ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Обязательная система заземления для всех зданий. Системы заземления в частном доме: разновидности, отличия и особенности конструкции. Заземление TN и его подвиды

Всем известны системы энергоснабжения с напряжением до 1000 вольт, на уровне конечного потребителя. Они бывают всего двух видов:

  • трехфазная (три фазы и рабочий нуль), где напряжение между фазами составляет 380 вольт, а между каждой фазой и нулем - 220 вольт.
  • однофазная (одна из трех фаз с общего ввода на объект, и рабочий нуль), напряжение между каждой фазой и нулем составляет 220 вольт.

А вот с системами безопасности, ситуация гораздо сложнее. Для организации искусственного заземления, ГОСТ предусматривает 5 систем: TN-C, TN-S, TN-C-S, TT, IT.

Правила устройства электроустановок (ПУЭ) определяют условия, на основании которых проектировщики выбирают систему заземления объекта. Она отражается в проектной документации, и не может быть изменена после сдачи объекта в эксплуатацию.

В большинстве случаев, применяется система заземления TN, которая предусматривает обязательное заземление нейтрали источника питания. При этом открытые токоведущие части конечных электроустановок, могут быть соединены с нейтралью источника питания различными способами.

Каждая из предложенных систем искусственного заземления имеет свои преимущества и недостатки. При этом, любая из них направлена на решение вопросов безопасной эксплуатации электроустановок, и нахождения людей на объекте.

Условные обозначения

Для лучшего понимания материала, разберем принятые условные обозначения:

  • L1, L2, L3 - проводник, на который подключена фаза источника питания. В однофазных системах, обозначается буквой L.
  • N - рабочий нуль источника питания (нулевой проводник).
  • PE - защитный нуль: он же заземляющий проводник, соединенный с заземлителем.
  • PEN - проводник, совмещающий в себе рабочий и защитный нули.

TN-S

Самая безопасная система, это TN-S.

Силовой кабель для соединения потребителя электроэнергии с источником питания, выполнен по пятижильной схеме: три фазы (L1, L2, L3), рабочий нуль (N) и рабочее заземление (PE). Объединение нуля и «земли» происходит на ближайшей подстанции. При аварийной ситуации, если рабочий нуль отгорит, корпуса электроустановок все равно остаются присоединенными к заземлению. Защита от поражения электротоком обеспечивается независимо от состояния нулевого провода. Соответственно, внутренняя разводка к потребителям выполняется трехжильным проводом (для однофазного подключения), либо тем же пятижильным (при наличии трехфазных электроустановок: например, электропечей или отопительных систем).

На вводных щитках в каждом помещении, монтируются по две раздельные клеммные колодки: рабочий нуль и защитная земля.

Причем после «земляной» колодки нельзя устанавливать коммутационные устройства: выключатели, защитные автоматы. По всей длине, заземляющий проводник от заземлителя до электроустановки, не должен иметь размыкающих устройств.

Вы спросите: «а как же розетка?» При извлечении из нее вилки, линия заземления действительно размыкается. Но при этом электроустановка полностью обесточивается, и перестает быть опасной.

TN-C

Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.

В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.

Заземление TN-C не обеспечивает полной безопасности по следующей причине:

«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).

Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками - напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.

В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.

По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину - подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!

Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.

Металлический уголок длиной 50 см, забитый в палисадник у подъезда, заземлителем не является!

Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.

TN-C-S

Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.

Как она устроена, и в чем отличие от TN-S?

В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.

На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.

В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.

Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.

При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.

Совет. При заключении договора с исполнителем работ по капитальному ремонту, необходимо заранее оговаривать вопрос заземления.

Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.

Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем - с системой отопления.

Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.

Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.

Вывод

Единственный безопасный способ - установить недалеко от подъезда контур заземления (согласно ПУЭ), и завести на объект надежный проводник.

После чего, можно развести полноценное заземление по квартирам. Разумеется, лучше поручить эту работу квалифицированным специалистам.

Видео по теме

Стандарт Стандарт ПУЭ 1.7, EN60950, IEC60364
Схемы электроснабжения нагрузки TNC, TNCS, TNS, TT, IT

TNC – Нейтраль и PE («земля») объединены вместе везде в системе в единую щину PEN.
Neutral and PE (protected earth conductor) are combined throughout the system.

TNS – Нейтраль соединена с землёй трансформатора, но не соединена с землёй (PE) где-нибудь ещё в системе. PE приходит на объект от трансформатора отдельно и может быть соединена с местной землёй.

Neutral is earthed at the transformer but is not bonded to earth or the PE elsewhere. PE is carried to the site from the transformer and bonded to site earth.

TNCS – Общая в начале шина PEN затем разъеделяется на 2 отдельных проводника: N (нейтраль) и PE (защищённую шину земли). Стандарт США – разновидность данного. Нейтраль заземлена на трансформаторе.

TNCS splits the combined PEN into a separate neutral and PE at service entry (U.S. practice is a variation of this). The neutral is earthed at the transformer.

TT – Нейтраль заземлена на трансформаторе. Местная Земля – PE (объект-потребитель) не связана с нейтралью. Между землёй трансформатора и землёй потребителя (PE) соединений нет.

Neutral is earthed at the transformer. The PE originates at site but is not bonded to the neutral. There is no interconnection between PE and transformer earth.

IT – Нейтраль трансформатора не заземлена (или заземлена через сопротивление с высоким импедансом).

The transformer is unearthed (or earthed through high impedance). The PE originates at site but is not bonded to a service conductor; no conductor in this system is designated as ‘neutral’ (standard IT system).

Разновидности IT системы:

  • A) проводник «N / Нейтраль» отсутствует в системе (стандартная счистема IT).
  • B) проводник «N / Нейтраль» есть в системе.

Нейтраль на потребителе также не заземлена (или заземлена через сопротивление с высоким импедансом).

Для обоих случаев возможны разновидности:

  • I) Местная Земля – PE (объект-потребитель) отсутствует. Потребитель использует PE от трансформатора.
  • II) Местная Земля – PE (объект-потребитель) есть. Потребитель может использовать местную Землю или Землю трансформатора. Эти Земли могут быть как соединены так и не соединены.

Главное требование системы IT – незаземлённая или импедансно-заземлённая нейтраль трансформатора.


Термины / сокращения:

  • T – Terra / Земля (лат. terra, франц. terre)
  • N – Neutral / Нейтраль
  • C – Combined / Совмещённый
  • S – Separated / Отдельный
  • I – Isolated / Изолированный (франц. terre isolee)
  • PE – Protected Earth conductor / Защищённая шина Земли
  • PEN – Protected Earth + Neutral conductor / единая шина объединяющая Нейтраль (N) и Землю (PE)

Различные стандарты СИСТЕМ ЗАЗЕМЛЕНИЯ

Трём системам заземления дан официальный статус посредством стандарта (IEC 60364) который подразделяется на большое число национальных стандартов.

Системы TN

Основные принципы схемы TN:

  • Нейтраль трансформатора заземлена, поэтому корпуса нагрузок (подключенные к заземлению PE или PEN трансформатора) оказываются гальванически соединены с нейтралью.

Существующие варианты схемы TN:

  • TNC – «Земля» и нейтраль объединены в 1 проводнике (PEN) (C = Combined).
  • TNS – «Земля» и нейтраль разъединены (PE и N) (S = Separate).
  • TNCS = TNC+TNS Объединённые вначале «Земля» и нейтраль затем разъединяются (CS = Combined then Separate). То-есть TNC преобразуется в TNS.

Система TNS не может существовать перед системой TNC.

Система TNС (TN-C). Нарушение изоляции в системе TNC

Общие замечания:

В системе TNC, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Однако этого может привести к возникновению пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Cистема имеет самый низкий уровень безопасности так как УЗО корректно установить невозможно.

Несмотря на опасность система продолжает использоваться в России в т.ч. на госпредприятиях. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

Рис.1. Нарушение изоляции в системе TNC

Возможные варианты:

  • Человек коснулся фазного проводника и «Земли» одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус (на «Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус (на «Землю»).
Система TNS (TN-S). Нарушение изоляции в системе TNS

Общие замечания:

Максимальная степень безопасности может быть достигнута путём установки УЗО. Система является самой распространённой в мире. В России введена как стандарт.

Степень безопасности TNS выше чем TNC по следующим причинам (П1, П2):

  • П1) защитные автоматы в TNS при срабатывании могут размыкать цепь полностью (как нейтраль так и фазы), защитная шина «Земли» PE продолжает при этом выполнять свои функции. В то время, как и в системе TNC при аварии могут быть разомкнуты только фазы.
  • П2) Защитный проводник «Земля» PE выполняет только свои функции, то есть служит заземлением. В то время как в системе TNC защитный проводник выполняет сразу две функции: заземления и нейтрали, что может привести к проблемам, например: нагрузка (ПК) будет «зависать» от помех из-за некачественного заземления, так как на заземляющем проводнике возникают наводки (помехи), вызванные текущим по нему току нагрузки.

Подробные замечания:

Рис.2. Нарушение изоляции в системе TNS

Возможные варианты:

Система TNСS (TN-C-S). Нарушение изоляции в системе TNСS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Система защиты имеет средний уровень безопасности, так как установив УЗО можно добиться достаточно высокой степени безопасности, но при этом остаётся проблема некачественного заземления из-за использования объединённой шины PEN.

Используется достаточно часто в России. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:


Рис.3. Нарушение изоляции в системе TNCS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Система TT

Основные принципы схемы TT:

  • Нейтраль трансформатора заземлена.
  • «Земля» / корпус нагрузки также заземлены.
  • «Земля» трансформатора не связана кабелем с землёй нагрузки / потребителя (PE).
Нарушение изоляции в системе TT

Общие замечания:

Степень безопасности зависит от сопротивления между «Землей» трансформатора ТП и «Землей» потребителя. Если это сопротивление низкое, безопасность такая же как в TNS с УЗО. Если это сопротивление высокое, безопасность системы снижается, так как УЗО может не сработать.

Установка УЗО является общепринятой в системе TT. Данная система в России используется редко.

Подробные замечания:

Рис.4. Нарушение изоляции в системе TT

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Показана стандартная схема ТТ с УЗО. Ток пробоя (нарушения) изоляции фазных проводов и нейтрального провода ограничен сопротивлением (импедансом) участка между «Землей» трансформатора и «Землей» потребителя.

Защита обеспечена Устройством защитного отключения (УЗО): повреждённый блок / участок отключается устройством УЗО как только порог тока ΔI УЗО помещённого перед данным блоком / участком будет превышен током утечки / пробоя изоляции (на землю) IL :

IL > ΔI

IL = UL / RL – ток пробоя / утечки / leakage

Условие надёжной работы УЗО:

R (CD) << 220 В / ΔI; для УЗО с ΔI =30мА: R (CD) << 7кОм.

R (AB) =RL – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на «землю» и «Землей»).

U (AB) =UL – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на «землю») и «Землей» (напряжение пробоя).

R (CD) – сопротивления между «Землей» трансформатора ТП и «Землей» потребителя.

Если R (CD) мало (в норме), то при нарушении изоляции срабатывание УЗО будет обеспечивать безопасное отключение аварийного участка и свидетельствовать, что это место подлежит ремонту.

Если R (CD) велико (не в норме) и УЗО работать не будет, то первое нарушение изоляции не приведёт к удару током, но отсутствие сработавшего УЗО не позволит обнаружить аварию и сделать своевременный ремонт, а второй пробой приведёт к аварии.

Система IT (Изолированная нейтраль)

Основные принципы схемы IT:

Подробные замечания:

Рис.5б. Двойной пробой / нарушение изоляции в системах IT

I L1 = U Ф / R линии

U L1 = R L1 * I L1

Первое нарушение изоляции не опасно в IT! То есть человек безопасно может коснуться одновременно фазы и «Земли »в IT.

R L1 – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на землю и «Землей».

U L1 – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на землю) и «Землей» (напряжение пробоя).

U ф – фазное напряжение трансформатора

I L1 – ток пробоя / утечки / leakage.

Если происходит второе нарушение изоляции на другом фазном проводнике, в то время как первое нарушение ещё не устранено (см. рис. 5б), контактная разность потенциалов второго места нарушения (напряжение пробоя) равна U L2 = √3*U Ф -U L1 может быть велика и опасна.

При малых сопротивлениях первого и второго повреждённых участков (R L1 , R L2 ) значительный ток утечки может протекать по проводнику, соединяющему «земли» первого и второго повреждённого участков (корпуса нагрузок):

I L1 = I L2 = √3*U Ф / (R L1 + R L2)

Второе нарушение изоляции опасно в IT!

Корпуса нагрузок приобретают потенциалы, обусловленные этим током. Таким образом, если КЗ на 1 участке не опасно то последующее КЗ на 2 участке так же опасно, как и в системах TN. Поэтому необходимо УЗО.

Обозначения:

  • U L1 (U L2) – напряжение пробоя первого (второго) повреждённого участка.
  • U Ф – фазное напряжение трансформатора.
  • I L1 (I L2) – ток пробоя/утечки 1 участка (2 участка).
  • R L1 (R L2) – сопротивление 1 (2) повреждённого участка.

Совместное использование автоматов токовой защиты и УЗО обеспечивают в данных случаях необходимую защиту. В этом случае по безопасности система IT сравнима с TNS с УЗО, то есть срабатывание УЗО (аварийный участок отключается) свидетельствует о том, что произошло первое нарушение изоляции и позволяет его своевременно устранить.

Для надёжного срабатывания УЗО требуется установка принудительного сопротивления Z N (Нейтраль-«Земля») обычно не более 1500 Ом. Без этого сопротивления первый пробой нельзя обнаружить (и своевременно устранить), если в системе других устройств нет (кроме УЗО и токовых автоматов – см. ниже).

Кроме этих возможностей, только система IT позволяет ещё сильнее повысить безопасность.

Дополнительно повысить степень защищённости можно установкой ПМИ / PIM (постоянного мониторинга изоляции / датчика изоляции). ПМИ представляет собой высокоомный амперметр (или вольтметр, подключенный параллельно Z N ), включаемый так же как и Z N между Нейтралью и «Землей» ТП.

ПМИ позволяет:

  • Точно фиксировать серьёзные пробои фаза – «Земля», вплоть до КЗ.
  • Постоянно фиксировать состояние изоляции проводников в системе (медленное старение и ухудшение параметров изоляционного материала).

В отличие от остальных систем (TN, TT), это позволяет обнаружить первое нарушение изоляции, но не отключать аварийный участок (так как в IT первое нарушение изоляции не опасно), а довести работу на нём до конца, и только после ее завершения произвести штатное отключение и ремонт изоляции. Это особенно важно, например, для больниц и др. мест где важно не столько своевременно автоматически «отрубить» аварийную цепь, сколько заранее устранять все неисправности и исключать возможности внезапного неконтролируемого автоматического отключения цепей. Поэтому система IT введена во многих странах как стандарт для госпиталей, сооружений связанных с проводящими средами (водой, землёй и др.), например, корабли, метро и др. мест требующих повышенной безопасности.

Таким образом под повышенной безопасностью системы IT понимается возможность безопасно обнаруживать и устранять аварии изоляции всех проводников в системе.

В IT системе установка токовых автоматов обязательна. УЗО устанавливаются в зависимости от особенностей нагрузок и применяемых Z N и ПМИ.

Кроме этого, сами защитные цепи ПМИ дополнительно защищаются, например, на ТП с помощью разрядника или блока защиты от выбросов напряжения (surge limiter, surge suppresor).

Обозначения:

  • SCPD (Short-Circuit Protection Device) – автомат защиты от короткого замыкания, токовый автомат, автоматический выключатель с термомагнитным расцепителем. Автомат размыкает цепь, если ток в цепи превысил паспортный номинальный ток автомата.
  • RCD (Residual Current Devices) – УЗО, устройство защитного отключения, устройство разностного тока или более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током, сокращенно УЗО−Д) или выключатель дифференциального тока (ВДТ) или защитно-отключающее устройство (ЗОУ) – механический коммутационный аппарат, который при достижении (превышении) дифференциальным током заданного значения вызывает размыкание цепи нагрузки.
  • PIM (permanent insulation monitor) – ПМИ постоянный мониторинг изоляции / датчик изоляции.
  • Z N optional impedance – дополнительное принудительное сопротивление Нейтраль-Земля на ТП.
  • Surge Limiter (surge suppresor, surge arrestor) – разрядник или блок защиты от выбросов напряжения или блок защиты от перенапряжения.

Внимание!

Все вышеприведённая информация относится к защите пользователя, имеющего доступ только к изолированным проводам и электрооборудованию в защитном корпусе.

Пожалуйста помните, что более глубокое проникновение в электрооборудование может быть опасно для жизни, даже при самых безопасных системах заземления, при использовании автоматов, УЗО, датчиков изоляции и т.п.

Примеры тяжёлой опасности для человека:

Пример 1

Установлены: Любая система заземления. Любые устройства защиты в цепях переменного тока. ИБП 100 кВА – батареи в батарейном кабинете всегда под напряжением (в том числе. при отключенном ИБП) и опасны.
ВНИМАНИЕ! ВЫСОКОЕ ПОСТОЯННОЕ НАПРЯЖЕНИЕ!

Пример 2

Система IT. Есть автомат. Есть УЗО. Есть датчик изоляции. Есть изолированный коврик. Имеется любое устройство, например, электромотор, стабилизатор, ИБП 100 кВA. Касание (одновременное) человеком фазы и нейтрали или двух фаз на клеммной панели (или соответствующих проводов с нарушенной изоляцией) этого устройства опасно
ВНИМАНИЕ! ВЫСОКОЕ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ!

(УЗО не сработает, если человек находится на изолирующем коврике!)

Пример 3

Так же поражение человека может случиться вообще без касания им проводников под током, например гаечный ключ уроненный на клеммы сборки аккумуляторов 100 А·ч может сгореть как предохранитель с опасной световой вспышкой и поражая окружающее пространство брызгами металла.

Внимание!

Для обеспечения полной безопасности необходимо ещё 4 дополнительных условия:

  1. Разработчик оборудования принял меры по обеспечению высокого уровня безопасности оборудования и его обслуживания.
  2. Инженер, работающий с оборудованием, принял меры по обеспечению высокого уровня безопасности проводимых работ.
  3. Окружающая среда в норме, например, температура, влажность в норме и нет опасности прорыва соседней водопроводной трубы и т.д.
  4. Часы наработки оборудования не превысили опасный предел (вопрос времени).

Подключение заземления является одним из наиболее важных способов предохранить человека от поражения блуждающим током электрической сети. Для этого применяются соответствующие системы заземления. От них будет зависеть не только безопасность человека, но и правильное функционирование электротехнических приборов и другого защитного оборудования.

Системы заземления принято классифицировать. Стандарты, по которым определяется тип защитной конструкции заземления, были приняты Международной электротехнической комиссией и Госстандартом Российской Федерации . Так принято различать несколько типов систем.

Система TN. Данный тип имеет характерное отличие от других – наличие глухозаземленной нейтрали в схеме. В TN все открытые проводящие участки любого электрооборудования подсоединяются к определенному глухозаземленному нейтральному участку отдельного источника питания электроэнергией путем подключения защитных проводников («ноль»). В этой системе глухозаземленная нейтраль означает, что «ноль» трансформатора подключен к заземляющему контуру. Используется для заземления электрического оборудования (телевизоры, системный блок компьютера, холодильник, бойлер и другая техника).

Подсистема TN-C. Это система TN, где защитные и нулевые проводники на всей линии совмещаются в одном PEN. Это значит, что выполнено специальное защитное зануление . Данная система была актуальна в 90-х годах, но на сегодняшний день устарела. Обычно используется для внешнего освещения для экономии средств. Не рекомендуется для установки в современных жилых зданиях.

Подсистема TN-S. В TN-S защитный и нулевой провод ники разделены. Данная подсистема считается самой надежной и безопасной, но это обычно влечет большие финансовые траты. Используется для предохранения телевизионных коммуникаций, что позволят устранить большинство помех при слаботочной сети. Подсистема TN-C-S . Система заземления TN C S является промежуточной схемой. В данном случае защитный и рабочий контакты должны совмещаться только в одном месте. Зачастую это делают в главном распределительном щите комплекса.

Совмещается. А во всех остальных участках системы TN C S эти проводники должны быть разделены друг от друга. Данная система считается самым оптимальным решением для электрической сети любого здания (промышленные, жилые, общественные).

Выгодное соотношение качества и цены. Другие способы подключения заземляющих электроустановок не позволяют обеспечить надежное функционирование на отдельных частях. В зависимости от требуемого уровня сопротивления подбирается сечения проводников.

Система ТТ. Система данного типа имеет характерную особенность – нулевой проводник источника заземляется, а открытые проводящие части электроустановок подключены к заземлению. Заземляющий контур же независим от заземленной нейтрали основного источника электроснабжения. Это означает, что оборудования используется отдельный контур заземления, не связанный с нулевым проводником.

Система ТТ используется для различных мобильных сооружений или в местах, где нет возможности оборудовать защитное заземление по всем стандартам и нормам. Предусматривается обязательное подключение устройств защитного отключения с качественным заземлением (при напряжении в 380 вольт сопротивление должно быть не менее 4 Ом). Уровень сопротивления должен учитывать конкретный тип автоматического выключателя.


Система IT. Характерная особенность схемы - нулевой проводник источника питания заземляется через электрические приборы или от земли. Приборы должны иметь высокое сопротивление, а проводящие части электроустановок заземляться при помощи заземляющего оборудования. Высокое сопротивление электрических приборов позволит увеличить надежность системы.

IT используется не часто, обычно для электрооборудования в зданиях особого назначения (например, бесперебойное электроснабжение системного блока ПЭВМ, аварийное освещение больниц), где повышено требование к надежности и безопасности. У каждой из этих систем есть свои преимущества и недостатки. В связи с этим необходимо правильно подбирать схему установки защитного заземления для конкретных ситуаций.

Как работает TN

В соответствии с нормами Правил устройства электроустановок (ПУЭ) система TN является самой надежной. Принцип ее работы позволяет обеспечить надежную защиту человека и подключенного электрооборудования от блуждающих токов.

Главное условие для безопасной и надежной работы системы TN – значение тока между фазным проводником и неизолированной частью при возникновении короткого замыкания в электрической сети обязательно должны превышать значение тока, при котором должны срабатывать защитные устройства. Для данной системы также возникает необходимость подключения устройства защитного отключения и дифференциальных автоматов.

Видео «Продвинутая система заземления»

Устраиваем систему заземления


Если вы решили сделать заземляющий контур самостоятельно, то для заземляющей конструкции необходимо использовать обычный черный металл. Для этого подойдут железные уголки, стальные полосы, трубы и другие конструкции. Такой материал имеет оптимальное сопротивление и невысокую стоимость. Перед началом монтажных работ нужно составить проект, который будет содержать описание конструкции, используемого материала, размеров, места расположения технической коммуникации, тип грунта и другие параметры.

Обязательно нужно знать, в какой тип грунта будет устанавливаться контур заземления. От этого будет зависеть уровень сопротивления. Так в песчаной почве сопротивление значительно выше, чем в обычной земле. На сопротивление будет влиять влажность грунта и наличие подземных вод. Влажность земли будет изменяться в зависимости от климата местности, где будут проводиться монтажные работы.

Схема и монтаж

Специалисты в области электротехники настоятельно рекомендуют использовать готовые схемы по установке заземляющих конструкций. Готовое оборудование можно приобрести в специализированных магазинах. К заземляющему комплекту прилагается соответствующая схема подключения и монтажа. Комплект сертифицирован и имеет гарантию на эксплуатацию. Но такую конструкцию можно сделать самостоятельно. Наиболее распространенные заземляющие конструкции имеют форму треугольника и квадрата. Первый способ более экономный.


На месте, где будет установлена защитная конструкция, нужно начертить условный равносторонний треугольник. Его вершины должны быть на расстоянии 1,5 м друг от друга. По контуру выкапывается траншея глубиной в 1 м. В местах вершин будут забиты 3 основных проводника – круглая арматура (диаметр – от 35 мм, длина – 2-2,5м). Арматура забивается в землю, затем они должны соединиться металлической шиной (ширина – 40 мм, толщина – 4 мм). Крепление осуществляется сваркой. Заземляющий провод будет отходить от конструкции к распределительному щиту.

Затем траншея зарывается. После завершения монтажных работ нужно провести проверку заземляющего контура. Для этого используется специальное оборудование, которое позволяет измерить сопротивление на отдельных участках земли (до 15 метров от заземляющей конструкции). При правильной установке сопротивление не будет превышать 4 Ома. При более высоких значениях нужно перепроверить места соединения. Мультиметр для проверки не подойдет.

Практически каждый дом оборудован заземлением. Его задачей, является обеспечение безопасности при использовании человеком электрических установок. Среди профессионалов принято разделять системы заземления на несколько видов. О существующих вариантах мы и поговорим в нашей статье.

В мировой области электричества принято классифицировать заземление на три типа, и определить их можно при помощи аббревиатуры ТТ, TN, IT. Каждая из букв имеет следующее значение:

  • Т - заземление, переводится от французского слова terra - почва;
  • N - это нейтраль, означает, что данная система занулена;
  • I - говорит о наличии изоляции заземлителя.

Важно! Расположение букв систем заземления играет важную роль и несет определенное обозначение.

Значение первой буквы показывает принцип заземления источника питания, обозначение второй буквы в системе указывает на заземление проводящих открытых деталей электрического оборудования. Последние буквы говорят о функциональности нулевого и защитного проводников.

Системы заземления для частного дома

Давайте рассмотрим варианты заземления поближе, каждому из которых уделим отдельный раздел.

Заземление TN и его подвиды

О заземляющих системах уже многое казано, однако мало кто уделяет внимание расшифровке. Создавая защиту электрооборудования, нужно обязательно учитывать каждую подробность, ведь впоследствии часто возникают проблемы при ремонте или реконструкции системы.

Эта разновидность отличается от остальных тем, что имеет грузозаземленную нейтраль. Эта установка предусматривает присоединение открытых проводящих частей к нулевой точке питающего источника. Вы наверняка спросите, что такое «глухозаземленная нейтраль». Общими словами, это понятие представляет собой подключение нейтрального проводника непосредственно к заземляющему проводнику на трансформаторной установке.

Электрическая безопасность в этой системе достигается благодаря превышению напряжения открытой части установки и «фазы» над значением срабатывания электрического потенциала за конкретное время.

Система заземления TT: подробная характеристика

Данный тип заземления отличается от предыдущей схемы тем, что имеет «землю» на нейтральном прводе, при этом открытые проводящие части электрооборудования, непосредственно соединяются с системой защиты. Система ТТ предусматривает отдельный монтаж контура заземления. Этот тип защиты применяется в современных условиях для бытовок, мобильных и переносных сооружений.


Системы заземления для квартирного дома

Важно! При разработке этой системы заземления, необходимо использовать устройство защитного отключения (УЗО).

Заземляющая конструкция IT

IT заземление используется значительно реже, в отличие от предыдущих систем. Можно встретить такое оборудование в зданиях специального назначения и на промышленных предприятиях . Преимущественно устанавливается для аварийного освещения.

Характеризуется конструкция наличием заизолированной нейтрали источника питания от «земли». В некоторых случаях возможно ее заземление через потребительные приборы.

Важно! Применять IT систему заземления необходимо только в условиях повышенного требования энергобезопасности.

Каким методом выполняют устройство системы заземления?


Схема системы заземления

Сегодняшним днем зарегистрировано несколько технологий, предусматривающих устройство распространенных систем заземления. Весьма широко применяются два метода, которые мы сейчас и разберём.

  1. Стандартная методика характеризуется выполнением заземлительной конструкции посредством сырья черной металлургии. Изначально разрабатывается проект, и после подготовки всего инструментария, приступают к реализации контура на местности. При этом учитываются ряд факторов, которые могут повлиять на конструкцию. Использование данной технологии усовершенствовалось на протяжении многих лет, и в наше время применяется для многих климатических условий.
  2. Модульное заземление предполагает использование специального комплекта, найти который можно в торговых точках. В этом случае применяются материалы фабричного производства.

Монтаж и сырье для модульного заземления

Для установки подобного типа устройства используют: стальные стержни с омедненными частями, муфты и соединительные детали, комплект для модульного заземлителя (латунные, медные и омедненные детали), стальные наконечники, антикоррозийную пасту, защитную ленту. Когда подготовили материал, следуем правилам монтажа:


Какие бывают виды систем заземления

  • Первым делом устанавливается вертикальный стержень из стали на местности;
  • Замеряется промежуточное сопротивление;
  • Производится установка оставшихся стальных стержней;
  • На этом этапе производится прокладка горизонтального заземляющего проводника;
  • Все элементы конструкции соединяются при помощи клемм или сварного оборудования, покрываются защитной лентой. Также не нужно забывать об антикоррозийной обработке.

Внимание! Выполняя

Содержание:

Важнейшей частью проектирования, монтажа и дальнейшей эксплуатации оборудования и электроустановок является правильно выполненная система заземления. В зависимости от используемых заземляющих конструкций, заземление может быть естественным и искусственным. Естественные заземлители представлены всевозможными металлическими предметами, постоянно находящимися в земле. К ним относится арматура, трубы, сваи и прочие конструкции, способные проводить ток.

Но электрическое сопротивление и другие параметры, присущие этим предметам, невозможно точно проконтролировать, и спрогнозировать. Поэтому с таким заземлением нельзя нормально эксплуатировать любое электрооборудование. Нормативными документами предусматривается только искусственное заземление с использованием специальных заземляющих устройств.

Классификация систем заземления

В зависимости от схем электрических сетей и других условий эксплуатации, применяются системы заземления TN-S , TNC-S, TN-C, TT, IT, обозначаемые в соответствии с международной классификацией. Первый символ указывает на параметры заземления источника питания, а второй буквенный символ соответствует параметрам заземления открытых частей электроустановок.

Буквенные обозначения расшифровываются следующим образом:

  • Т (terre - земля) - означает заземление,
  • N (neuter - нейтраль) - соединение с нейтралью источника или зануление,
  • I (isole) соответствует изоляции.

Нулевые проводники в ГОСТе имеют такие обозначения:

  • N - является нулевым рабочим проводом,
  • РЕ - нулевым защитным проводником,
  • PEN - совмещенным нулевым рабочим и защитным проводом заземления.

Система заземления TN-C

Заземление TN относится к системам с глухозаземленной нейтралью. Одной из его разновидностей является заземляющая система TN-C. В ней объединяются функциональный и защитный нулевые проводники. Классический вариант представлен традиционной четырехпроводной схемой, в которой имеется три фазных и один нулевой провод. В качестве основной шины заземления используется, соединяемая со всеми токопроводящими открытыми деталями и металлическими частями, с помощью дополнительных нулевых проводов.


Главным недостатком системы TN-C является потеря защитных качеств при отгорании или обрыве нулевого проводника. Это приводит к появлению напряжения, опасного для жизни, на всех поверхностях корпусов устройств и оборудования, где отсутствует изоляция. В системе TN-C нет защитного заземляющего проводника РЕ, поэтому у всех подключенных розеток заземление также отсутствует. В связи с этим для всего используемого электрооборудования требуется устройство - подключение деталей корпуса к нулевому проводу.

В случае касания фазного провода открытых частей корпуса, произойдет короткое замыкание и срабатывание автоматического предохранителя. Быстрое аварийное отключение устраняет опасность возгорания или поражения людей электрическим током. Категорически запрещается использовать в ванных комнатах дополнительные контуры, уравнивающие потенциалы, в случае эксплуатации заземляющей системы TN-C.


Несмотря на то что схема tn-c является наиболее простой и экономичной, она не используется в новых зданиях. Эта система сохранилась в домах старого жилого фонта и в уличном освещении, где вероятность поражения электрическим током крайне низкая.

Схема заземления TN-S, TN-C-S

Более оптимальной, но дорогостоящей схемой считается заземляющая система TN-S. Для снижения ее стоимости были разработаны практические меры, позволяющие использовать все преимущества данной схемы.


Суть этого способа заключается в том, что при подаче электроэнергии с подстанции, применяется комбинированный нулевой проводник PEN, соединяемый с глухозаземленной нейтралью. На вводе в здание он разделяется на два проводника: нулевой защитный РЕ и нулевой рабочий N.


Система tn-c-s обладает одним существенным недостатком. При отгорании или каком-либо другом повреждении проводника PEN на участке от подстанции до здания, на проводе РЕ и деталях корпуса приборов, связанных с ним, возникает опасное напряжение. Поэтому одним из требований нормативных документов по обеспечению безопасного использования системы TN-S , являются специальные мероприятия по защите провода PEN от повреждений.

Схема заземления TT

В некоторых случаях, когда электроэнергия подается по традиционным воздушным линиям, становится довольно проблематично защитить комбинированный заземляющий проводник PEN при использовании схемы TN-C-S. Поэтому в таких ситуациях применяется система заземления по схеме ТТ. Ее суть заключается в глухом заземлении нейтрали источника питания, а также использовании четырех проводов для передачи трехфазного напряжения . Четвертый проводник используется в качестве функционального нуля N.


Подключение модульно-штыревого заземлителя осуществляется чаще всего со стороны потребителей. Далее он соединяется со всеми защитными проводниками заземления РЕ, связанными с деталями корпусов приборов и оборудования.

Схема TT применяется сравнительно недавно и уже хорошо зарекомендовала себя в частных загородных домах . В городах система ТТ применяется на временных объектах, например, торговых точках. Подобный способ заземления требует использования защитных устройств в виде УЗО и выполнения технических мероприятий по защите от грозы.

Система заземления IT

Рассмотренные ранее системы с глухозаземленной нейтралью хотя и считаются достаточно надежными, однако обладают существенными недостатками. Значительно безопаснее и совершеннее являются схемы с нейтралью, полностью изолированной от земли. В некоторых случаях для ее заземления применяются приборы и устройства, обладающие значительным сопротивлением.

Подобные схемы используются в системе заземления IT. Они наилучшим образом подходят для медицинских учреждений, сохраняя бесперебойное питание оборудования жизнеобеспечения. Схемы IT хорошо зарекомендовали себя на энергетических и нефтеперерабатывающих предприятиях, других объектах, где имеются сложные высокочувствительные приборы.


Основной деталью системы IT является изолированная нейтраль источника I, а также Т, установленный на стороне потребителя. Подача напряжения от источника к потребителю производится с использованием минимального количества проводов. Кроме того, выполняется подключение к заземлителю всех токопроводящих деталей, имеющихся на корпусах оборудования, установленного у потребителя. В системе IT нет нулевого функционального проводника N на участке от источника до потребителя.

Таким образом, все системы заземления TN-C , TN-S, TNC-S, TT, IT обеспечивают надежное и безопасное функционирование приборов и электрооборудования, подключаемых к потребителям. Использование этих схем исключает поражение электротоком людей, пользующихся оборудованием. Каждая система применяется в конкретных условиях, что обязательно учитывается в процессе проектирования и последующего монтажа. За счет этого обеспечивается гарантированная безопасность, сохранение здоровья и жизни людей.

Мой рассказ будет состоять из трёх частей.
1 часть. Заземление (общая информация , термины и определения).
2 часть. Традиционные способы строительства заземляющих устройств (описание, расчёт, монтаж).
3 часть. Современные способы строительства заземляющих устройств (описание, расчёт, монтаж).


В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией - ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками - лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения
Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления

А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе - начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).
И попытаюсь “перевести” эти определения на “простой” язык.

Заземление - преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток . Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:

Проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).
Проводящая часть - это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро:-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:

Сопротивление заземления - отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).
Сопротивление заземления - основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)
Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро:-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:

- “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления - толстыми красными линиями:

Удельное электрическое сопротивление грунта - параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли - на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.

Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Подробнее защитное назначение заземления можно рассмотреть на двух примерах:
в составе внешней молниезащитной системы в виде заземленного молниеприёмника
в составе системы защиты от импульсного перенапряжения
в составе электросети объекта

Б2.1. Заземление в составе молниезащиты
Молния - это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” в конденсаторе и газовый разряд в лампе.

Воздух - это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы - таким образом представляя опасность для человека и оборудования, находящихся в этом здании.

Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.

Классический УЗИП представляет собой газовый разрядник, рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой - подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд:-) между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Как и в молниезащите - заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления - это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь , через которую побежит ток, вызывающий в теле повреждения внутренних органов - прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства , за доли секунды отключающие ток при аварийной ситуации.

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).

Сопротивление в основном зависит от двух условий:
площадь (S) электрического контакта заземлителя с грунтом
электрическое сопротивление (R) самого грунта, в котором находятся электроды

В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая - как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока - морская вода.
Примером “плохого” для заземления грунта является сухой песок.
(Если интересно, можно посмотреть, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.

В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:
для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)

В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:


Точность расчёта обычно невысока и зависит опять же от грунта - на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади - образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже - значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов - у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Подробнее о строительстве - в следующих частях.

Алексей Рожанков, технический специалист.

При подготовке данной статьи использовались следующие материалы:
Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания
ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить)
Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87
Публикации на сайте “ ”
Собственный опыт и знания

Рассмотрим какие существуют системы заземления. И схемы

Рис. 1. Система заземления TN-C переменного тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике:

1 – заземлитель нейтрали (средней точки) источника питания; 2 – открытые проводящие части

В системах заземления для электроустановок напряжением до 1 кВ приняты следующие обозначения:

  • система заземления – TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;
  • система заземления TN-С – система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 1);
  • система заземления TN-S – система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 2);
  • система заземления TN-C-S – система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис. 3);
  • система заземления IT – система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 4);
  • система заземления ТТ – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника (рис. 5).

Рис. 2. Система заземления TN-S переменного тока. Нулевой защитный и нулевой рабочий проводники разделены:
1 – 2 – открытые проводящие части

Первая буква – состояние нейтрали источника питания относительно земли:

  • Т – заземленная нейтраль;
  • I – изолированная нейтраль.

Вторая буква – состояние открытых проводящих частей относительно земли:

  • Т – открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
  • N – открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (после N ) буквы – совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

  • S – нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;
  • С – функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN -проводник);

Условные обозначения на схемах:

N – – нулевой рабочий (нейтральный) проводник;
РЕ – – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

PEN – – совмещенный нулевой защитный и нулевой рабочий проводники.

Рис. 3. Система TN-C-S переменного тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике в части системы:

1 – заземлитель нейтрали источника переменного тока; 2 – открытые проводящие части


Рис. 4. Система IT переменного тока. Открытые проводящие части электроустановки заземлены. Нейтраль источника питания изолирована от земли или заземлена через большое сопротивление:

1 – сопротивление заземления нейтрали источника питания (если имеется); 2 – заземлитель; 3 – открытые проводящие части; 4 – заземляющее устройство электроустановки;

Рис. 5 Система ТТ переменного тока. Открытые проводящие части электроустановки заземлены при помощи заземления, электрически независимого от заземлителя нейтрали:

1 – заземлитель нейтрали источника переменного тока; 2 – открытые проводящие части; 3 – заземлитель открытых проводящих частей электроустановки;

Система заземления TN-C Имеет огромный недостаток об этом мы уже писали раньше: . Здесь используется один нулевой проводник и как рабочий, и для защиты. В нормальных условиях проблем не возникает, а вот в аварийных ситуациях, когда отгарает ноль (Ведь он находится под нагрузкой). Вместо защиты можно оказаться под напряжением.

Для систем заземления IT и ТТ для электроустановок требуется отдельное заземление что не всегда удобно, например, в этажных щитах.

Поэтому наиболее предпочтительна система заземления TN-S .

Так же следует заметить что иногда в одной электрической сети (схеме) эти системы заземления комбинируют.

Здесь рассмотрены схемы систем заземления переменного тока. Если интересны системы заземления постоянного тока пишите в комментариях.

Смотрите про системы заземления в ПУЭ

Электрические сети напряжением до 1000 Вольт, как правило, имеют глухо заземленную нейтраль. Это означает, что нейтраль трансформатора, то есть средняя точка соединенных в звезду вторичных фазных обмоток, соединена с заземляющим устройством, находящимся на трансформаторной подстанции. Рабочий нулевой провод также соединяется со средней точкой обмоток. Электроустановки, имеющие глухозаземленную нейтраль, в которых соединены открытые токопроводящие части с защитным заземляющим проводом, классифицируются ПУЭ как относящиеся к системе TN. Эта система имеет несколько разновидностей, отличающихся способом формирования защитного заземления. В данной статье рассматривается один из вариантов — система заземления TN-C.

На рисунке представлена схема электрических соединений:

Данная система отличается от других, входящих в семейство TN тем, что в качестве защитного заземляющего проводника (PEN) используется рабочий нулевой проводник, причем, по всей его длине. Разделение нулевого проводника на рабочий и защитный заземляющий провода, происходит только в точке присоединения потребителя к электрической сети.

Кстати, расшифровка аббревиатуры TN-C выглядит следующим образом: «T» — (terre - земля) означает заземлено, N (neuter, нейтраль) - присоединено к нейтрали источника (занулено), C (combined, объединённый) - нулевой рабочий и защитный провод объединены в один проводник по всей системе.

Система заземления TN-C, имея свои конструктивные особенности, обладает как достоинствами, так и недостатками. Достоинством системы, правда, не относящимся к вопросам электробезопасности, является:

  • Банальная экономия, связанная с тем, что электроснабжение трехфазного потребителя осуществляется по четырем проводникам вместо пяти, так как отдельный защитный заземляющий проводник отсутствует.
  • Возможность ее применения без осуществления модернизации построенных ранее кабельных и воздушных линий электропередачи, имеющих четыре проводника.

Недостаток у TN-C один, но он, к сожалению, имеет отношение к безопасности — более высокая вероятность, в сравнении с другими системами заземления, потери заземляющей цепи при повреждении единственного заземленного проводника.

Часто можно услышать о том, что система заземления TN-C – это «тяжелое наследие прошлого» и досталась нам от Советского Союза. С этим утверждением можно согласиться лишь частично. Действительно, четырехпроводные распределительные сети, имеющие глухозаземленную нейтраль, предполагают выполнение защитного заземления именно по такой схеме. Однако, следует отметить следующее: схема электроснабжения, имевшая место в советское время, и которая продолжает существовать по сей день во многих старых постройках, отнюдь не является системой заземления TN-C, и вот почему.

Реализация TN-C предполагает соединение с PEN-проводником «всех открытых (то есть, доступных для прикосновения человеком) частей электроустановок». Это означает, что металлические части корпуса любого электроприбора, включаемого в электрическую сеть нашего жилища, должны быть «занулены».

А что мы имеем в старых домах на сегодняшний день? PEN-проводник, он же рабочий нулевой провод, в лучшем случае, соединяется с корпусом вводного шкафа, на входе питающего кабеля в здание, и на этом защитное зануление заканчивается. Разводка по квартирам осуществляется в два провода, а электрические розетки в квартирах не оборудованы заземляющими контактами. В результате, большая часть населения пользуется бытовыми электроприборами без защитного заземления их корпусов. И это несмотря на то, что в инструкциях по эксплуатации каждого прибора подчеркивается необходимость выполнения этого мероприятия, а все вилки для включения оборудования в сеть снабжены заземляющими контактами. Таким образом, ругать TN-C, в то время, как в большинстве домов вообще отсутствует какое-либо , не совсем правильно.

Реализовать систему заземления TN-C в квартире или частном доме под силу каждому владельцу. Для этого необходимо сделать разделение приходящего с питающим кабелем нулевого провода в шкафу ввода или на этажном щитке. Боле подробно о том, как выполнить , мы рассказывали в отдельной статье. После этого нужно сделать внутри квартиры или дома разводку тремя проводами, подключая третий проводник, который будет играть роль защитного, к заземляющим контактам электрических розеток. Если на кухне установлена электрическая плита, и она запитана отдельным кабелем, предусмотреть дополнительную жилу для соединения корпуса электрической плиты с защитным заземляющим проводником.

Не следует забывать о том, что пробой фазы на корпус в любом электроприборе вызывает короткое замыкание. Поэтому, при выполнении указанной разводки, особое внимание нужно уделить защите проводки. Лучше всего смонтировать внутриквартирный щиток, установив в него надежные, правильно подобранные по номиналу автоматические выключатели. Электроснабжение помещений дома или квартиры лучше разделить на группы, каждую из которых запитав от своего автомата.