ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Катушка Тесла своими руками — схема и расчет простого электрического украшения своими руками. Карманный трансформатор тесла своими руками

Ни для кого не является секретом кто такой знаменитый Никола Тесла. Мистические истории, которые рассказывают о нем, на сегодня не обсуждаем. Вспомним известные изобретения, о которых спорят до сегодняшнего дня.

Основные изобретения

  • Беспроводная передача энергии на длительные расстояния;
  • Флуоресцентное свечение;
  • Электрочасы;
  • Турбина;
  • Электрические печи;
  • Люминесцентные лампы;
  • Электронный микроскоп.

Перечислить все его 800 изобретений просто нет возможности. Одним из изобретений, которое поражает яркими явлениями в виде молния образных вспышек, считают высокочастотные катушки Тесла. Они представляет собой резонансный трансформатор. Данное устройство уже не одно десятилетие поражает мощью больших разрядов. Увидев работу устройства, не сможете забыть удивительное явление, которые создает яркие световые эффекты, напоминающие собой управляемые молнии. Используя катушки диаметром в 60 метров и полюс из медной сферы, Тесла разместил их над лабораторией и генерировал разряды. Длина, их достигала более, сорока метров.

Такие стрелы создавали эффекты невероятной красоты, при этом звук грома (освобожденная энергия) был слышен за 25 километров. Над башней плыл светящийся шар диаметр, которого был не менее 30 метров. Людей поражало необычайное зрелище пляшущих по земле искр. Кроме того когда кто либо пытался открыть водопроводный кран получал охапку цветных огоньков. Подобный экспериментальный запуск состоялся в 1904 году.

Если вы специалист любитель, у вас есть заветная мечта повторить работу гениального изобретателя, тогда попытаемся разобраться, как собрать катушку Тесла. Несмотря на то, что сама работа не сложная, многие не могут с ней справиться. Для того чтобы все получилось, надо знать принцип работы катушки Тесла. Устройство имеет несколько названий, но все они обозначают одно, и то же:

  • Трансформатор Тесла (основное название);
  • Катушка Тесла;
  • Тесла.

Принцип работы катушки Тесла.

Следует помнить, что это универсальная трансформаторная конструкция, которая изготавливается из двух обмоток, не имеющих общего сердечника, поскольку он усиливает взаимоиндукцию. Первая (первичка) катушка, к ней подводят переменное напряжение, которое создает магнитное поле. С его помощью полученная энергия первичной катушки передается во вторую обмотку.

Вторая модель также создает контур (колебательный), но разница в том, что конденсат, заменяет емкость тороида. Вся полученная энергия определенное время сохраняется в данном контуре в виде напряжения. Отсюда вытекает вывод: чем больше мы накопим энергии, тем выше будет полученное напряжение. На выходе оно составляет ни много ни мало миллионы вольт. Это дает возможность наблюдать удивительное зрелище электрических разрядов. Длина импульсов достигает нескольких метров. Чтобы повторить изобретение, в первую очередь появляется вопрос, как собрать катушку Тесла. Для этого вам потребуется:

  1. Тороид. Выполняет три основных функции – снижает резонансные частоты, создает накопление энергии, формирует магнитные поля. Производят тороиды из алюминиевой стали или гофры;
  2. Вторичная модель катушки (основная деталь), должна обладать значительной индуктивностью;
  3. Первичная низко индуктивная катушка. Для изготовления используют медные трубы;
  4. Защитное кольцо используют для того чтобы не вышла из строя электроника;
  5. Обязательное заземление ;
  6. Металлическая проволока, имеющая разный диаметр;

После того как вы подготовите весь требуемый материал переходите к пошаговому созданию изобретения.

Работа начинается с обмотки.

Для того чтобы сделать обмотку на первой катушке, подготовьте специальную форму. Она должна быть конусной или цилиндрической. Вокруг намотайте проволоку из медного сплава. Оборотов должно быть не меньше десяти. Делать витки следует плотно, но в тоже время обязательно следует контролировать, чтобы не было нахлестов. После того как закончите обмотку обязательно заизолируйте и укрепите полученные витки используя для этого лак. Помните!!! Длина проволоки влияет на индуктивность, а она на первой катушке обязана быть только низкой.

Вторичная модель создается аналогично, но количество витков увеличивается. Их должно быть как минимум тысяча, при этом трансформационный коэффициент больше в пятьдесят раз по количественному соотношению второй обмотки к первичной. Намотка вторичной катушки Тесла должна быть мощнее. Но при этом должна иметь равную к первичной обмотке частоту, поскольку разница приведет к сгоранию первой катушки.

После того как закончили первый этап работы, переходите к подготовке трансформатора. Его следует выбирать очень тщательно, он должен строго соответствовать размерам катушки. Используя мелкие конденсаторы равных размеров, объедините их между собой, в цепь. Благодаря этому у вас будет потенциал для равномерного накопления энергии в первичном контуре. Чтобы он был достаточно мощным, полученный конденсатор должен постоянно получать зарядку. Получив основные элементы, соедините все, используя для этого дросселя. Полученный прибор начнет работать только после того как вы подключите трансформатор.

Виды получаемых разрядов:

  1. Стримеры – это тонкие каналы, которые имеют большое количество разветвлений, создают тусклое свечение и содержат ионизированные газовые атомы. Применяются разряды для ионизации воздуха;
  2. Спарк представляет собой скользящий разряд искр;
  3. Коронный вид разряда представляет собой свечение ионов, которые находятся в электрополе высокого напряжения;
  4. Дуговой разряд.

Не применяя провода, используя данное высокочастотное устройство, у вас будет возможность поддерживать свечение ламп. Кроме того на крае обмотки будет вырабатываться яркая красивая искра, к ней можно прикоснуться руками, поскольку она относительно безопасная. Но как советуют специалисты трансформаторное устройство нельзя включать возле ПК, телефонов или посторонних бытовых приборов, поскольку они могут выйти из строя. В том случае, если получится самостоятельно создать такую катушку, прежде чем начинать проводить испытание следует придерживаться определенных правил:

  1. Прибор может вывести из строя все электроприборы, которые включены в электрическую сеть;
  2. Находитесь подальше от предметов, сделанных из металла, поскольку сможете получить ожог.

Делитесь своими знаниями и опытом удачного создания катушки Тесла в

Катушка Тесла – плоская спираль, обладающая наравне с индуктивностью большой собственной ёмкостью. Патент на изобретение подан в январе 1894 года. Автором, естественно, стал Никола Тесла. Под этим названием массово известен трансформатор, принцип действия прибора основывается на колебательных контурах.

Война токов

Сегодня это читается, как научный роман, но на стыке XIX и XX века действительно велась война токов. Все началось, когда за наладку работы генератора в Европе компания не заплатила молодому Тесла ни копейки. Хотя награда обещалась солидная. Недолго думая, Тесла покидает родину и плывёт в США. На пути исследователя преследуют неудачи, в итоге путешествие окончилось благополучно. Взять эпизод, когда в дороге теряются все деньги. Отказаться? Нет!

Тесла чудом пробирается на корабль и половину пути находится под эгидой капитана корабля, подкармливающего путешественника в собственной столовой. Отношения чуть охладились, когда молодой Тесла оказался замечен в центре возникшей на палубе потасовки, где раздавал с правой и левой, благодаря внушительному росту (при малом весе). В результате Тесла прибыл на берег и в первый день умудрился помочь с починкой генератора местному торговцу, заработав небольшое вознаграждение.

Имея на руках рекомендательные письма, Никола идёт устраиваться в компанию, где работает денно и нощно, проводя время сна на лежанке в лаборатории. Эдисон сыграл плохую шутку с молодым будущим визави: пообещал солидную награду за улучшения в работе электрического оборудования. Сложность быстро решилась, а изобретатель резьбы для цоколя лампочки сослался на коммерческий розыгрыш. Тесла уже мысленно распределил обещанную награду на проведение опытов, и шутка не вызвала у изобретателя тёплого душевного отклика. Молодой иммигрант покидает компанию с целью создать собственную.

Одновременно Тесла лелеет идеи на предмет борьбы с любителем розыгрышей. Во время прогулки с другом вдруг понимает, как реализовать теорию вращающегося поля Араго: требуется две фазы переменного тока. На момент 80-х годов XIX века идея считалась поистине революционной. Прежде двигатели, лампочки накала (в стадии совершенствования) и большинство лабораторных опытов обходились постоянным током. Так делал Георг Ом.

Тесла берет патент на двухфазный двигатель и заявляет, что возможны и сложные системы. Идеи заинтересовывают Вестингауза, начинается долгая история о правоте. Эдисон, как обычно, не скупился в средствах. Ходят истории, что он брал генератор переменного тока и истязал им до смерти животных. Якобы электрический стул придуман Эдисоном в соавторстве с неизвестным. Причём первый конструктор случайно или намеренно допустил ошибку, да так, что осуждённый мучился долгое время, в довершение буквально взорвался, выплеснув наружу внутренние органы.

Второго бедолагу адвокатам Вестингауза удалось спасти, заменив казнь на пожизненное заключение. Спасение не остановило Эдисона, вознамерившегося к стулу изобрести вдобавок и стол. Тесла постарался продемонстрировать ответный ход, выдвинув ряд аргументов:

Предприимчивые американские дельцы даже карты игральные выпустили, где фигурировала упомянутая война токов. К примеру, на изображении джокера размещена известная башня Ворденклиф, на строение ориентировались писатели-фантасты, режиссёры аналогичного толка кинокартин. Исторические факты уточняют, насколько напряжённой оказалась борьба – причина блеска изобретательского гения. Свитая из 50 витков толстого кабеля катушка Тесла конструктивно входила в состав башни Ворденклифа…

Конструкция катушки Тесла

Это потрясающая возможность, особым образом уложив витки медного провода, экономить на конденсаторных блоках. Если читатели в теме, то слышали про корректоры фазы для снижения трат на электроэнергию. Это конденсаторные блоки, компенсирующие индуктивное сопротивление потребителя. Особенно актуально для трансформаторов и двигателей. Лишние траты показывает лишь счётчик реактивной мощности. Это мнимая энергия, полезной работы у потребителя не выполняющая. Циркулируя туда и сюда, разогревает активные сопротивления проводников. В местности, где ведётся учёт полной мощности (к примеру, предприятия) это ощутимо увеличивает счета на оплату поставщикам электроэнергии.

Теперь несложно понять, как изобретение Тесла планировалось использовать в промышленности. Изобретатель в патенте US 512340 приводит две схожие конструкции катушки:

  • На первом чертеже представлена плоская спираль. Один вывод катушки Тесла находится на периферии, второй берётся из середины. Конструкция проста в работе. При разнице потенциалов между выводами в 100 В и количестве витков в тысячу, в среднем, между соседними точками спирали падает 0,1 В. Для вычисления цифры делим 100 на 1000. Собственная ёмкость пропорциональна квадрату 0,1 и не окажется слишком большой.
  • Тогда Тесла предлагает взглянуть на второй чертёж, где представлена катушка бифилярная. Это плоская спираль, но два провода вьются рядом. Причём концы второго контура закорочены и соединены с выводом первого. Получается, что альтернативная нить по длине обнаруживает одинаковый потенциал. Если представить, что к конструкции приложено 100 В, результат изменится. Действительно, теперь поблизости идут провода двух разных нитей, причём на единственной по длине — исключительно нуль. В результате, в среднем, разница потенциалов составляет 50 В, а собственная ёмкость катушки Тесла больше, нежели у предыдущей схемы, в 250000 раз. Это значительная разница, и очевидно, возможно найти выгодные параметры сети. К примеру, Тесла работал на частотах 200 — 300 кГц.

Изобретатель указывает, что испробовал различные формы и конфигурации. В смысле полезности квадрат не отличается от представленного на рисунках круга или прямоугольника. Форму волен выбирать конструктор. Катушки Тесла не находят сегодня массового применения. Изобретателю воспротивились предприниматели. Неизвестен разговор, произошедший между бизнесменами и Эдисоном, но, числясь акционерами новой ГЭС, магнаты прослышали, что башня Ворденклифа, построенная на удобном месте, способна стать первой пташкой в передаче энергии на расстояния без проводов.

Спонсор строительства был хозяином медных заводов и хотел просто продавать металл. Беспроводной метод передачи энергии невыгоден. Если бы Дж. П. Морган знал, что сегодня большая часть кабелей изготавливается из алюминия, возможно, отнёсся бы иначе, но вышло, что Никола Тесла достраивал башню в гордом одиночестве, и конструкция не приняла предполагаемого размаха.

По второй версии Никола Тесла задумал создавать энергию из воздуха, о чем судачат на Ютуб. Некий изобретатель доказывает, что в сердцевину магнита, на равном удалении от полюсов втягивается энергия эфира, и требуется уметь преобразовать её в электричество. Изложена кратко идея Теслы. Мастер-самоучка, осмелившийся на выставке представить генератор свободной энергии на 13 кВт, исчез в неизвестном направлении заодно с семьёй. Подобные факты наводят на мысль, что у башни Ворденклифа оказалось гораздо больше противников, чем принято думать.

По замыслу Тесла предвиделось 30 фабрик в мире. Они производили бы и принимали энергию, вели широкое вещание. По-видимому, посчитали, что это станет крахом местной экономики, хотя двигатели Бедини и сегодня строят, используя теории Тесал. Итак, катушки лежали в основе передающих и приёмных устройств: конструкция идентичная. Но сегодня эти любопытные изобретения надёжно забыты, если не считать микрополосковых технологий, где встречаются квадратные и круглые спирали-индуктивности аналогичного толка.

Трансформатор Тесла

Выше сказано, что в основе передающих устройств лежали катушки Тесла, допустимо назвать резонансными трансформаторами. Посредством трансформаторной связи на катушку Тесла закачивается высокий потенциал. Заряд идёт до пробоя разрядника, потом начинаются колебания на резонансной частоте. Если одна трансформаторная связь через катушку с большим количеством витков передаёт высокое напряжение на излучатель или разрядник.

Любой волен убедиться, что конструкция башни Ворденклиф напоминает гриб, но в основании лежит плоская катушка Тесла. В качестве излучателя применяется больших объёмов тор, обладающий ёмкостным сопротивлением. В современном виде промежуточный контур содержит обычные конденсаторы, настраиваемые под параметры «бублика». Большим достоинством конструкции считается отсутствие ферромагнитных материалов.

Изобретенная в 1891 году Николой Тесла, катушка Тесла была создана для проведения экспериментов по изучению высоковольтных разрядов. Это устройство состоит из источника питания, конденсатора, двух катушек, между которыми будет циркулировать заряд, и двух электродов, между которыми будет проскакивать разряд. Катушку Тесла, нашедшую применение в великом множестве устройств (от ускорителя частиц и телевидения до детских игрушек) можно сделать дома из радиодеталей.

Шаги

Часть 1

Проектирование катушки Тесла

    Определитесь с размером и расположением катушки Тесла перед тем, как браться за дело. Вы можете сделать настолько большую катушку Тесла, насколько позволяет ваш бюджет; но учтите, создаваемые катушкой искровые разряды разогревают воздух, который сильно расширяется (в результате создавая гром). Электромагнитное поле, создаваемое катушкой, может вывести из строя электроприборы, так что лучше расположить ее в отдаленном месте, вроде гаража или мастерской.

    • Чтобы выяснить, насколько длинную дугу вы сможете получить, или какой мощности блок питания потребуется, разделите расстояние между электродами в сантиметрах на 4,25 и возведите в квадрат – получите необходимую мощность в Ваттах. Соответственно, чтобы найти расстояние между электродами, умножьте квадратный корень мощности на 4,25. Катушка Тесла, способная создать дугу длинной 1,5 метра, потребует 1 246 Вт. Катушка с блоком питания на 1кВт может создать искру длиной 1,37 метра.
    • Ознакомьтесь с терминологией. Создание катушки Тесла потребует от вас понимания определенных научных терминов и знания единиц измерения. Вам будет необходимо понимать их значение и смысл, чтобы сделать все правильно. Здесь представлена некоторая информация, которая вам пригодится:

      • Электрическая емкость – это способность накапливать и удерживать электрический заряд определенного напряжения. Устройство, созданное для накапливания электрического заряда, называется конденсатор. Единица измерения электрического заряда – фарад (обозначается "Ф"). Фарад можно выразить как 1ампер секунда (Кулон), умноженная на вольт. Зачастую емкость измеряется в долях фарада, таких как микрофарад (мФ) – миллионная доля фарада, пикофарад (пкФ) – триллионная доля фарада.
      • Самоиндукция – это явление возникновения ЭДС в проводнике при изменении проходящего через него тока. Высоковольтные провода, по которым течет низкоамперный ток, обладают высокой самоиндукцией. Единица измерения самоиндукции – генри (сокращенно "Гн"). Один генри соответствует цепи, в которой изменение тока со скоростью один ампер в секунду создает ЭДС 1Вольт. Индуктивность часто измеряют в долях генри: миллигенри ("мГн"), тысячная доля генри или микрогенри ("мкГн"), миллионная часть генри.
      • Резонансная частота – это частота, на которой потери на передачу энергии минимальны. Для катушки Тесла это частота минимальных потерь при передачи энергии между первичной и вторичной обмотками. Частота измеряется в герцах (сокращенно "Гц"), определяется как один цикл в секунду. Зачастую, резонансная частота измеряется в килогерцах ("кГц"), килогерц равняется 1000 Гц.
    • Соберите все необходимые детали. Вам понадобится: трансформатор, первичный конденсатор высокой емкости, разрядник, первичная катушка низкой индуктивности, вторичная катушка с высокой индуктивностью, вторичный конденсатор с небольшой емкостью и устройство для гашения высокочастотных импульсов, которые возникают при высоких напряжениях во время работы катушки Тесла. Более подробную информацию о необходимых деталях вы найдете в разделе статьи "Изготовление катушки Тесла".

      • Источник питания должен через дроссель питать первичный или накопительный колебательный контур, который состоит из первичного конденсатора, первичной катушки и разрядника. Первичная катушка должна располагаться рядом с вторичной катушкой, которая является элементом вторичного колебательного контура, но контуры не должны быть соединены проводами. Как только вторичный конденсатор накопит достаточный заряд, он будет испускать электрические разряды в воздух.
    • Сделайте первичный конденсатор. Его можно сделать из множества маленьких конденсаторов, соединенных в цепь, которые будут накапливать равные доли заряда в первичном контуре. Для этого все конденсаторы должны иметь одинаковую емкость. Такой конденсатор называется составным.

      • Конденсаторы малой емкости и нагрузочные резисторы можно приобрести в магазине радиодеталей или снять керамические конденсаторы со старого телевизора. Вы также можете сделать конденсаторы из алюминиевой фольги и полиэтиленовой пленки.
      • Чтобы добиться максимальной мощности, первичный конденсатор должен полностью заряжаться каждые пол цикла подачи энергии. Для 60 Гц источника питания, заряд должен происходить 120 раз в секунду.
    • Спроектируйте разрядник. Если вы хотите сделать одиночный разрядник, вам нужно использовать провод минимум 6 миллиметров толщиной, чтобы электроды могли выдерживать тепло, выделяемое во время разряда. Вы также можете сделать многоэлектродный разрядник, роторный разрядник или охлаждать электроды, обдувая воздухом. Для этих целей можно приспособить старый пылесос.

      Сделайте обмотку первичной катушки. Сама катушка будет сделана из проволоки, но вам потребуется форма, вокруг которой наматывать проволоку. Следует использовать лакированную медную проволоку, которую вы сможете купить в магазине радиодеталей или снять с ненужного электроприбора. Форма, вокруг которой вы будете обматывать проволоку, должна быль либо цилиндрической, например картонная или пластиковая трубка, либо коническая, например, старый абажур.

      • Длина проволоки будет определять индуктивность первичной катушки. Первичная катушка должна обладать низкой индуктивностью, так что она будет состоять из небольшого количества витков. Проволока для первичной катушки не обязательно должна быть сплошной, вы можете скреплять секции, чтобы регулировать индуктивность походу сборки.
    • Соберите первичный конденсатор, разрядник и первичную катушку в одну цепь. Эта цепь образует первичный колебательный контур.

    • Сделайте вторичную катушку индуктивности. Как и для первичной катушки, вам нужна цилиндрическая форма, на которую вы будете наматывать проволоку. Вторичная катушка должна иметь такую же резонансную частоту, как и первичная, чтобы избежать потерь. Вторичная катушка должна быть длиннее/выше, чем первичная, так как должна обладать большей индуктивностью и препятствовать разряду вторичного контура, который может привести к тому, что первичная катушка сгорит.

      • Если у вас не хватает материалов сделать достаточно большую вторичную катушку, вы можете сделать разрядный электрод, чтобы защитить первичный контур, но это приведет к тому, что большая часть разрядов будет приходиться на этот электрод и их не будет видно.

Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.

Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.

Принцип катушки Тесла

Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.

Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.

Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.

Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.

Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.

Вторая катушка и C s образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.

Главные свойства катушки Тесла:

  • Частота второго контура.
  • Коэффициент обеих катушек.
  • Добротность.

Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром.

Подобие с качелями

Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.

Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.

Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.

Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же .

Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.

Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.

Главные катушки Тесла

Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.

  • Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
  • Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
  • Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
  • Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.

Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).

Главные элементы катушки Тесла

В разных конструкциях основные черты и детали общие.

  • Тороид – имеет 3 опции.Первая – снижение резонанса.
    Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.
    Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.
    Тороиды можно изготовить из гофры и других материалов.
  • Вторичная катушка – базовая составляющая Тесла.
    Длина в пять раз больше диаметра мотки.
    Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.
    Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.
    Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства.
  • Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
  • Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.
    Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.
    Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.
    Эти обмотки изготавливают в виде цилиндра, конуса.

  • Заземление – это важная составляющая часть.
    Стримеры бьют в заземление, замыкают ток.
    Будет недостаточное заземление, то стримеры будут ударять в катушку.

Катушки подключены к питанию через землю.

Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».

Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.

Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.

Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.

Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.

Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.

Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.

Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.

Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность.

Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.

Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.

Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.

Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.

Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.

  • Два провода скрепляются, оголенные концы были повернуты в сторону.
  • Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
  • Подключается питание катушке Тесла своими руками.
  • Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
  • Заземление второй катушки.

Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.

Безопасность

Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мехах защиты.

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Бифилярная катушка Тесла

Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке.

Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом.

Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

В нашем мире постоянно происходят удивительные вещи. Вот и великий изобретатель Никола Тесла в свое время изобрел чудо техники — катушку Тесла. Это трансформатор, позволяющий повысить выходное напряжение и частоту электрического тока во много раз. В простонародье это устройство называют катушкой Тесла.

Сегодня большое количество техники использует принцип работы изобретения великого физика прошлых лет. Однако с того времени технологии усовершенствовались, поэтому появились более современные виды трансформаторов, однако их также называют катушками Тесла.

Виды катушек Тесла

  • Собственно, катушка самого Теслы (в составе использовался разрядник);
  • Трансформатор на радиолампе;
  • Катушка на транзисторах;
  • Катушки резонанса (две штуки).

Все катушки имеют схожий принцип работы, различаются только сложность их сборки и используемая электроника.


Рассматривая фото самодельных катушек Тесла, поневоле захочешь точно такую же себе домой. Ведь их работа настолько красивое зрелище, что невозможно оторвать глаз.

Однако многие опасаются браться за изготовление такого прибора, оправдывая это тем, что на работу уйдет много времени и сил, да и еще все это опасно для жизни.

Но заверяем вас, схема обычной катушки Тесла довольно проста. А потому приглашаем вам самостоятельно собрать это необычное устройство.

Пошаговая сборка катушки Тесла самостоятельно

Итак, высший пилотаж нам демонстрировать не нужно, поэтому будем делать самую простую катушку, использующую в своей сборке транзистор. Она наиболее щадящая по затратам времени и денег, а потому идеально нам подходит.


Строение катушки Тесла

  • Первичная катушка (первичный контур);
  • Вторичная катушка (вторичный контур);
  • Источник питания;
  • Заземление;
  • Кольцо защиты.

Это основные элементы трансформаторов. Нужно отметить, что в различных видах катушек могут встречаться и другие составляющие.

Принцип работы устройства

Источник питания подает на первичный контур нужное напряжение. После чего контур производит высокочастотные колебания, которые, в свою очередь, вынуждают вторичный контур создать свои колебания, идущие с первыми в резонансе. Благодаря этому, во второй катушке возникает ток с большим напряжением и частотой, который и образует столь ожидаемый эффект — стример. Теперь нужно собрать все элементы в одну кучу.

Необходимые материалы

  • В роли источника возьмем автомобильный аккумулятор (или любой другой источник постоянного напряжения 12-19 В);
  • Медный провод (желательно в эмали) диаметром от 0,1 до 0,3 мм. и длинной около 200 метров;
  • Еще один медный провод диаметром 1 мм;
  • Два каркаса (диэлектрика). Один (для вторичного контура) диаметром от 4 до 7 см. и длинной 15-30 см. Другой (для первичного контура) должен быть на несколько сантиметров больше в диаметре и короче в длине;
  • Транзистор D13007 (можно использовать другие, идентичные ему);
  • Плата;
  • Немного резисторов на 5 — 75 кОм, мощностью 0,25 Вт.


Сборка катушки Тесла самостоятельно дома

Вот мы плавно и подошли к сборке самой установки. Сначала создадим вторичный контур. Плотно без перехлестов наматываем тонкую проволоку диаметром 0,15 мм на длинный каркас. Нужно сделать не менее 1000 витков (но и сильно много не надо). После этого покрываем катушку лаком в несколько слоев (можно использовать и другие материалы), чтобы проволока не повредилась в дальнейшем.

Теперь о терминале. Он позволяет контролировать стриммеры, однако при небольших мощностях в нем нет необходимости, вместо этого можно просто вывести конец катушки вверх на несколько сантиметров.

Для другой катушки наматываем на оставшийся каркас толстую проволоку. Всего надо сделать 10 витков. Вторичный контур должен находиться внутри первичного.

Теперь устанавливаем все так, чтобы конструкция не свалилась и первичный и вторичный контуры не столкнулись вместе (именно для этого и нужен каркас). В идеале расстояние между ними должно быть в районе 1 см.

После соединяем все воедино. К плюсу источника питания подсоединяем первичный контур и один резистор, к которому последовательно подключаем другой резистор. К концу второго резистора подключаем вторичный контур и транзистор. Другой конец первичного контура подключаем ко второму контакту транзистора. А третий контакт транзистора подключаем к минусу источника питания.

При подключении важно не перепутать контакты транзистора. Также к нему нужно прикрутить радиатор или другое охлаждение. Все готово, можно пробовать устройство на деле. Однако не стоит забывать о безопасности. Ничего не трогать, только в диэлектрике!

Проверить работоспособность установки можно по наличию стримера или, если такового нет, можно поднести лампочку к катушке, и если она загорится, то все в порядке.

Фото катушек Тесла своими руками