ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Изгиб основные определения. Решение типовых задач по сопромату

Рассчитывать балку на изгиб можно несколькими вариантами:
1. Расчет максимальной нагрузки, которую она выдержит
2. Подбор сечения этой балки
3. Расчет по максимальным допустимым напряжениям (для проверки)
Давайте рассмотрим общий принцип подбора сечения балки на двух опорах загруженной равномерно распределенной нагрузкой или сосредоточенной силой.
Для начала, вам необходимо будет найти точку (сечение), в которой будет максимальный момент. Это зависит от опирания балки или же ее заделки. Снизу приведены эпюры изгибающих моментов для схем, которые встречаются чаще всего.



После нахождения изгибающего момента мы должны найти момент сопротивления Wx этого сечения по формуле приведенной в таблице:

Далее, при делении максимального изгибающего момента на момент сопротивления в данном сечении, мы получаем максимальное напряжение в балке и это напряжение мы должны сравнить с напряжением, которое вообще сможет выдержать наша балка из заданного материала.

Для пластичных материалов (сталь, алюминий и т.п.) максимальное напряжение будет равно пределу текучести материала , а для хрупких (чугун) – пределу прочности . Предел текучести и предел прочности мы можем найти по таблицам ниже.




Давайте рассмотрим пару примеров:
1. [i]Вы хотите проверить, выдержит ли вас двутавр №10 (сталь Ст3сп5) длиной 2 метра жестко заделанного в стену, если вы на нем повисните. Ваша масса пусть будет 90 кг.
Для начала нам необходимо выбрать расчетную схему.


На данной схеме видно, что максимальный момент будет в заделке, а поскольку наш двутавр имеет одинаковое сечение по всей длине , то и максимальное напряжение будет в заделке. Давайте найдем его:

P = m * g = 90 * 10 = 900 Н = 0.9 кН


М = P * l = 0.9 кН * 2 м = 1.8 кН*м


По таблице сортамента двутавров находим момент сопротивления двутавра №10.


Он будет равен 39.7 см3. Переведем в кубические метры и получим 0.0000397 м3.
Далее по формуле находим максимальные напряжения, которые у нас возникают в балке.

б = М / W = 1.8 кН/м / 0.0000397 м3 = 45340 кН/м2 = 45.34 МПа


После того, как мы нашли максимальное напряжение, которое возникает в балке, то мы его может сравнить с максимально допустимым напряжением равным пределу текучести стали Ст3сп5 – 245 МПа.

45.34 МПа – верно, значит данный двутавр выдержит массу 90 кг.


2. [i]Поскольку у нас получился доволи-таки большой запас, то решим вторую задачу, в которой найдем максимально возможную массу, которую выдержит все тот же двутавр №10 длиной 2 метра.
Если мы хотим найти максимальную массу, то значения предела текучести и напряжения, которое будет возникать в балке, мы должны приравнять (б=245 Мпа = 245 000 кН*м2).

При прямом чистом изгибе бруса в его поперечных сечениях возникают только нормальные напряжения. Когда величина изгибающего момента М в сечении стержня меньше некоторого значения, эпюра, характеризующая распределение нормальных напряжений вдоль оси у поперечного сечения, перпендикулярной нейтральной оси (рис. 11.17, а), имеет вид, показанный на рис. 11.17, б. Наибольшие напряжения при этом равны По мере увеличения изгибающего момента М нормальные напряжения возрастают, пока наибольшие их значения (в волокнах, наиболее удаленных от нейтральной оси) становятся равными пределу текучести (рис. 11.17, в); при этом изгибающий момент равен опасному значению:

При увеличении изгибающего момента сверх опасного значения напряжения, равные пределу текучести возникают не только в волокнах, наиболее удаленных от нейтральной оси, но и в некоторой зоне поперечного сечения (рис. 11.17, г); в этой зоне материал находится в пластическом состоянии. В средней части сечения напряжения меньше предела текучести, т. е. материал в этой части находится еще в упругом состоянии.

При дальнейшем увеличении изгибающего момента пластическая зона распространяется в сторону нейтральной оси, а размеры упругой зоны уменьшаются.

При некотором предельном значении изгибающего момента , соответствующем полному исчерпанию несущей способности сечения стержня на изгиб, упругая зона исчезает, а зона пластического состояния занимает всю площадь поперечного сечения (рис. 11.17, д). При этом в сечении образуется так называемый пластический шарнир (или шарнир текучести).

В отличие от идеального шарнира, который не воспринимает момента, в пластическом шарнире действует постоянный момент Пластический шарнир является односторонним: он исчезает при действии на стержень моментов обратного (по отношению к ) знака или при разгрузке балки.

Для определения величины предельного изгибающего момента выделим в части поперечного сечения балки, расположенной над нейтральной осью, элементарную площадку отстоящую на расстоянии от нейтральной оси, а в части, расположенной под нейтральной осью, - площадку отстоящую на расстоянии от нейтральной оси (рис. 11.17, а).

Элементарная нормальная сила, действующая на площадку в предельном состоянии, равна а ее момент относительно нейтральной оси равен аналогично момент нормальной силы действующей на площадку равен Оба эти момента имеют одинаковые знаки. Величина предельного момента равна моменту всех элементарных сил относительно нейтральной оси:

где - статические моменты соответственно верхней и нижней частей поперечного сечения относительно нейтральной оси .

Сумму называют осевым пластическим моментом сопротивления и обозначают

(10.17)

Следовательно,

(11.17)

Продольная сила в поперечном сечении при изгибе равна нулю, а потому площадь сжатой зоны сечения равняется площади растянутой зоны. Таким образом, нейтральная ось в сечении, совпадающем с пластическим шарниром, делит это поперечное сечение на две равновеликие части. Следовательно, при несимметричном поперечном сечении нейтральная ось не проходит в предельном состоянии через центр тяжести сечения.

Определим по формуле (11.17) величину предельного момента для стержня прямоугольного сечения высотой h и шириной b:

Опасное значение момента при котором эпюра нормальных напряжений имеет вид, изображенный на рис. 11.17, в, для прямоугольного сечения определяется по формуле

Отношение

Для круглого сечения отношение а для двутаврового

Если изгибаемый брус является статически определимым, то после снятия нагрузки, вызвавшей в нем момент изгибающий момент в его поперечном сечении равняется нулю. Несмотря на это, нормальные напряжения в поперечном сечении не исчезают. На эпюру нормальных напряжений в пластической стадии (рис. 11.17, е) накладывается эпюра напряжений в упругой стадии (рис. 11.17, е), аналогичная эпюре, изображенной на рис. 11.17,б, так как при разгрузке (которую можно рассматривать как нагрузку моментом обратного знака) материал ведет себя как упругий.

Изгибающий момент М, соответствующий эпюре напряжений, показанный на рис. 11.17, е, по абсолютной величине равен так как только при этом условии в поперечном сечении бруса от действия момента и М суммарный момент равен нулю. Наибольшее напряжение на эпюре (рис. 11.17, е) определяется из выражения

Суммируя эпюры напряжений, показанные на рис. 11.17, д,е, получаем эпюру, изображенную на рис. 11.17, ж. Эта эпюра характеризует распределение напряжений после снятия нагрузки, вызывавшей момент При такой эпюре изгибающий момент в сечении (а также и продольная сила) равняется нулю.

Изложенная теория изгиба за пределом упругости используется не только в случае чистого изгиба, но и в случае поперечного изгиба, когда в поперечном сечении балки кроме изгибающего момента действует также поперечная сила.

Определим теперь предельное значение силы Р для статически определимой балки, изображенной на рис. 12.17, а. Эпюра изгибающих моментов для этой балки показана на рис. 12.17,б. Наибольший изгибающий момент возникает под грузом где он равен Предельное состояние, соответствующее полному исчерпанию несущей способности балки, достигается тогда, когда в сечении под грузом возникает пластический шарнир, в результате чего балка превращается в механизм (рис. 12.17, в).

При этом изгибающий момент в сечении под грузом равняется

Из условия находим [см. формулу (11.17)]

Теперь вычислим предельную нагрузку для статически неопределимой балки. Рассмотрим в качестве примера два раза статически неопределимую балку постоянного сечения, изображенную на рис. 13.17, а. Левый конец А балки жестко защемлен, а правый конец В закреплен против поворота и вертикального смещения.

Если напряжения в балке не превышают предела пропорциональности, то эпюра изгибающих моментов имеет вид, показанный на рис. 13.17, б. Она построена по результатам расчета балки обычными методами, например с помощью уравнений трех моментов. Наибольший изгибающий момент равный возникает в левом опорном сечении рассматриваемой балки. При значении нагрузки изгибающий момент в этом сечении достигает опасного значения вызывающего появление напряжений, равных пределу текучести, в волокнах балки, наиболее удаленных от нейтральной оси.

Увеличение нагрузки сверх указанной величины приводит к тому, что в левом опорном сечении А изгибающий момент становится равным предельному значению и в этом сечении появляется пластический шарнир. Однако несущая способность балки полностью еще не исчерпывается.

При дальнейшем возрастании нагрузки до некоторого значения пластические шарниры появляются также в сечениях В и С. В результате появления трех шарниров балка, вначале дважды статически неопределимая, становится геометрически изменяемой (превращается в механизм). Такое состояние рассматриваемой балки (когда в ней возникают три пластических шарнира) является предельным и соответствует полному исчерпанию ее несущей способности; дальнейшее увеличение нагрузки Р становится невозможным.

Величину предельной нагрузки можно установить без исследования работы балки в упругой стадии и выяснения последовательности образования пластических шарниров.

Значения изгибающих моментов в сечениях. А, В и С (в которых возникают пластические шарниры) в предельном состоянии равны соответственно и, следовательно, эпюра изгибающих моментов при предельном состоянии балки имеет вид, изображенный на рис. 13.17, в. Эту эпюру можно представить состоящей из двух эпюр: первая из них (рис. 13.17, г) представляет собой прямоугольник с ординатами и вызвана моментами приложенными по концам простой балки, лежащей на двух опорах (рис. 13.17, д); вторая эпюра (рис. 13.17, е) представляет собой треугольник с наибольшей ординатой и вызвана грузом действующим на простую балку (рис. 13.17, ж.

Известно, что сила Р, действующая на простую балку, вызывает в сечении под грузом изгибающий момент где а и - расстояния от груза до концов балки. В рассматриваемом случае (рис.

И, следовательно, момент под грузом

Но этот момент, как показано (рис. 13.17, е), равняется

Аналогичным образом устанавливаются предельные нагрузки для каждого пролета многопролетной статически неопределимой балки. В качестве примера рассмотрим четырежды статически неопределимую балку постоянного сечения, изображенную на рис. 14.17, а.

В предельном состоянии, соответствующем полному исчерпанию несущей способности балки в каждом ее пролете, эпюра изгибающих моментов имеет вид, показанный на рис. 14.17, б. Эту эпюру можно рассматривать состоящей из двух эпюр, построенных в предположении, что каждый пролет представляет собой простую балку, лежащую на двух опорах: одной эпюры (рис. 14.17, в), вызванной моментами действующими в опорных пластических шарнирах, и второй (рис. 14.17, г), вызванной предельными нагрузками, приложенными в пролетах.

Из рис. 14.17, г устанавливаем:

В этих выражениях

Полученное значение предельной нагрузки для каждого пролета балки не зависит от характера и величин нагрузок в остальных пролетах.

Из разобранного примера видно, что расчет статически неопределимой балки по несущей способности оказывается проще, чем расчет по упругой стадии.

Несколько иначе проводится расчет неразрезной балки по несущей способности в тех случаях, когда кроме характера нагрузки в каждом пролете задаются также соотношения между величинами нагрузок в разных пролетах. В этих случаях предельной нагрузкой считается такая, при которой происходит исчерпание несущей способности балки не во всех пролетах, а в одном из ее пролетов.

Предельно допускаемая нагрузка определяется путем деления величин на нормативный коэффициент запаса прочности.

Значительно сложнее определение предельных нагрузок при действии на балку сил, направленных не только сверху вниз, но также и снизу вверх, а также при действии сосредоточенных моментов.

Расчет балки на изгиб «вручную», по-дедовски, позволяет познать один из важнейших, красивейших, четко математически выверенных алгоритмов науки сопротивление материалов. Использование многочисленных программ типа «ввел исходные данные...

...– получи ответ» позволяет современному инженеру сегодня работать гораздо быстрее, чем его предшественникам сто, пятьдесят и даже двадцать лет назад. Однако при таком современном подходе инженер вынужден полностью доверять авторам программы и со временем перестает «ощущать физический смысл» расчетов. Но авторы программы – это люди, а людям свойственно ошибаться. Если бы это было не так, то не было бы многочисленных патчей, релизов, «заплаток» практически к любому программному обеспечению. Поэтому, мне кажется, любой инженер должен уметь иногда «вручную» проверить результаты расчетов.

Справка (шпаргалка, памятка) для расчётов балок на изгиб представлена ниже на рисунке.

Давайте на простом житейском примере попробуем ей воспользоваться. Допустим, я решил сделать в квартире турник. Определено место – коридор шириной один метр двадцать сантиметров. На противоположных стенах на необходимой высоте напротив друг друга надежно закрепляю кронштейны, к которым будет крепиться балка-перекладина – пруток из стали Ст3 с наружным диаметром тридцать два миллиметра. Выдержит ли эта балка мой вес плюс дополнительные динамические нагрузки, которые возникнут при выполнении упражнений?

Чертим схему для расчета балки на изгиб. Очевидно, что наиболее опасной будет схема приложения внешней нагрузки, когда я начну подтягиваться, зацепившись одной рукой за середину перекладины.

Исходные данные:

F1 = 900 н – сила, действующая на балку (мой вес) без учета динамики

d = 32 мм – наружный диаметр прутка, из которого сделана балка

E = 206000 н/мм^2 — модуль упругости материала балки стали Ст3

[σи] = 250 н/мм^2 — допустимые напряжения изгиба (предел текучести) для материала балки стали Ст3

Граничные условия:

Мx (0) = 0 н*м – момент в точке z = 0 м (первая опора)

Мx (1,2) = 0 н*м– момент в точке z = 1,2 м (вторая опора)

V (0) = 0 мм – прогиб в точке z = 0 м (первая опора)

V (1,2) = 0 мм – прогиб в точке z = 1,2 м (вторая опора)

Расчет:

1. Для начала вычислим момент инерции Ix и момент сопротивления Wx сечения балки. Они нам пригодятся в дальнейших расчетах. Для кругового сечения (каковым является сечение прутка):

Ix = (π*d^4)/64 = (3.14*(32/10)^4)/64 = 5,147 см^4

Wx = (π*d^3)/32 = ((3.14*(32/10)^3)/32) = 3,217 см^3

2. Составляем уравнения равновесия для вычисления реакций опор R1 и R2:

Qy = -R1+F1-R2 = 0

Мx (0) = F1*(0-b2) -R2*(0-b3) = 0

Из второго уравнения: R2 = F1*b2/b3 = 900*0.6/1.2 = 450 н

Из первого уравнения: R1 = F1-R2 = 900-450 = 450 н

3. Найдем угол поворота балки в первой опоре при z = 0 из уравнения прогиба для второго участка:

V (1.2) = V (0)+U (0)*1.2+(-R1*((1.2-b1)^3)/6+F1*((1.2-b2)^3)/6)/

U (0) = (R1*((1.2-b1)^3)/6 -F1*((1.2-b2)^3)/6)/(E*Ix)/1,2 =

= (450*((1.2-0)^3)/6 -900*((1.2-0.6)^3)/6)/

/(206000*5,147/100)/1,2 = 0,00764 рад = 0,44˚

4. Составляем уравнения для построения эпюр для первого участка (0

Поперечная сила: Qy (z) = -R1

Изгибающий момент: Мx (z) = -R1*(z-b1)

Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2)/(E*Ix)

Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6)/(E*Ix)

z = 0 м:

Qy (0) = -R1 = -450 н

Ux (0) = U (0) = 0,00764 рад

Vy (0) = V (0) = 0 мм

z = 0,6 м:

Qy (0,6) = -R1 = -450 н

Мx (0,6) = -R1*(0,6-b1) = -450*(0,6-0) = -270 н*м

Ux (0,6) = U (0)+(-R1*((0,6-b1)^2)/2)/(E*Ix) =

0,00764+(-450*((0,6-0)^2)/2)/(206000*5,147/100) = 0 рад

Vy (0,6) = V (0)+U (0)*0,6+(-R1*((0,6-b1)^3)/6)/(E*Ix) =

0+0,00764*0,6+(-450*((0,6-0)^3)/6)/ (206000*5,147/100) = 0,003 м

Балка прогнется по центру на 3 мм под тяжестью моего тела. Думаю, это приемлемый прогиб.

5. Пишем уравнения эпюр для второго участка (b2

Поперечная сила: Qy (z) = -R1+F1

Изгибающий момент: Мx (z) = -R1*(z-b1)+F1*(z-b2)

Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2+F1*((z-b2)^2)/2)/(E*Ix)

Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6+F1*((z-b2)^3)/6)/(E*Ix)

z = 1,2 м:

Qy (1,2) = -R1+F1 = -450+900 = 450 н

Мx (1,2) = 0 н*м

Ux (1,2) = U (0)+(-R1*((1,2-b1)^2)/2+F1*((1,2-b2)^2)/2)/(E*Ix) =

0,00764+(-450*((1,2-0)^2)/2+900*((1,2-0,6)^2)/2)/

/(206000*5,147/100) = -0.00764 рад

Vy (1,2) = V (1,2) = 0 м

6. Строим эпюры, используя данные полученные выше.

7. Рассчитываем напряжения изгиба в наиболее нагруженном сечении – посередине балки и сравниваем с допустимыми напряжениями:

σи = Mx max/Wx = (270*1000)/(3,217*1000) = 84 н/мм^2

σи = 84 н/мм^2 < [σи] = 250 н/мм^2

По прочности на изгиб расчет показал трехкратный запас прочности – турник можно смело делать из имеющегося прутка диаметром тридцать два миллиметра и длиной тысяча двести миллиметров.

Таким образом, вы теперь легко можете произвести расчет балки на изгиб «вручную» и сравнить с результатами, полученными при расчете по любой из многочисленных программ, представленных в Сети.

Прошу УВАЖАЮЩИХ труд автора ПОДПИСАТЬСЯ на анонсы статей.

Введите Ваш e-mail:

Статьи с близкой тематикой

Отзывы

86 комментариев на «Расчет балки на изгиб — «вручную»!»

  1. Александр Воробьев 19 Июн 2013 22:32
  2. Алексей 18 Сен 2013 17:50
  3. Александр Воробьев 18 Сен 2013 20:47
  4. михамл 02 Дек 2013 17:15
  5. Александр Воробьев 02 Дек 2013 20:27
  6. Дмитрий 10 Дек 2013 21:44
  7. Александр Воробьев 10 Дек 2013 23:18
  8. Дмитрий 11 Дек 2013 15:28
  9. Игорь 05 Янв 2014 04:10
  10. Александр Воробьев 05 Янв 2014 11:26
  11. Андрей 27 Янв 2014 21:38
  12. Александр Воробьев 27 Янв 2014 23:21
  13. Александр 27 Фев 2014 18:20
  14. Александр Воробьев 28 Фев 2014 11:57
  15. Андрей 12 Мар 2014 22:27
  16. Александр Воробьев 13 Мар 2014 09:20
  17. Денис 11 Апр 2014 02:40
  18. Александр Воробьев 13 Апр 2014 17:58
  19. Денис 13 Апр 2014 21:26
  20. Денис 13 Апр 2014 21:46
  21. Александр 14 Апр 2014 08:28
  22. Александр 17 Апр 2014 12:08
  23. Александр Воробьев 17 Апр 2014 13:44
  24. Александр 18 Апр 2014 01:15
  25. Александр Воробьев 18 Апр 2014 08:57
  26. Давид 03 Июн 2014 18:12
  27. Александр Воробьев 05 Июн 2014 18:51
  28. Давид 11 Июл 2014 18:05
  29. Алимжан 12 Сен 2014 13:57
  30. Александр Воробьев 13 Сен 2014 13:12
  31. Александр 14 Окт 2014 22:54
  32. Александр Воробьев 14 Окт 2014 23:11
  33. Александр 15 Окт 2014 01:23
  34. Александр Воробьев 15 Окт 2014 19:43
  35. Александр 16 Окт 2014 02:13
  36. Александр Воробьев 16 Окт 2014 21:05
  37. Александр 16 Окт 2014 22:40
  38. Александр 12 Ноя 2015 18:24
  39. Александр Воробьев 12 Ноя 2015 20:40
  40. Александр 13 Ноя 2015 05:22
  41. Рафик 13 Дек 2015 22:20
  42. Александр Воробьев 14 Дек 2015 11:06
  43. Щур Дмитрий Дмитриевич 15 Дек 2015 13:27
  44. Александр Воробьев 15 Дек 2015 17:35
  45. Ринат 09 Янв 2016 15:38
  46. Александр Воробьев 09 Янв 2016 19:26
  47. Щур Дмитрий Дмитриевич 04 Мар 2016 13:29
  48. Александр Воробьев 05 Мар 2016 16:14
  49. Слава 28 Мар 2016 11:57
  50. Александр Воробьев 28 Мар 2016 13:04
  51. Слава 28 Мар 2016 15:03
  52. Александр Воробьев 28 Мар 2016 19:14
  53. руслан 01 Апр 2016 19:29
  54. Александр Воробьев 02 Апр 2016 12:45
  55. Александр 22 Апр 2016 18:55
  56. Александр Воробьев 23 Апр 2016 12:14
  57. Александр 25 Апр 2016 10:45
  58. Олег 09 мая 2016 17:39
  59. Александр Воробьев 09 мая 2016 18:08
  60. михаил 16 мая 2016 09:35
  61. Александр Воробьев 16 мая 2016 16:06
  62. Михаил 09 Июн 2016 22:12
  63. Александр Воробьев 09 Июн 2016 23:14
  64. Михаил 16 Июн 2016 11:25
  65. Александр Воробьев 17 Июн 2016 10:43
  66. Дмитрий 05 Июл 2016 20:45
  67. Александр Воробьев 06 Июл 2016 09:39
  68. Дмитрий 06 Июл 2016 13:09
  69. Виталий 16 Янв 2017 19:51
  70. Александр Воробьев 16 Янв 2017 20:40
  71. Виталий 17 Янв 2017 15:32
  72. Александр Воробьев 17 Янв 2017 19:39
  73. Виталий 17 Янв 2017 20:40
  74. Алексей 15 Фев 2017 02:09
  75. Александр Воробьев 15 Фев 2017 19:08
  76. Алексей 16 Фев 2017 03:50
  77. Дмитрий 09 Июн 2017 12:05
  78. Александр Воробьев 09 Июн 2017 13:32
  79. Дмитрий 09 Июн 2017 14:52
  80. Александр Воробьев 09 Июн 2017 20:14
  81. Сергей 09 Мар 2018 21:54
  82. Александр Воробьев 10 Мар 2018 09:11
  83. Евгений Александрович 06 мая 2018 20:19
  84. Александр Воробьев 06 мая 2018 21:16
  85. Виталий 29 Июн 2018 19:11
  86. Александр Воробьев 29 Июн 2018 23:41

Изгибающий момент и поперечная сила

Основные понятия об изгибе. Чистый и поперечный изгиб балки

Чистым изгибом называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только изгибающий момент.
Деформация чистого изгиба будет, например, иметь место, если к прямому брусу в плоскости, проходящей через ось, приложить две равные по величине и противоположные по знаку пары сил.
На изгиб работают балки, оси, валы и другие детали конструкций. Если брус имеет хоть одну ось симметрии, и плоскость действия нагрузок совпадает с ней, то имеет место прямой изгиб , если же это условие не выполняется, то имеет место косой изгиб .

При изучении деформации изгиба будем мысленно представлять себе, что балка (брус) состоит из бесчисленного количества продольных, параллельных оси волокон.
Чтобы наглядно представить деформацию прямого изгиба, проведем опыт с резиновым брусом, на котором нанесена сетка продольных и поперечных линий.
Подвергнув такой брус прямому изгибу, можно заметить, что (рис. 1):
- поперечные линии останутся при деформации прямыми, но повернутся под углом друг другу;
- сечения бруса расширятся в поперечном направлении на вогнутой стороне и сузятся на выпуклой стороне;
- продольные прямые линии искривятся.

Из этого опыта можно сделать вывод, что:
- при чистом изгибе справедлива гипотеза плоских сечений;
- волокна, лежащие на выпуклой стороне растягиваются, на вогнутой стороне – сжимаются, а на границе между ними лежит нейтральный слой волокон, которые только искривляются, не изменяя своей длины.

Полагая справедливой гипотезу о не надавливании волокон, можно утверждать, что при чистом изгибе в поперечном сечении бруса возникают только нормальные напряжения растяжения и сжатия, неравномерно распределенные по сечению.
Линия пересечения нейтрального слоя с плоскостью поперечного сечения называется нейтральной осью . Очевидно, что на нейтральной оси нормальные напряжения равны нулю.

Изгибающий момент и поперечная сила

Как известно из теоретической механики, опорные реакции балок определяют, составляя и решая уравнения равновесия статики для всей балки. При решении задач сопротивления материалов, и определении внутренних силовых факторов в брусьях, мы учитывали реакции связей наравне с внешними нагрузками, действующими на брусья.
Для определения внутренних силовых факторов применим метод сечений, причем изображать балку будем только одной линией – осью, к которой приложены активные и реактивные силы (нагрузки и реакции связей).

Рассмотрим два случая:

1.К балке приложены две равные и противоположные по знаку пары сил.
Рассматривая равновесие части балки, расположенной слева или справа от сечения 1-1 (рис. 2), видим, что во всех поперечных сечениях возникает только изгибающий момент М и , равный внешнему моменту. Таким образом, это случай чистого изгиба.

Изгибающий момент есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки.
Обратим внимание на то, что изгибающий момент имеет разное направление для левой и правой частей балки. Это говорит о непригодности правила знаков статики при определении знака изгибающего момента.

2. К балке приложены активные и реактивные силы (нагрузки и реакции связей), перпендикулярные оси (рис 3). Рассматривая равновесие частей балки, расположенных слева и справа, видим, что в поперечных сечениях должны действовать изгибающий моментМ и и поперечная сила Q .
Из этого следует, что в рассматриваемом случае в точках поперечных сечений действуют не только нормальные напряжения, соответствующие изгибающему моменту, но и касательные, соответствующие поперечной силе.

Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении балки.
Обратим внимание на то, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики при определении знака поперечной силы.
Изгиб, при котором в поперечном сечении балки действуют изгибающий момент и поперечная сила, называется поперечным.

У балки, находящейся в равновесии вод действием плоской системы сил, алгебраическая сумма моментов всех активных и реактивных сил относительно любой точки равна нулю; следовательно, сумма моментов внешних сил, действующих на балку левее сечения, численно равна сумме моментов всех внешних сил, действующих на балку правее сечения.
Таким образом, изгибающий момент в сечении балки численно равен алгебраической сумме моментов относительно центра тяжести сечения всех внешних сил, действующих на балку справа или слева от сечения.

У балки, находящейся в равновесии под действием плоской системы сил, перпендикулярных оси (т. е. системы параллельных сил), алгебраическая сумма всех внешних сил равна нулю; следовательно сумма внешних сил, действующих на балку левее сечения, численно равна алгебраической сумме сил, действующих на балку правее сечения.
Таким образом, поперечная сила в сечении балки численно равна алгебраической сумме всех внешних сил, действующих справа или слева от сечения.

Так как правила знаков статики неприемлемы для установления знаков изгибающего момента и поперечной силы, установим для них другие правила знаков, а именно: Если внешняя нагрузка стремится изогнуть балку выпуклостью вниз, то изгибающий момент в сечении считается положительным, и наоборот, если внешняя нагрузка стремится изогнуть балку выпуклостью вверх, то изгибающий момент в сечении считается отрицательным (рис 4a).

Если сумма внешних сил, лежащих по левую сторону от сечения, дает равнодействующую, направленную вверх, то поперечная сила в сечении считается положительной, если равнодействующая направлена вниз, то поперечная сила в сечении считается отрицательной; для части балки, расположенной справа от сечения, знаки поперечной силы будут противоположными (рис. 4b). Пользуясь этими правилами, следует мысленно представлять себе сечение балки жестко защемлённым, а связи отброшенными и замененными реакциями.

Еще раз отметим, что для определения реакций связей пользуются правилами знаков статики, а для определения знаков изгибающего момента и поперечной силы – правилами знаков сопротивления материалов.
Правило знаков для изгибающих моментов иногда называют "правилом дождя" , имея в виду, что в случае выпуклости вниз образуется воронка, в которой задерживается дождевая вода (знак положительный), и наоборот – если под действием нагрузок балка выгибается дугой вверх, вода на ней не задерживается (знак изгибающих моментов отрицательный).

Эпюры внутренних усилий при прямом изгибе.

Прямым изгибом называется такой вид простого сопротивления, когда внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки.

Как известно, при прямом изгибе в поперечном сечении возникают два вида внутренних усилий: поперечная сила и внутренний изгибающий момент.

Рассмотрим пример расчетной схемы консольной балки с сосредоточенной силой Р , рис. 1 а., …

а) расчетная схема, б) левая часть, в) правая часть, г) эпюра поперечных сил, д) эпюра изгибающих моментов

Рис.1. Построение эпюр поперечных сил и внутренних изгибающих моментов при прямом изгибе:

Наиболее рациональным следует признать сечение, обладающее минимальной площадью при заданной нагрузке (изгибающем моменте) на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки.Иными словами необходимо, чтобы наибольшие напряжения растяжения (max ) н наибольшие напряжения сжатия (max ) одновременно достигали допускаемых напряжений и .

Поэтому для балки из пластичного материала (одинаково работающего на растяжение и сжатие: ), условие равнопрочности выполняется для сечений, симметричных относительно нейтральной оси. К таким сечениям относится, например, прямоугольное сечение (рис. 6, а ), при котором обеспечено условие равенства . Однако в этом случае материал, равномерно распределенный по высоте сечения, плохо используется в зоне нейтральной оси. Чтобы получить более рациональное сечение, необходимо возможно большую часть материала переместить в зоны, максимально удаленные от нейтральной оси. Таким образом, приходим к рациональному для пластичного материала сечению в форме симметричного двутавра (рис. 6): 2 горизонтальных массивных листа, соединенные стенкой (вертикальным листом), толщина которой назначается из условий прочности стенки по касательным напряжениям, а также из соображений ее устойчивости. К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение (рис. 6, в ).

Рис.6. Распределение нормальных напряжений в симметричных сечениях

Рассуждая аналогично, приходим к выводу, что для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие (рис. 27):

которое вытекает из требования

Рис.7. Распределение напряжений несимметричного профиля сечения балки.

Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов, получивших широкое распространение в строительстве, машиностроении, авиационном машиностроении. Широко распространены показанные на рис. 7: а- двутавр, б- швеллер, в - неравнобокий уголок, г -равнобокий уголок. Реже встречаются тавр, таврошвеллер, зетовый профиль и др.

Рис.8. Используемые профили сечений: а) двутавр, б) швеллер, в) неравнобокий уголок, г) равнобокий уголок

Формула осевого момента сопротивления при изгибе выводится просто. Когда поперечное сечение балки симметрично относительно нейтральной оси, нормальные напряжения в наиболее удаленных точках (при ) определяются по формуле:

Геометрическую характеристику поперечного сечения балки, равную называют осевым моментом сопротивления при изгибе . Осевой момент сопротивления при изгибе измеряется в единицах длины в кубе (как правило, в см3). Тогда .

Для прямоугольного поперечного сечения: ;

формула осевого момент сопротивления при изгибе для круглого поперечного сечения: .

Для наглядного представления характера деформации брусьев (стержней) при изгибе проводится следующий опыт. На боковые грани резинового бруса прямоугольного сечения наносится сетка линий, параллельных и перпендикулярных оси бруса (рис. 30.7, а). Затем к брусу по его концам прикладываются моменты (рис. 30.7, б), действующие в плоскости симметрии бруса, пересекающей каждое его поперечное сечение по одной из главных центральных осей инерции. Плоскость, проходящая через ось бруса и одну из главных центральных осей инерции каждого его поперечного сечения, будем называть главной плоскостью.

Под действием моментов брус испытывает прямой чистый изгиб. В результате деформации, как показывает опыт, линии сетки, параллельные оси бруса, искривляются, сохраняя между собой прежние расстояния. При указанном на рис. 30.7, б направлении моментов эти линии в верхний части бруса удлиняются, а в нижней - укорачиваются.

Каждую линию сетки, перпендикулярную к оси бруса, можно рассматривать как след плоскости некоторого поперечного сечения бруса. Так как эти линии остаются прямыми, то можно предполагать, что поперечные сечения бруса, плоские до деформации, остаются плоскими и в процессе деформации.

Это предположение, основанное на опыте, как известно, носит название гипотезы плоских сечений, или гипотезы Бернулли (см. § 6.1).

Гипотеза плоских сечений применяется не только при чистом, но и при поперечном изгибе. Для поперечного изгиба она является приближенной, а для чистого изгиба строгой, что подтверждается теоретическими исследованиями, проведенными методами теории упругости.

Рассмотрим теперь прямой брус с поперечным сечением, симметричным относительно вертикальной оси, заделанный правым концом и нагруженный на левом конце внешним моментом действующим в одной из главных плоскостей бруса (рис. 31.7). В каждом поперечном сечении этого бруса возникают только изгибающие моменты действующие в той же плоскости, что и момент

Таким образом, брус на всем своем протяжении находится в состоянии прямого чистого изгиба. В состоянии чистого изгиба могут находиться отдельные участки балки и в случае действия на нее поперечных нагрузок; например, чистый изгиб испытывает участок 11 балки, изображенной на рис. 32.7; в сечениях этого участка поперечная сила

Выделим из рассматриваемого бруса (см. рис. 31.7) двумя поперечными сечениями элемент длиной . В результате деформации, как это следует из гипотезы Бернулли, сечения останутся плоскими, но наклонятся по отношению друг к другу на некоторый угол Примем левое сечение условно за неподвижное. Тогда в результате поворота правого сечения на угол оно займет положение (рис. 33.7).

Прямые пересекутся в некоторой точке А, которая является центром кривизны (или, точнее, следом оси кривизны) продольных волокон элемента Верхние волокна рассматриваемого элемента при показанном на рис. 31.7 направлении момента удлиняются, а нижние укорачиваются. Волокна же некоторого промежуточного слоя перпендикулярного к плоскости действия момента сохраняют свою длину. Этот слой называется нейтральным слоем.

Обозначим радиус кривизны нейтрального слоя, т. е. расстояние от этого слоя до центра кривизны А (см. рис. 33.7). Рассмотрим некоторый слой расположенный на расстоянии у от нейтрального слоя. Абсолютное удлинение волокон этого слоя равно а относительное

Рассматривая подобные треугольники устанавливаем, что Следовательно,

В теории изгиба предполагается, что продольные волокна бруса не давят друг на друга. Экспериментальные и теоретические исследования показывают, что это предположение не влияет существенно на результаты расчета.

При чистом изгибе в поперечных сечениях бруса не возникают касательные напряжения. Таким образом, все волокна при чистом изгибе находятся в условиях одноосного растяжения или сжатия.

По закону Гука для случая одноосного растяжения или сжатия нормальное напряжение о и соответствующая относительная деформация связаны зависимостью

или на основании формулы (11.7)

Из формулы (12.7) следует, что нормальные напряжения в продольных волокнах бруса прямо пропорциональны их расстояниям у от нейтрального слоя. Следовательно, в поперечном сечении бруса в каждой его точке нормальные напряжения пропорциональны расстоянию у от этой точки до нейтральной оси, представляющей собой линию пересечения нейтрального слоя с поперечным сечением (рис.

34.7, а). Из симметрии бруса и нагрузки следует, что нейтральная ось горизонтальна.

В точках нейтральной оси нормальные напряжения равны нулю; по одну сторону от нейтральной оси они растягивающие, а по другую - сжимающие.

Эпюра напряжений о представляет собой график, ограниченный прямой линией, с наибольшими по абсолютной величине значениями напряжений для точек, наиболее удаленных от нейтральной оси (рис. 34.7,б).

Рассмотрим теперь условия равновесия выделенного элемента бруса. Действие левой части бруса на сечение элемента (см. рис. 31.7) представим в виде изгибающего момента остальные внутренние усилия в этом сечении при чистом изгибе равны нулю. Действие правой части бруса на сечение элемента представим в виде элементарных сил о приложенных к каждой элементарной площадке поперечного сечения (рис. 35.7) и параллельных оси бруса.

Составим шесть условий равновесия элемента

Здесь - суммы проекций всех сил, действующих на элемент соответственно на оси - суммы моментов всех сил относительно осей (рис. 35.7).

Ось совпадает с нейтральной осью сечения а ось у перпендикулярна к ней; обе эти оси расположены в плоскости поперечного сечения

Элементарная сила не дает проекций на оси у и и не вызывает момента относительно оси Поэтому уравнения равновесия удовлетворяются при любых значениях о.

Уравнение равновесия имеет вид

Подставим в уравнение (13.7) значение а по формуле (12.7):

Так как (рассматривается изогнутый элемент бруса, для которого ), то

Интеграл представляет собой статический момент поперечного сечения бруса относительно нейтральной оси . Равенство его нулю означает, что нейтральная ось (т. е. ось ) проходит через центр тяжести поперечного сечения. Таким образом, центр тяжести всех поперечных сечений бруса, а следовательно, и ось бруса, являющаяся геометрическим местом центров тяжести, расположены в нейтральном слое. Следовательно, радиус кривизны нейтрального слоя является радиусом кривизны изогнутой оси бруса.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно нейтральной оси :

Здесь представляет собой момент элементарной внутренней силы относительно оси .

Обозначим площадь части поперечного сечения бруса, расположенной над нейтральной осью, - под нейтральной осью.

Тогда представит собой равнодействующую элементарных сил приложенных выше нейтральной оси, ниже нейтральной оси (рис. 36.7).

Обе эти равнодействующие равны друг другу по абсолютной величине, так как их алгебраическая сумма на основании условия (13.7) равна нулю. Эти равнодействующие образуют внутреннюю пару сил, действующую в поперечном сечении бруса. Момент этой пары сил, равный т. е. произведению величины одной из них на расстояние между ними (рис. 36.7), представляет собой изгибающий момент в поперечном сечении бруса.

Подставим в уравнение (15.7) значение а по формуле (12.7):

Здесь представляет собой осевой момент инерции , т. е. оси, проходящей через центр тяжести сечения. Следовательно,

Подставим значение из формулы (16.7) в формулу (12.7):

При выводе формулы (17.7) не учтено, что при внешнем моменте направленном, как это показано на рис. 31.7, согласно принятому правилу знаков, изгибающий момент является отрицательным. Если учесть это, то перед правой частью формулы (17.7) необходимо поставить знак «минус». Тогда при положительном изгибающем моменте в верхней зоне бруса (т. е. при ) значения а получатся отрицательными, что укажет на наличие в этой зоне сжимающих напряжений. Однако обычно знак «минус» в правой части формулы (17.7) не ставится, а эта, формула используется лишь для определения абсолютных значений напряжений а. Поэтому в формулу (17.7) следует подставлять абсолютные значения изгибающего момента и ординаты у. Знак же напряжений всегда легко устанавливается по знаку момента или по характеру деформации балки.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно оси у:

Здесь представляет собой момент элементарной внутренней силы относительно оси у (см. рис. 35.7).

Подставим в выражение (18.7) значение а по формуле (12.7):

Здесь интеграл представляет собой центробежный момент инерции поперечного сечения бруса относительно осей у и . Следовательно,

Но так как

Как известно (см. § 7.5), центробежный момент инерции сечения равен нулю относительно главных осей инерции.

В рассматриваемом случае ось у является осью симметрии поперечного сечения бруса и, следовательно, оси у и являются главными центральными осями инерции этого сечения. Поэтому условие (19.7) здесь удовлетворяется.

В случае, когда поперечное сечение изгибаемого бруса не имеет ни одной оси симметрии, условие (19.7) удовлетворяется, если плоскость действия изгибающего момента проходит через одну из главных центральных осей инерции сечения или параллельна этой оси.

Если плоскость действия изгибающего момента не проходит ни через одну из главных центральных осей инерции поперечного сечения бруса и не параллельна ей, то условие (19.7) не удовлетворяется и, следовательно, нет прямого изгиба - брус испытывает косой изгиб.

Формула (17.7), определяющая нормальное напряжение в произвольной точке рассматриваемого сечения бруса, применима при условии, что плоскость действия изгибающего момента проходит через одну из главных осей инерции этого сечения или ей параллельна. При этом нейтральная ось поперечного сечения является его главной центральной осью инерции, перпендикулярной к плоскости действия изгибающего момента.

Формула (16.7) показывает, что при прямом чистом изгибе кривизна изогнутой оси бруса прямо пропорциональна произведению модуля упругости Е на момент инерции Произведение будем называть жесткостью сечения при изгибе; она выражается в и т. д.

При чистом изгибе балки постоянного сечения изгибающие моменты и жесткости сечений постоянны по ее длине. В этом случае радиус кривизны изогнутой оси балки имеет постоянное значение [см. выражение (16.7)], т. е. балка изгибается по дуге окружности.

Из формулы (17.7) следует, что наибольшие (положительные - растягивающие) и наименьшие (отрицательные-сжимающие) нормальные напряжения в поперечном сечении бруса возникают в точках, наиболее удаленных от нейтральной оси, расположенных по обе стороны от нее. При поперечном сечении, симметричном относительно нейтральной оси, абсолютные величины наибольших растягивающих и сжимающих напряжений одинаковы и их можно определить по формуле

где - расстояние от нейтральной оси до наиболее удаленной точки сечения.

Величина зависящая только от размеров и формы поперечного сечения, называется осевым моментом сопротивления сечения и обозначается

(20.7)

Следовательно,

Определим осевые моменты сопротивления для прямоугольного и круглого сечений.

Для прямоугольного сечения шириной b и высотой

Для круглого сечения диаметром d

Момент сопротивления выражается в .

Для сечений, не симметричных относительно нейтральной оси, например для треугольника, тавра и т. п., расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон различны; поэтому для таких сечений имеются два момента сопротивления:

где - расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон.