


Удельная поверхность этих частиц очень велика, поэтому они и обладают большим избытком поверхностной энергии, что, в свою очередь, ведёт к термодинамической неустойчивости коллоидных систем.


Процесс объединения коллоидных частиц в более крупные агрегаты называется коагуляцией .

Расклинивающее давление

По теории коагуляции Б.В. Дерягина и Л.Д. Ландау, при Броуновском движении коллоидные частицы свободно сближаются на расстояние до примерно 10 -5 см, однако дальнейшему их сближению препятствует, так называемое, расклинивающее давление, возникающее в тонких слоях воды, находящихся между двумя поверхностями.


Расклинивающим давлением называют избыточное (по сравнению с гидростатическим) давление, действующее со стороны тонкого слоя жидкости на ограничивающие поверхности .


В золях оно обусловлено в основном взаимным отталкиванием противоионов диффузного слоя сблизившихся частиц и, кроме того, силами молекулярного взаимодействия между поверхностями этих частиц и молекулами воды.

Изменение свойств воды вокруг коллоидных частиц

Под влиянием электростатических полей, создаваемых ионами, расположенными на поверхности коллоидных частиц, прилегающие к ним молекулы воды сильнее поляризуются и располагаются более упорядоченно, что, в частности, усиливает связь не только между этими молекулами воды, но и между ними и коллоидными частицами.


В результате прилегающий к частице слой воды, приобретает особые свойства (повышенную вязкость и упругость ), что препятствует объединению частиц.

Преодоление расклинивающего давления

Если частицы обладают достаточной энергией для преодоления давления расклинивания, то на расстоянии, равном диаметру частиц, т.е. примерно 10 -7 – 10 -8 см, начинают преобладать силы межмолекулярного притяжения, и частицы объединяются.


Только очень малое число столкновений приводит к объединению частиц, поэтому многие золи устойчивы. Если же понизить величину заряда коллоидных частиц, то такие частицы будут легче и сильнее коагулировать.


С наибольшей скоростью коагулируют коллоидные частицы, у которых заряд гранул равен нулю, т.е. частицы, находящиеся в изоэлектрическом состоянии.


Отсутствие заряда у гранулы означает, что у частицы нет противоионов в диффузионном слое и, следовательно, их водной оболочки.


Оказалось также, что полидисперсные золи коагулируют быстрее монодисперсных и что форма частиц имеет значение для этого процесса: с наибольшей скоростью коагулируют палочкообразные частицы.

Динамика процесса коагуляции

При коагуляции двух частиц золя (так называемых частиц первого порядка ) образуется более крупная частица второго порядка , которая может объединяться с ещё одной частицей первого порядка, образуя частицу третьего порядка , которая вновь присоединяет частицу первого порядка и превращается в частицу четвёртого порядка и т.д.


Расчёты показали, что присоединение частиц первых порядков происходит легче, чем объединение частиц более высоких порядков.


Сумма всех частиц в золе при коагуляции непрерывно уменьшается, причём если число исходных частиц первого порядка n1 всё время убывает, то число частиц второго порядка n2 вначале увеличивается, а затем уменьшается. Чуть отставая по времени от n2 растёт количество частиц третьего порядка n3 , которое, пройдя свой максимум, начинает падать. В это время возрастает количество частиц следующего порядка и т.д.

Седиментация частиц

В результате при коагуляции образуются рыхлые агрегаты различной величины, в которой частицы непрочно связаны между собой.


Крупные агрегаты под действием силы тяжести начинают опускаться на дно сосуда. Происходит процесс седиментации.


Седимента́ция (осаждение) - оседание частиц дисперсной фазы в жидкости или газе под действием гравитационного поля или центробежных сил.


Скорость седиментации зависит от размеров и плотности частиц, от их заряда, вязкости раствора и т.п.


Частицы, находящиеся в изоэлектрическом состоянии, оседают быстрее, так как заряд не препятствует их коагуляции и седиментации.

Использование центрифуг для осаждения

Для ускорения процесса седиментации широко используют центрифуги . Возникающая при помощи них центробежная сила заставляет частицы оседать быстрее. При достаточном числе оборотов удаётся осаждать даже некоагулированные частицы.


При постоянных температуре, вязкости растворителя, величине заряда частиц и т.п. скорость их осаждения зависит от различий в их массе и размерах, благодаря чему можно расчитывать молекулярный вес этих частиц.


При помощи ультрацентрифуг , развивающих скорость в десятки тысяч оборотов в минуту, были определены молекулярные веса многих белков и других органических соединений.

Изменение скорости коагуляции

Самопроизвольная коагуляция многих золей часто протекает медленно . Её можно ускорить, повышая скорость движения частиц. Это поможет им преодолеть расклинивающее давление.


Ускорение движения частиц можно вызвать, например, повышением температуры раствора . Повышение концентрации золя также приводит к ускорению его коагуляции, поскольку с увеличением концентрации растёт число эффективных столкновений между мицеллами.


Процесс коагуляции очень чувствителен к добавлению электролитов .


Электроли́т - вещество, которое проводит электрический ток вследствие диссоциации на ионы. Примерами электролитов могут служить водные растворы кислот, солей и оснований и пр.


Небольшие количества электролитов могут резко ускорить скорость коагуляции. Следовательно, с одной стороны, электролиты необходимы для стабилизации золей, а с другой – их избыточное добавление ведёт к коагуляции золей. Влияние различных электролитов на этот процесс неодинаково.

Зависимость коагуляции от величины заряда иона электролита

Коагулирующее действие электролитов зависит от величины заряда иона, который противоположен заряду коллоидной частицы.


С наибольшей скоростью коагулируют электронейтральные частицы . Такое состояние частицы, заряженной до начала коагуляции, например положительно, станет возможным в том случае, если все противоионы диффузного слоя, заряженные отрицательно, будут перемещены в адсорбционный слой.


Чем выше окажется концентрация добавленного электролита, тем сильнее будет сжат диффузионный слой, тем меньше станет ζ -потенциал и быстрее пойдёт коагуляция.

А - до начала коагуляции гранула заряжена положительно;
Б - гранула стала электронейтральной, коагуляция протекает с максимальной скоростью.


При достаточной концентрации электролита практически все её противоионы окажутся в адсорбционном слое, заряд частицы снизится до нуля. Отсутствие диффузного слоя обусловит значительное понижение давления расклинивания и коагуляция пойдёт с максимальной скоростью.


Коагулирующее действие ионов резко возрастает с увеличением числа их зарядов в прогрессии, которую грубо принимают за соотношение шестых степеней числа зарядов ионов: 1: 2 6: 3 6 и т.д.


В действительности из-за влияния ряда факторов это соотношение оказывается меньшим.


Из данных приведённых ниже таблицах следует, что коагулирующая способность двухзарядных ионов в десятки раз, а трёхзарядных ионов - в сотни раз выше, чем у однозарядных ионов.

As 2 S 3

Электролит
Коагулирующий ион
Пороговая концентрация
коагуляции
ммоль/л
Коагулирующая способность
в сравнении
с Na +

Влияние различных электролитов на коагуляцию золей Fe(OH) 3

Электролит
Коагулирующий ион
Пороговая концентрация
коагуляции
ммоль/л
Коагулирующая способность
в сравнении
с Na +

Коагулирующие способности этих же ионов по отношению к другому золю будут иметь иные значения. Но различие в этих значениях будет не очень велико. Поэтому можно расположить одинаково заряженные ионы в лиотропные ряды , показывающие, в каком порядке убывает их коагулирующая способность для всех противоположно заряженных золей.


Положительные ионы:


Cs + > Rb + > K + > Na + > Li +


Ba 2+ > Sr 2+ > Ca 2+ > Mg 2+


Отрицательные ионы:


Cl - > Br - > NO 3 - > I - > CNS -

Механизм коагулирующего действия электролитов

В механизме коагулирующего действия электролитов можно выделить три фактора.


1. Сжатие диффузионного слоя.

Чем больше заряд коагулирующих ионов, тем сильнее они сжимают диффузный слой противоионов.


2. Адсорбция ионов на коллоидной частице.


На коллоидной частице протекает избирательная адсорбция тех ионов добавленного электролита, которые имеют заряд, противоположный грануле.


Чем выше заряд ионов, тем интенсивнее они адсорбируются. Происходящее в адсорбированном слое накопление ионов, заряженных противоположно частице, сопровождается соответственным уменьшением ζ-потенциала и, следовательно, диффузного слоя . А это, в свою очередь, повышает скорость коагуляции .


3. Процесс ионообменной адсорбции.


Помимо сжатия диффузного слоя и адсорбции ионов, при коагуляции золей электролитами происходит процесс ионообменной адсорбции, при котором противоионы адсорбционного слоя обмениваются на одноимённо заряженные ионы добавленного электролита .


Если заряд последнего выше , чем у противоионов, то такая замена приводит к значительному понижению ζ-потенциала .


Таким образом, все три процесса, уменьшающие заряд гранулы и влияющие на коагуляцию, протекают тем эффективнее, чем выше заряд коагулирующего иона.


Это частично позволяет объяснить разницу в коагулирующем действии ионов с различными величинами зарядов.


Основная причина коагуляции частиц заключается в понижении расклинивающего давления до такого уровня, что оно перестаёт препятствовать объединению частиц.

Смена полярности коллоидных частиц

При значительном увеличении концентрации добавленных многозарядных ионов они могут адсорбироваться на коллоидных частицах в таком большом количестве, что гранулы могут не только стать электронейтральными, но и, вообще, поменять свою полярность .


При этом гранулы приобретают знак заряда избыточно адсорбированных ионов добавленного электролита и снова становятся устойчивыми коллоидными частицами.


Так, например, при добавлении к золю платины небольшого количества хлорного железа FeCl 3 наблюдается понижение отрицательного заряда коллоидных частиц платины и их коагуляция.


Увеличение количества этого электролита приводит к смене полярности частиц платины, которые приобретают положительный заряд.


Ещё большие количества FeCl 3 будут вновь оказывать коагулирующее действие.


Такое чередование состояний электронейтральности и заряженности частиц называют чередованием зон коагуляции или явлением неправильных рядов . Оно наблюдается не у всех золей и не со всеми электролитами.


Кинетика коагуляции. Скрытая и явная коагуляция.

Если в коллоидный раствор медленно добавлять электролит, то первые его порции не влияют на золь.


При увеличении концентрации электролита начинается образование частиц низших порядков (II, III и т.д.), которое протекает незаметно для невооружённого глаза и поэтому называется скрытой коагуляцией .


Дальнейшее увеличение концентрации электролита ведёт к прогрессивному развитию процесса коагуляции, повышению её скорости и сопровождается появлением частиц более высоких порядков.


Золь претерпевает видимые изменения: он мутнеет или изменяется его окраска. При этом величина ζ -потенциала частиц уменьшается.


Эта стадия процесса называется явной коагуляцией . Переход скрытой коагуляции в явную называется порогом коагуляции : ему соответсвует пороговая концентрация электролита, т.е. минимальная концентрация электролита, вызывающая явную коагуляцию. (Измеряется эта величина миллимолях на литр золя.)


В это время ζ -потенциал ещё сохраняется, но он обычно не превышает 30 мв и называется критическим ζ-потенциалом .


Однако изменение величины ζ -потенциала не всегда соответствует процессу коагуляции частиц. Нередко коагуляция начинается при высоких значениях ζ -потенциала, а иногда с понижением этого потенциала некоторые золи даже увеличивают свою устойчивость.


Это подтверждпет, что ζ -потенциал является важным, но не единственным определяющим фактором устойчивости коллоидных частиц.


Явная коагуляция , в свою очередь, делится на два периода:


1. Период медленной коагуляции. В этот период всякое увеличение концентрации электролита ускоряет коагуляцию.

2. Период быстрой коагуляции. Во время быстрой коагуляции дальнейшее повышение концентрации электролита уже не влияет на её скорость, т.е. коагуляция протекает с максимальной быстротой.


При медленной коагуляции не все столкновения коллоидных частиц в золе оказываются эффективными, т.е. не все оканчиваются объединением частиц, а при быстрой коагуляции все столкновения приводят к их объединению.


Наименьшая концентрация электролита, вызывающая быструю коагуляцию, называется концентрацией коагуляции или порогом быстрой коагуляции.


При коагуляции вместе с уменьшением числа частиц и их укрупнением происходит изменение ряда свойств растворов: понижается скорость диффузии и фильтрации частиц, увеличивается скорость седиментации, меняется интенсивность рассеянного света, а вместе с тем и окраска растворов и т.п.

Коагуляция смесями электролитов


Возможны три случая совместного действия смеси из двух или более электролитов на коллоидный раствор:


1. Аддитивность - суммирование коагулирующего действия электролитов,

2. Антагонизм – один электролит ослабляет действие другого,

3. Синергизм – один электролит усиливает действие другого.


Если рассматривать каждый электролит в одельности от остальных, то существует такая его концентрация, которая будет вызывать быструю коагуляцию золя. Примем это количество электролита, вызывающее быструю коагуляцию, за 100% и рассмотрим теперь совместную работу двух различных электролитов.


Аддитивность


В случае аддитивности, попытка добиться коагуляции золя одним из электролитов при концентрации меньше чем 100% потребует добавления соответствующего количества второго.


Например, если одного взято 70% от концентрации коагуляции, то второго потребуется добавить 30% (в сумме 100% ).


Антагонизм


При антагонизме, в действии электролитов оказывается, что на 70% концентрации одного из них нужно уже не 30% концентрации коагуляции другого, а больше, например, 55%.


Таким образом, сумма их концентраций станет больше 100% .


Синергизм


При синергизме, для того чтобы получить быструю коагуляцию золя на 70% от концентрации коагуляции одного электролита достаточно добавить, например, 15% от концентрации коагуляции второго электролита.


Сумма концентраций, в результате, будет меньше 100% .


При коагуляции золей смесями электролитов обычно наблюдается синергизм или антагонизм. Адитивность же представляет собой редкое явление.


Явление синергизма может быть обусловлено образованием из добавленных электролитов многозарядных комплексных ионов, обладающих сильным коагулирующим действием.


Антагонизм объясняется, в частности, образованием из этих электролитов или комплексных соединений – пептизаторов, или слабодиссоциированных частиц, не влияющих на коллоидный раствор.


Пептизация - расщепление агрегатов, возникших при коагуляции дисперсных систем, на первичные частицы под действием жидкой среды (например, воды) или специальных веществ - пептизаторов.


В случае образования пептизаторов непрореагировавшие ионы электролитов действуют в направлении коагуляции золя, а образовавшийся из прореагировавших ионов пептизатор вновь переводит в золь скоагулировавшие частицы.


Иногда пептизаторы образуются в результате взаимодействия коллоидных частиц с добавляемым электролитом. Так, добавлении HCl к золю Fe(OH)2 происходит его коагуляция, а при медленном добавлении HCl коагуляция отсутствует.


Как было выяснено, при медленном добавлении соляной кислоты успевает образоваться пептизатор:


Fe(OH)2 + HCl → FeOCl + 2H2 O

FeOCl → FeO + + Cl -


Такое явление назывется привыканием золя .

Взаимная коагуляция

Если к золю с отрицательно заряженными частицами добавить золь с положительно заряженными частицами, то произойдёт их взаимная коагуляция .


На многих водоочистительных станциях к воде, содержащей отрицательно заряженные органические смеси, добавляют положительно заряженные золи гидроокиси алюминия или железа.


После взаимной коагуляции образовавшиеся хлопья легко отфильтровать на песчаных фильтрах.

Биологическое значение коагуляции

Процессы коагуляции и пептизации имеют большое значение для жизнедеятельности организмов, так как колоиды клеток и биологических жидкостей также подвержены коагуляции и постоянно испытывают воздействие со стороны электролитов.


Для сохранения постоянства физико-химических условий в организме необходимо соблюдать постоянство не только концентрации электролитов, но и их качественного состава.


Действительно, если приготовить изотонический раствор не из NaCl , а из равной концентрации многозарядных ионов, например, MgSO 4 , то двухзарядные ионы будут обладать значительно более сильным коагулирующим действием на коллоиды, чем NaCl .


Явления антагонизма и синергизма электролитов отражаются и на биологических объектах. Известно, что рост корней пшеницы подавляется 0,12 М растворами NaCl и CaCl 2 , но при определённом соотношений этих растворов отрицательное влияние смеси электролитов устраняется.

Коагуляция - процесс слипания коллоидных частиц с образованием более крупных агрегатов из-за потери коллоидным раствором агрегативной устойчивости.

Порог коагуляции - минимальное количество электролита, которое надо добавить к коллоидному раствору, чтобы вызвать явную коагуляцию (заметную на глаз) - помутнение раствора или изменение его окраски.

спк = сэл·Vэл / Vкр+Vэл

где с эл - исходная концентрация раствора электролита; V эл - объем раствора электролита, добавленного к коллоидному раствору; V кр - объём коллоидного раствора.

Коагулирирующая способность - величина обратная порогу коагуляции, подчиняется правилу Шульце-Гарди.

Коллоидная защита, ее роль в жизнедеятельности. Пептизация, биологическая роль

Коллоидная защита - повышение агрегативной устойчивости лиофобных золей при добавлении к ним ВМС.

Механизм заключается в том, что вокруг мицелл коллоидного раствора образуются адсорбционные оболочки из гибких макромолекул ВМС, которые дифильны и их гидрофобные участки обращены к частицам дисперсной фазы, а гидрофильные фрагменты обращены к воде.

При этом система лиофилизируется, мицеллы приобретают дополнительный фактор агрегативной устойчивости за счет собственных гидратных оболочек из макромолекул ВМС.

  • · хорошая растворимость ВМС в дисперсной среде коллоидного раствора и адсорбируемость молекул на коллоидных частицах;
  • · достаточно большая концентрация.

Таким образом, белки крови препятствуют выпадению в осадок и выделению на стенках кровеносных сосудов малорастворимых холестерина и солей кальция, также препятствуют образованию камней в мочевыводящих и желчновыводящих путях.

Пептизация - процесс, обратные коагуляции, т.е. превращение осадка, образовавшегося в результате коагуляции, в устойчивый коллоидный раствор.

Проводится двумя путями:

  • 1. промывание коагулята чистым растворителем (ДС);
  • 2. добавление специального электролита-пептизатора.

Условия эффективной пептизации:

  • · к пептизации способны только свежеполученные осадки;
  • · необходимо добавление небольших количеств электролита-пептизатора;
  • · пептизации способствуют перемешивание и нагревание.

Данный процесс лежит в основе рассасывания атеросклеротических бляшек на стенках кровеносных сосудов, почечных и печеночных камней или тромбов кровеносных сосудов.