ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Возведение в степень: правила, примеры. Отрицательная степень

можно найти с помощью умножения. Например: 5+5+5+5+5+5=5х6. О таком выражении говорят, что сумму равных слагаемых свернули в произведение. И наоборот, если читать это равенство справа налево, получаем, что мы развернули сумму равных слагаемых. Аналогично можно сворачивать произведение нескольких равных множителей 5х5х5х5х5х5=5 6 .

То есть вместо умножения шести одинаковых множителей 5х5х5х5х5х5 пишут 5 6 и говорят «пять в шестой степени».

Выражение 5 6 - это степенью числа, где:

5 - основание степени;

6 - показатель степени.

Действия, с помощью которых произведение равных множителей сворачивают в степень, называют возведением в степень.

В общем виде степень с основанием "a" и показателем "n" записывается так

Возвести число a в степень n - значит найти произведение n множителей, каждый из которых равен а

Если основание степени «а» равно 1, то значение степени при любом натуральном n будет равно 1. Например, 1 5 =1, 1 256 =1

Если возвести число «а» возвести в первую степень , то получим само число a: a 1 = a

Если возвести любое число в нулевой степень , то в результате вычислений получим один. a 0 = 1

Особыми считают вторую и третью степень числа. Для них придумали названия: вторую степень называют квадратом числа , третью - кубом этого числа.

В степень можно возводить любое число - положительное, отрицательное или нуль. При этом не пользуются следующими правилами:

При нахождении степени положительного числа получается положительное число .

При вычислениях нуля в натуральной степени получаем ноль.

х m · х n = х m + n

например: 7 1.7 · 7 - 0.9 = 7 1.7+(- 0.9) = 7 1.7 - 0.9 = 7 0.8

Чтобы разделить степени с одинаковыми основаниями основание не меняем, а показатели степеней вычитаем :

х m / х n = х m — n , где, m > n,

например: 13 3.8 / 13 -0.2 = 13 (3.8 -0.2) = 13 3.6

При расчетах возведения степени в степень основание не меняем, а показатели степеней умножаем друг на друга.

(у m ) n = у m · n

например: (2 3) 2 = 2 3·2 = 2 6

(х · у) n = х n · у m ,

например:(2·3) 3 = 2 n · 3 m ,

При выполнении расчетов по возведению в степень дроби мы в данную степень возводим числитель и знаменатель дроби

(х / у) n = х n / у n

например: (2 / 5) 3 = (2 / 5) · (2 / 5) · (2 / 5) = 2 3 / 5 3 .

Последовательность выполнения расчетов при работе с выражениями содержащими степень.

При выполнении расчетов выражений без скобок, но содержащих степени, в первую очередь производят возведение в степень, потом действия умножение и деление, и лишь потом операции сложения и вычитания.

Если необходимо вычислить выражение содержащие скобки, то сначала в указанном выше порядке делаем вычисления в скобках, а потом оставшиеся действия в том же порядке слева направо.

Очень широко в практических вычислениях для упрощения расчетов используют готовые таблицы степеней.


В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .

Как известно, в математике существуют не только положительные числа, но и отрицательные. Если знакомство с положительными степенями начинается с определения площади квадрата, то с отрицательными всё несколько сложнее.

Это следует знать:

  1. Возведением числа в натуральную степень называется умножение числа (понятие число и цифра в статье будем считать эквивалентными) само на себя в таком количестве, каков показатель степени (в дальнейшем будем использовать параллельно и просто слово показатель). 6^3 = 6*6*6 = 36*6 =216. В общем виде это выглядит так: m^n = m*m*m*…*m (n раз).
  2. Нужно учитывать, что при возведении отрицательного числа в натуральную степень, оно станет положительным, если показатель чётный.
  3. Возведение числа в показатель 0 даёт единицу, при условии, что оно не равно нулю. Ноль в нулевой степени считается неопределённым. 17^0 = 1.
  4. Извлечением корня некой степени из числа называется нахождение такого числа, которое при возведении в соответствующий показатель даст искомое. Так, корень кубический из 125 равен 5, поскольку 5^3 = 125.
  5. Если требуется возвести число в дробную положительную степень, то необходимо возвести число в показатель знаменателя и извлечь из него корень показателя числителя. 6^5/7 = корень седьмой степени из произведения 6*6*6*6*6.
  6. Если требуется возвести число в отрицательный показатель, то необходимо найти цифру обратную данной. x^-3 = 1/x^3. 8^-4 = 1/8^4 = 1/8*8*8*8 = 1/4096.

Возведение в отрицательную степень числа по модулю от нуля до единицы

Сначала нам следует вспомнить, что такое модуль . Это расстояние на координатной прямой от выбранного нами значения до начала отсчёта (нуля координатной прямой). По определению он никогда не может быть отрицательным.

Значение больше нуля

При значении цифры в промежутке от нуля до единицы отрицательный показатель даёт увеличение самой цифры. Происходит это из-за уменьшения знаменателя, остающегося при этом положительным.

Рассмотрим на примерах:

  • 1/7^-3 = 1/(1/7^3) = 1/(1/343) = 343;
  • 0,2^-5 = 1/0,2^5 = 1/0,2*0,2*0,2*0,2*0,2 = 1/0,00032 = 3125.

Причём, чем больше модуль показателя, тем активнее растёт цифра. При стремлении знаменателя к нулю — сама дробь стремится к плюс бесконечности.

Значение меньше нуля

Сейчас рассмотрим как возводить в отрицательную степень, если цифра меньше нуля. Принцип тот же, что и в предыдущей части, но здесь имеет значение знак показателя.

Опять-таки обратимся к примерам:

  • -19 / 21^-4 = 1/(-19/21)^4 = 1/(-19)^4/21^4 = 21^4/(-19)^4 = 21*21*21*21/(-19)*(-19)*(-19)*(-19) = 194481/130321 = 1,4923228;
  • -29/40^-5 = 1/(-29/40)^5 = 1/(-29)^5/40^5 = 40^5/(-29)^5 = 40*40*40*40*40/(-29)*(-29)*(-29)*(-29)*(-29) = 102400000/(-20511149) = -4,9924.

В данном случае, мы видим, что модуль продолжает расти , а вот знак зависит от чётности или нечётности показателя.

Следует заметить, если мы возводим единицу, то она всегда останется сама собой. В случае, если нужно возвести число минус один, то при чётном показателе степени она превратится в единицу, при нечётном останется минус единицей.

Возведение в целую отрицательную степень если модуль больше единицы

Для цифр, чей модуль больше единицы, есть свои особенности действий. Прежде всего, нужно целую часть дроби перевести в числитель, то есть перевести в неправильную дробь. Если у нас имеется десятичная дробь, то её необходимо перевести в обычную. Делается это следующим образом:

  • 6 целых 7/17 = 109/17;
  • 2,54 = 254/100.

Теперь рассмотрим, как возвести число в отрицательную степень в данных условиях. Уже из вышеизложенного, мы можем предположить, чего нам ждать от результата вычислений. Так как двойная дробь при упрощениях переворачивается, то модуль цифры будет уменьшаться тем быстрее, чем больше модуль показателя.

Для начала рассмотрим ситуацию, когда данная в задании цифра положительная .

Прежде всего, становится понятно, что конечный результат будет больше нуля, ибо деление двух положительных всегда дает положительное. Снова рассмотрим на примерах как это делается:

  • 6 целых 1/20 в минус пятой степени = 121/20^-5 = 1/(121/20)^5 = 1/121^5/20^5 = 20^5/121^5 = 3200000/25937424601 = 0,0001234;
  • 2,25^-6 = (225/100)^-6 = 1/(225/100)^6 = 1/225^6/100^6 = 100^6/225^6 = 100*100*100*100*100*100/225*225*225*225*225*225 = 0,007413.

Как видим, особых сложностей действия не вызывают, и все наши первоначальные предположения оказались истинными.

Теперь обратимся к случаю отрицательной цифры .

Для начала можно предположить, что если показатель чётный, то итог будет положительным, если показатель нечётный, то и результат окажется отрицательным. Все предыдущие наши выкладки в данной части, будем считать действительными и сейчас. И снова разберём на примерах:

  • -3 целых 1/2 в минус шестой степени = (-7/2)^-6 = 1/(-7/2)^6 = 1/(-7)^6/2^6 = 2*2*2*2*2*2/(-7)*(-7)*(-7)*(-7)*(-7)*(-7) = 64/117649 = 0,000544;
  • -1,25^-5 = (-125/100)^-5 = 1/(-125/100)^5 = 1/(-125)^5/100^5 = 100^5/(-125)^5 = 100*100*100*100*100/(-125)*(-125)*(-125)*(-125)*(-125) = 10000000000/(-30517578125) = -0.32768.

Таким образом, все наши рассуждения оказались верными.

Возведение в случае отрицательного дробного показателя

Здесь нужно запомнить что подобное возведение есть извлечение корня степени знаменателя из числа в степени числителя . Все предыдущие наши рассуждения остаются верными и на сей раз. Поясним наши действия на примере:

  • 4^-3/2 = 1/4^3/2 = 1/rad(4^3) = 1/rad64 = 1/8.

В этом случае, нужно иметь в виду, что извлечение корней высокого уровня возможно только в специально подобранном виде и, скорее всего, избавиться от знака радикала (корня квадратного, кубического и так далее) при точных вычислениях вам не удастся.

Все же, подробно изучив предыдущие главы, сложностей в школьных вычислениях ожидать не стоит.

Следует заметить, что под описание данной главы подходит и возведение с заведомо иррациональным показателем , например, если показатель равен минус ПИ. Действовать нужно по вышеописанным принципам. Однако, вычисления в подобных случаях становятся настолько сложными, что под силу только мощным электронно-вычислительным машинам.

Заключение

Действие, которое мы изучали, является одной из самых сложнейших задач в математике (особенно в случае дробно-рационального или иррационального его значения). Однако, подробно и пошагово изучив данную инструкцию, можно научиться без особых проблем проделывать это на полном автомате.

Калькулятор помогает быстро возвести число в степень онлайн. Основанием степени могут быть любые числа (как целые, так и вещественные). Показатель степени также может быть целым или вещественным, и также как положительным, так и отрицательным. Следует помнить, что для отрицательных чисел возведение в нецелую степень не определено и потому калькулятор сообщит об ошибке в случае, если вы всё же попытаетесь это выполнить.

Калькулятор степеней

Возвести в степень

Возведений в степень: 20880

Что такое натуральная степень числа?

Число p называют n -ой степенью числа a , если p равно числу a , умноженному само на себя n раз: p = a n = a·...·a
n - называется показателем степени , а число a - основанием степени .

Как возвести число в натуральную степень?

Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:

Пример 1 . Возвести число три в четвёртую степень. То есть необходимо вычислить 3 4
Решение : как было сказано выше, 3 4 = 3·3·3·3 = 81 .
Ответ : 3 4 = 81 .

Пример 2 . Возвести число пять в пятую степень. То есть необходимо вычислить 5 5
Решение : аналогично, 5 5 = 5·5·5·5·5 = 3125 .
Ответ : 5 5 = 3125 .

Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n раз.

Что такое отрицательная степень числа?

Отрицательная степень -n числа a - это единица, поделённая на a в степени n: a -n = .

При этом отрицательная степень существует только для отличных от нуля чисел, так как в противном случае происходило бы деление на ноль.

Как возвести число в целую отрицательную степень?

Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.

Пример 1 . Возвести число два в минус четвёртую степень. То есть необходимо вычислить 2 -4

Решение : как было сказано выше, 2 -4 = = = 0.0625 .

Ответ : 2 -4 = 0.0625 .


В продолжение разговора про степень числа логично разобраться с нахождением значения степени. Этот процесс получил название возведение в степень . В этой статье мы как раз изучим, как выполняется возведение в степень, при этом затронем все возможные показатели степени – натуральный, целый, рациональный и иррациональный. И по традиции подробно рассмотрим решения примеров возведения чисел в различные степени.

Навигация по странице.

Что значит «возведение в степень»?

Начать следует с объяснения, что называют возведением в степень. Вот соответствующее определение.

Определение.

Возведение в степень – это нахождение значения степени числа.

Таким образом, нахождение значение степени числа a с показателем r и возведение числа a в степень r – это одно и то же. Например, если поставлена задача «вычислите значение степени (0,5) 5 », то ее можно переформулировать так: «Возведите число 0,5 в степень 5 ».

Теперь можно переходить непосредственно к правилам, по которым выполняется возведение в степень.

Возведение числа в натуральную степень

На практике равенство на основании обычно применяется в виде . То есть, при возведении числа a в дробную степень m/n сначала извлекается корень n -ой степени из числа a , после чего полученный результат возводится в целую степень m .

Рассмотрим решения примеров возведения в дробную степень.

Пример.

Вычислите значение степени .

Решение.

Покажем два способа решения.

Первый способ. По определению степени с дробным показателем . Вычисляем значение степени под знаком корня, после чего извлекаем кубический корень: .

Второй способ. По определению степени с дробным показателем и на основании свойств корней справедливы равенства . Теперь извлекаем корень , наконец, возводим в целую степень .

Очевидно, что полученные результаты возведения в дробную степень совпадают.

Ответ:

Отметим, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, в этих случаях его следует заменить соответствующей обыкновенной дробью, после чего выполнять возведение в степень.

Пример.

Вычислите (44,89) 2,5 .

Решение.

Запишем показатель степени в виде обыкновенной дроби (при необходимости смотрите статью ): . Теперь выполняем возведение в дробную степень:

Ответ:

(44,89) 2,5 =13 501,25107 .

Следует также сказать, что возведение чисел в рациональные степени является достаточно трудоемким процессом (особенно когда в числителе и знаменателе дробного показателя степени находятся достаточно большие числа), который обычно проводится с использованием вычислительной техники.

В заключение этого пункта остановимся на возведении числа нуль в дробную степень. Дробной степени нуля вида мы придали следующий смысл: при имеем , а при нуль в степени m/n не определен. Итак, нуль в дробной положительной степени равен нулю, например, . А нуль в дробной отрицательной степени не имеет смысла, к примеру, не имеют смысла выражения и 0 -4,3 .

Возведение в иррациональную степень

Иногда возникает необходимость узнать значение степени числа с иррациональным показателем . При этом в практических целях обычно достаточно получить значение степени с точностью до некоторого знака. Сразу отметим, что это значение на практике вычисляется с помощью электронной вычислительной техники, так как возведение в иррациональную степень вручную требует большого количества громоздких вычислений. Но все же опишем в общих чертах суть действий.

Чтобы получить приближенное значение степени числа a с иррациональным показателем , берется некоторое десятичное приближение показателя степени , и вычисляется значение степени . Это значение и является приближенным значением степени числа a с иррациональным показателем . Чем более точное десятичное приближение числа будет взято изначально, тем более точное значение степени будет получено в итоге.

В качестве примера вычислим приближенное значение степени 2 1,174367... . Возьмем следующее десятичное приближение иррационального показателя: . Теперь возведем 2 в рациональную степень 1,17 (суть этого процесса мы описали в предыдущем пункте), получаем 2 1,17 ≈2,250116 . Таким образом, 2 1,174367... ≈2 1,17 ≈2,250116 . Если взять более точное десятичное приближение иррационального показателя степени, например, , то получим более точное значение исходной степени: 2 1,174367... ≈2 1,1743 ≈2,256833 .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).