ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Солнечные батареи для дома: стоимость комплекта и целесообразность установки. Солнечная батарея на балконе, опыт использования

  • Экология
  • Привет Geektimes. Данная статья является продолжением предыдущей части, про туристическое зарядное устройство " ". Идея использования солнечной батареи для зарядки разных гаджетов мне показалась весьма перспективной, но конечно, 21Вт в качестве универсальной зарядки мало - хочется иметь возможность заряда не только в солнечную погоду, а для этого нужен запас по мощности. Поэтому были куплены полноценные солнечные панели и начаты эксперименты с ними.

    Что из этого получилось, подробности под катом.

    Железо

    1. Солнечная панель

    Тут есть разные варианты, но на балконе основным ограничением является наличие свободного места. Для понимания порядка цен, батарея на 50Вт стоит примерно 5000руб и выглядит так:


    Размеры панели в мм - 540x620x30, вес 4кг.

    Балконы по размеру бывают разные, исходя из габаритов панелей, вполне без проблем можно поместить 2 или 4 штуки, больше уже не влезет. Для теста было куплено 2 панели по 50Вт. Такая батарея дает около 18В под нагрузкой или 24В без нее, значит при использовании 2х батарей нужно рассчитывать на суммарное напряжение до 50В (к примеру многие dc-dc преобразователи штатно работают до 30В). Можно соединить батареи и параллельно, но тогда потери из-за длины проводов будут чуть выше.

    2. Контроллер

    Здесь есть 2 варианта:

    - Солнечные панели + контроллер + аккумулятор

    Это классическая конструкция: контроллер заряжает аккумулятор когда есть солнце, пользователь когда ему надо, эту энергию использует.


    Преимуществ у данной системы несколько:

    Энергией можно пользоваться когда угодно, а не только когда светло,
    - возможность подключения инвертора и получения на выходе 220В,
    - как бонус, резервный источник в доме на случай отключения электричества.

    Недостаток один: использование аккумулятора большой емкости в корне убивает экологичность идеи данного мероприятия. Число циклов заряда/разряда аккумуляторов ограничено, они не любят переразряд, к тому же и аккумуляторы и контроллеры довольно-таки дорогие. Цена контроллера составляет от 1000р за самую дешевую ШИМ-версию, до 10000-20000р за более дорогую (и эффективную) версию с поддержкой MPPT (что такое MPPT можно почитать ). Цена аккумулятора составляет от 5000р за обычный гелевый аккумулятор на 40-50А*ч, некоторые используют батареи LiFePo4, они разумеется дороже.

    - Grid-tie инвертер

    Эта технология наиболее перспективна на данный момент.


    Суть в том, что конвертор преобразует и отдает энергию сразу в домашнюю электросеть. При этом потребляемая от общей сети энергия уменьшается, домовой электросчетчик фиксирует меньшие показания.

    В идеале, если солнечные панели дают достаточно энергии для всех потребителей, значение на электросчетчике вообще не будет расти. А если потребление квартиры/дома меньше, чем выработка солнечных панелей, то счетчик будет фиксировать «экспорт» энергии, что должно учитываться компанией-поставщиком электричества. В России правда такая схема пока не работает - более того, большинство старых электросчетчиков считают энергию «по модулю», т.е. за отдаваемую энергию еще и придется платить. Вроде в 2017 году вопросы микрогенерации на законном уровне обещали начать решать. Но впрочем для панелей на балконе все это имеет лишь теоретический интерес - их выработка слишком мала.

    Цена grid-tie инвертора составляет от 100$, в зависимости от мощности. Отдельно стоит отметить микроинветоры - они ставятся прямо на батарею, и отдают сразу сетевое напряжение, однако рекомендуемая мощность панелей составляет не менее 200Вт. Инвертор крепится прямо на задней стенке солнечной панели, это позволяет соединять их так:


    Но для балкона это разумеется, неактуально.

    Тестирование

    Первым делом было интересно выяснить, какую реальную мощность можно получить с солнечных панелей. Для этого за 15$ была куплена плата АЦП ADS1115 для Raspberry Pi:


    Использовать ее просто, входное напряжение делится делителем и подается на аналоговый вход, на выходе имеем цифровые значения. Исходники для работы с АЦП можно . Также был куплен датчик тока ACS712, датчик напряжения был сделан из кучки резисторов (дома нашлись только одного номинала). В качестве нагрузки была установлена обычная лампочка на 100Вт. Разумеется, от 48 вольт она не горела (лампочка расчитана на 220В), а лишь еле-еле светилась. Сопротивление спирали составляет 42 Ома, что по напряжению позволяет примерно оценить мощность (хотя у лампы накаливания сопротивление нелинейно, но для грубой прикидки сойдет).

    Первая тестовая версия выглядела так:

    Технофетишистам не смотреть!



    Исходник был допилен, чтобы данные и текущее время сохранялись в CSV, также на Raspberry Pi был запущен web-сервер, чтобы скачивать файлы по локальной сети.

    Результаты за обычный вполне ясный день с переменной облачностью выглядят так:


    Видно что пик напряжения приходится на раннее утро, что есть следствие неправильной установки панелей - в идеале они не должны стоять вертикально.

    А вот так выглядит «провал» в день, когда набежали тучи, и пошел дождь:


    Учитывая напряжение в 44В и сопротивление нити накала лампы в 42Ома, можно грубо прикинуть (нелинейность сопротивления лампы игнорируем), что в лучшем случае получаемая мощность P = U*U/R = 46Вт. Увы, КПД 100-ваттной панели при вертикальной установке не очень хорош - солнечные лучи падают на панель не под прямым углом. В худшем случае (пасмурно, дождь) мощность падает даже до 10Вт. Зимой и летом суммарная получаемая энергия также будет отличаться.

    Опыт с отдачей энергии напрямую в сеть оказался неудачным: 500-ваттный инвертер от 45 ватт просто не заработал. В принципе это было ожидаемо, так что инвертор оставлен на будущее до переезда на место с балконом побольше.

    В итоге, учитывая решение отказаться от буферных аккумуляторов, единственным рабочим вариантом оказалось использование dc-dc конверторов напрямую: к примеру вот такой конвертер может заряжать любые USB-девайсы, на его выходе уже есть и USB-разъем:

    Есть модели чуть подороже, они имеют больший максимальный ток и большее число USB-разъемов:

    Есть мысль также найти dc-dc-конвертер для зарядки ноутбука, их выбор на eBay весьма велик.

    Заключение

    Данная система имеет экспериментальный характер, но в целом можно сказать что оно работает. Как видно по графику, примерно с 7 утра и до 17 вечера отдаваемая панелями мощность более 30Вт, что в принципе не так уж плохо. В совсем пасмурную погоду результаты разумеется хуже.

    Об экономической целесообразности речи разумеется не идет - при выработке 40Вт*ч по 7 часов, за неделю будет выработано 2КВт*ч. Окупаемость в ценах своего региона каждый может прикинуть самостоятельно. Вопрос разумеется не в цене, а в получении опыта, что всегда интересно.

    Но куда девать энергию, вопрос пока открытый. Использовать 40Вт для зарядки USB-устройств это чересчур избыточно. На eBay есть grid tie инверторы на 300Вт с рабочим напряжением 10.5-28В, однако отзывов по ним мало, а тратить 100$ на тест не хочется. Если подходящее решение так и не найдется, можно считать что одна 50-ваттная панель является оптимумом для балкона - ею можно заряжать разные гаджеты, избыточность в этом случае минимальна.

    По крайней мере, уже сейчас все домашние цифровые устройства (телефоны, планшет) переведены на «зеленую энергию» без особых хлопот. Есть мысль все-таки рассмотреть использование буферного LiFePo4 аккумулятора - но вопрос выбора и аккумулятора и контроллера пока открыт.

    В дополнение: как подсказали в комментариях, можно использовать свинцовый аккумулятор, например автомобильный. Да, это действительно дешевый и работающий вариант, со 100-ваттной панелью будет достаточно примерно такого контроллера, ценой всего 10-20$ на eBay.

    Идея использовать солнечную энергию для отопления дома или на другие нужды - не нова, разработаны устройства, которые позволяют это сделать любому человеку. Во многих странах, солнечные батареи на крыше скорее правило, чем исключение. Наша страна, к ним пока не относится, но и у нас уже подобные установки можно увидеть все чаще. Солнечные системы для дома могут быть двух видов. Первый - солнечные коллекторы, которые нагревают протекающий в них теплоноситель. Второй - солнечные батареи, которые вырабатывают электричество. О них и будем говорить ниже.

    Солнечные батареи преобразуют солнечный свет в электрическую энергию. Батарея состоит из некоторого количества фотоэлектрических преобразователей, которые чаще называют фотоэлементами. Количество преобразователей в батарее произвольное, соединение последовательно-параллельное. Чем определяется количество фотоэлементов? Необходимой силой тока и напряжением. Располагают преобразователи на какой-либо плоской поверхности один возле другого. Из-за внешнего вида такие конструкции часто называют «солнечные панели».

    Солнечные батареи для частного дома в некоторых странах — обычное явление

    Слишком большие по площади солнечные батареи в быту использовать неудобно, а если не хватает мощности самой большой, несколько устройств соединяют в каскад. Если мощность требуется большая, может понадобиться значительная площадь: может быть занята вся крыша, иногда стены дома и часть придомовой территории. Потому чаще применяют солнечные батареи для частного дома: там есть где разместить и большое их количество. Владельцы квартир могут занять только окна и балконы.

    Возможности использования

    Как можно использовать солнечные батареи для отопления дома? Только для уменьшения счетов за электроэнергию, а также в качестве резервного источника на случай отключения. Это поможет добиться той самой энергонезависимости, и не заморозить систему отопления при отсутствии централизованного электропитания.

    Насколько реально солнечная батарея может обеспечит потребности в электричестве? Если говорить о водяном отоплении, то это реально: для поддержания работоспособности системы потребуется максимум 200-300 Вт/ч. Столько в среднем «тянут» электроника котла + циркуляционный насос + возможные управляющие устройства и контролеры. Если система у вас больше, возьмите паспорта и посчитайте необходимую мощность. Для 300 Вт/ч будет достаточно двух солнечных панелей средней мощности (их суммарная производительность должна немного превышать потребность).

    И не нужно думать, что при отсутствии солнца электричества не будет. В систему входят обязательно аккумуляторы и инвертор. Правильно подберите мощность аккумуляторов, и их заряда даже при самых плохих погодных условиях вам хватит на несколько дней работы системы.

    Кстати, многие европейские производители отопительного оборудования предусматривают совместную работу своей техники с солнечными преобразователями (например, газовые котлы и ). Но работают они с гелиоколлекторами (греют воду) или с солнечными батареями, нужно смотреть по каждому виду оборудования.

    Если , все серьезнее. Мощность большинства таких обогревателей исчисляется киловаттами. Для выработки такого количества энергии потребуется много панелей для переработки энергии солнца. Устройство системы солнечных батарей для отопления частного дома электрическими полами, может вылиться в очень приличную сумму. Но система хороша тем, что ее мощность можно наращивать постепенно. Будете по возможности увеличивать количество панелей и количество вырабатываемого электричества.

    При желании можно сэкономить: . Такие самодельные варианты обойдутся в разы дешевле заводских. И это притом, что покупать фотопреобразователи придется готовые: их изготовление в кустарных условиях - нереальная задача. Поэтому - только готовые. Эффективность самодельных солнечных панелей будет ниже заводских, но и цена в разы ниже.

    Расчет солнечных батарей для дома

    Инсоляция (количество солнечной энергии) в разные месяцы сильно изменяется. Потому сначала нужно определиться с тем, какую часть электроэнергии и на какой период вы собираетесь вырабатывать. Если вы хотите все 100% в любое время года вырабатывать самостоятельно, считать придется по самому плохому месяцу с минимальным количеством солнечных дней. Но тогда возникнет вопрос: что делать с избыточным количеством электроэнергии, которая будет вырабатываться в другие месяца. Если проживание планируется только в огородный сезон, считаете по самой низкой инсоляции в этот период. В общем, принцип понятен.

    Затем необходимо рассчитать какую суммарную мощность должна выдавать ваша солнечная система для дома. Для этого в таблицу вписываете все электроприборы, и из их паспортов вносите данные по мощности, потребляемому току и ваттную нагрузку. Подбив колонки, узнаете, сколько электроэнергии в час нужно всей вашей аппаратура и приборам. Понятно, что все они вряд ли включаются одновременно. Можете попытаться высчитать, какие из них работают одновременно, и по этой цифре подбирать солнечные панели.

    Как считать количество солнечных батарей разберем на примере. Пусть потребность в электроэнергии 10 кВт/ч, инсоляция в расчетном месяце 2 кВт/ч. Мощность батареи, которую собрались покупать, 250 Вт (0,25 кВт). Теперь считаем 10 / 2 / 0,25 = 20 шт. То есть понадобится 20 солнечных панелей.

    Для уменьшения потребления электроэнергии нужно заменить все лампы накаливания на светодиодные, а всю старую неэкономную технику на энергосберегающую - тогда вам понадобится не такое уже и большое количество солнечных панелей.

    Виды солнечных батарей

    Фотоэлектрические преобразователи существуют разные. Причем отличается и материал, из которого они изготавливаются, и технологии. От всех этих факторов напрямую зависит производительность этих преобразователей. Некоторые фотоэлементы имеют КПД 5-7 %, а самые удачные последние разработки показывают 44 % и выше. Понятно, что от разработок до бытового использования расстояние огромное, и по времени, и по деньгам. Зато можно представить, что ждет нас в ближайшем будущем. Для получения лучших характеристик используют другие редкоземельные металлы, но с улучшением характеристик имеем приличное повышение цены. Средняя же производительность относительно недорогих солнечных преобразователей составляет 20-25 %.

    Самые распространенные кремниевые солнечные батареи. Этот полупроводник недорог, его производство освоено давно. Но они имеют не самый высокий КПД - те самые 20-25%. Потому при всем разнообразии сегодня преимущественно используются три вида солнечных преобразователей:

    • Самые дешевые - тонкопленочные батареи. Они представляют собой тонкий налет кремния на несущем материале. Кремниевый слой покрыт защитной пленкой. Плюс этих элементов в том, что работают они даже в рассеянном свете, а, следовательно, есть возможность устанавливать их даже на стены зданий. Минусы - низкая эффективность 7-10%, а также, несмотря на защитный слой, постепенная деградация кремниевого слоя. Тем не менее заняв большую площадь, можно получить электричество даже в пасмурную погоду.
    • Поликристаллические солнечные батареи изготавливают из расплава кремния, медленно его охлаждая. Отличить эти элементы можно по ярко-синему цвету. Эти солнечные батареи имеют лучшую продуктивность: КПД 17-20%, но в рассеянном свете малоэффективны.
    • Самые дорогие из всей троицы, но при этом довольно широко распространенные - монокристаллические солнечные батареи. Они получаются путем разделения одного кристалла кремния на пластины и имеют характерную геометрию со скощенными углами. У этих элементов КПД от 20% до 25%.

    Теперь, видя надписи «солнечная панель моно» или «поликристаллическая солнечная батарея», вы будете понимать, что речь идет о способе производства кремниевых кристаллов. Также вы будете знать, какой эффективности от них можно ожидать.

    Батарея с монокристаллическими преобразователями

    Эффективность солнечных батарей зимой

    Вы, наверное, удивитесь, но зимним днем на вертикальную поверхность падает всего в 1,5-2 раза меньше энергии, чем летом. Это данные для средней полосы России. За сутки картина хуже: за этот период летом получаем в 4 раза больше энергии. Но обратите внимание: на вертикальную поверхность. То есть на стену. Если говорить о горизонтальной поверхности, тут разница уже в 15 раз.

    Самая печальная картина по выработке электроэнергии солнечными батареями ожидает вас не зимой, а осенью: в пасмурную погоду их эффективность ниже в 20-40 раз, в зависимости от плотности облачного покрова. Зимой же, после того выпал снег, инсоляция (количество света, падающего на батареи) в солнечные дни может приближаться к летним значениям. Потому зимой солнечные системы для дома вырабатывают больше электроэнергии, чем осенью.

    Получается, чтобы зимой добиться близкой к максимальной эффективности, нужно располагать солнечные батареи вертикально или почти вертикально. И, если их вешать на стены, то желательно на юго-восточные: утром по статистике чаще бывает ясная погода. Если юго-восточной стены нет, или ничего на ней установить невозможно, выйти из положения можно сделав специальные подставки. Тогда ставят солнечные батареи на крыше. Так как угол падения солнечных лучей в зависимости от сезона меняется, желательно сделать подставку с регулируемым углом наклона. Есть возможность — разверните солнечные панели «лицом» на юго-восток, нет такой возможности, пусть «смотрят» на юг.

    Правила установки

    Эффективность работы кремниевых солнечных батарей зависит от количества попадающей на них энергии солнца (всего спектра излучения). Факторы, на которые мы можем каким-то образом повлиять, это:


    На работоспособность многих типов преобразователей влияют температурные показатели: диапазон использования кремниевых элементов от -40 o C до +50 o C. Негативно на работоспособности сказываются как более низкие, так и более высокие температуры. Если летом у вас солнце активное, важно не допустить перегрева. Для этого под панель можно положить белую ткань или фольгу (более эффективно). Если это не помогает и панель перегревается, поверните ее, или перевесьте. Нужно будет выбрать такое положение, при котором будет соблюдаться тепловой режим, а производительность останется довольно высокой.

    Максимальную свою продуктивность эти устройства показывают, если солнечные лучи падают под углом 90 o . К сожалению, такое возможно далеко не весь день, а лишь короткий промежуток времени. Есть специальные системы слежения, изменяющие угол наклона панели так, чтобы свет падал постоянно под желаемым углом, но это дорогие установки.

    И все же, можно найти оптимальный угол установки солнечных батарей. Просто при незначительном отклонении от идеала (менее 50 o) производительность падает мало, примерно на 5 %. Фактическое подтверждение этому можете увидеть в видео.

    Для каждого региона угол установки солнечных батарей свой. Его можно определить экспериментально (как - вы видели), а можно выставить исходя из географической широты - этот наклон принято считать самым лучшим. Многое зависит от ориентации панели: если вы развернули ее на север или восток, оптимальный угол будет меньше.

    Солнечные батареи на крыше

    Прежде всего, нужно выяснить, выдержит ли кровля дополнительную нагрузку. Один-два модуля выдержит любая, а для большего количества придется считать.

    Для надежной фиксации они должны крепиться как минимум в четырех точках. Причем, если вы монтируете панели заводского изготовления, не поленитесь изучить инструкцию по установке: при нарушении хотя бы одного из пунктов, оборудование снимается с гарантии. В большинстве случаев требования такие:


    Системы крепления солнечных панелей могут быть разными. Есть готовые (продаются там же, где и сами панели), но вполне можно использовать и сделанные собственноручно. Важно только использовать надежные, стойкие к коррозии материалы. Толщина реек и крепежа должна быть большой: выдерживать должны они и ветровые нагрузки, и массу панелей с самым толстым снежным покровом.

    Один из методов крепления солнечных батарей на крыше частного дома можно увидеть в видео.

    Теперь немного об электрической сборке. Схема подключения солнечной батареи, кроме самих преобразователей, предусматривает наличие:

    • контроллера заряда с подключенными аккумуляторными батареями;
    • преобразователя (инвертора), который преобразует постоянный ток в переменный;
    • предохранителей для защиты от короткого замыкания (повысят безопасность и вашу и системы).

    Контроллер и преобразователь имеют ограничения по току и напряжению. Суммарные параметры подключаемой для вашего дома солнечной системы не должны их превышать. Для электрического соединения батарей в единую систему, использовать нужно только те провода, которые выведены наружу.

    Для соединения панелей применяют медный проводник в стойкой к ультрафиолету изоляции. Если провода в подходящей изоляции не нашли, спрячьте его в гофрированный шланг для наружных работ. Толщина жил провода зависит от предполагаемой силы тока в системе и от длины линии, но минимальное сечение 4 мм 2 . Соединение проводников желательно делать при помощи коннекторов, а не на скрутках. Рекомендуют МС4 потому что проводники, выходящие из большинства солнечных батарей, оконечены именно такими разъемами. Эти разъемы хороши тем, что обеспечивают герметичное соединение, что на крышах немаловажно. Но не все фирмы устанавливают разъемы этого стандарта. В дешевых моделях (особенно китайских) может стоять что-либо иное, так что уточняйте при покупке.

    Теперь о последовательности подключения оборудования в систему. Для безопасного подключения соблюдайте очередность такую:

    1. К контроллеру подключаются аккумуляторы с соблюдением полярности. Провода - медь, сечение выбирается в зависимости от мощности контроллера.
    2. К контроллеру подключаются солнечные батареи. Также необходимо соблюдать полярность.
    3. К контроллеру через предохранитель подключается 12 В потребители.
    4. К аккумуляторам подключается инвертор (через предохранитель), а к его выходу уже потребители 220 В. Подключение инвертора напрямую к контроллеру исключено: придется покупать новые устройства. А это приблизительно 600-1000$ в зависимости от фирмы и мощности.

    Не пренебрегайте последовательностью подключения - это наиболее безопасный алгоритм, гарантирующий (при соблюдении полярности) рабочее состояние системы.

    Напоследок, еще один вариант установки на крыше дачи с регулируемым углом наклона. Возможно, вам видео будет полезным.

    Использование бесплатной энергии солнца интересует многих людей. Некоторые из них устанавливают солнечные энергосистемы на крышах домов, другие – на свободных участках частных землевладений. Но не у всех есть такая возможность из-за отсутствия индивидуального отдельно стоящего дома, поэтому все чаще владельцы квартир монтируют вырабатывающие энергию солнечные батареи на балконе.

    Устройство балконных панелей

    Солнечные батареи, эксплуатируемые на балконе, ввиду ограниченной площади места их установки, должны иметь высокую энергетическую эффективность при достаточно компактных габаритных размерах. Для достижения этой цели балконные панели комплектуются инверторами повышенной способности, обладающими большой электрической отдачей и сохраняющими работоспособность на максимальных пиковых нагрузках.

    В стандартную комплектацию солнечных батарей для квартиры входят следующие элементы:

    • аккумулятор;
    • инвертор;
    • полупроводниковые пластины;
    • система модульного управления.

    Полупроводниковые пластины преобразовывают направленную на них солнечную энергию в электрическую. Образованный ток заряжает аккумуляторную батарею, в которой и накапливается запас выработанной электроэнергии. Инвертор нужен для преобразования постоянного напряжения аккумулятора в переменное, то есть в такое же, как и в обычной розетке.

    В комплект большинства современных солнечных установок входят также дополнительные устройства, такие как контроллеры и выходы USB, к которым для подзарядки можно подключать фонарики, переносные лампы, мобильные телефоны, ноутбуки и небольшую бытовую технику.

    Нюансы установки батарей

    Вся система преобразования солнечной энергии размещается на балконе квартиры, она не нуждается в особом уходе и постоянном внимании. Единственный фактор, который очень важно учитывать, – обязательное наличие положительной температуры в месте расположения аккумуляторных батарей. Зимой аккумуляторы из-за воздействия мороза могут терять значительную часть своего заряда.

    Полупроводниковые пластины желательно установить на балконное стекло, хотя также возможен монтаж на место нижних пластиковых панелей оконной рамной конструкции. В первом варианте энергопластины будут препятствовать прохождению солнечного света в помещение, однако это очень выгодно в ясные и жаркие летние дни. Кроме того, будет обеспечена защита от воздействия ультрафиолетового излучения.

    Самые объемные элементы всей системы, аккумуляторы, рекомендуется располагать под потолком, благодаря чему они не занимают полезной площади и сохраняют эстетичность вида балкона. Инвертор и блок управления лучше всего размещать немного ниже аккумуляторных батарей.

    Практика применения

    В российских климатических условиях специалисты рекомендуют использовать поликристаллические модули, высокочувствительные к слабому потоку солнечного света. Такие модули ламинируются прочным материалом, защищающим пластины от снеговых, дождевых и прочих погодных влияний.

    Для стандартного балкона люди чаще всего выбирают четыре поликристаллические панели, направляя их на южную сторону. Модуль не должен попадать в зону затенения соседними домами или деревьями. В летнее время такая система способна вырабатывать до 2-х кВтч электроэнергии за сутки , которой достаточно для энергосберегающего освещения всей квартиры, зарядки мобильного телефона и ноутбука, либо же для работы небольшого холодильника или телевизора. Зимой инсоляция солнечного света существенно сокращается, поэтому модуль выполняет роль резервного питания при отключениях сетевого напряжения.

    Минусы солнечных энергосистем

    Главным недостатком установки солнечной батареи на балконе можно назвать ее низкую энергоэффективность в отношении обеспечения электричеством всех электроприборов в квартире. Такие системы не могут вырабатывать достаточное количество тока для питания водонагревателя, электроплиты, мощной стиральной машины или холодильника и т.д.

    Обычно проектирование так называемых «солнечных домов» производится еще задолго до их возведения. При этом подбирается наиболее подходящее для работы энергетических систем место расположения строения, учитываются инфраструктурные особенности. Благодаря правильной разработке проекта, подобные солнечные комплексы способны обеспечить работу всей осветительной системы многоквартирного дома и прилегающих территорий, питание систем связи и безопасности.

    Квартирная солнечная энергосистема – вещь достаточно дорогая, поэтому затраты на ее установку окупаются сравнительно долго. К дополнительным расходам также добавляется стоимость переоборудования освещения, установки экономных светодиодных ламп.

    Прежде чем принять решение об установке солнечной батареи в квартире, важно оценить все «за» и «против». Необходимо взвесить требуемые вложения денежных средств и отдачу в виде прибыли. Солнечную энергосистему на балконе целесообразно использовать только в том случае, если она окупит затраты на свою установку в течение короткого времени.

    В том случае, если Вы хотите сберечь деньги на электроэнергии или проживаете на труднодоступной для размещения линии электропередачи территории, мы предлагаем присмотреть и купить комплекты высококачественных солнечных батарей по доступной стоимости для дома на сайте интернет-магазина «Солнечные батареи» в Москве. Опытные и доброжелательные менеджеры ответят на все вопросы. Вы примете верное решение, точно зная, какой вид требуется (поликристаллический, тонкопленочный или монокристаллический модуль). Привезем товар без доплаты, в короткие сроки.

    Наука развивается, создаются все более и более действенные вариации этих систем, оптимизируется цена и повышается способность преобразовывать свет. Если в прошлом заказать их имели возможность лишь довольно богатые люди или крупные корпорации, то в настоящий момент стоимость для дома комплекта солнечных 5 кВт батарей-электростанций общедоступна.

    Больше всего выгодна данная вариация для жителей сельских частных домов. Не возникнет никаких затруднений в том случае, если Вы решите посидеть за компьютером или посмотреть телевизор после изнурительного труда на садово-огородном участке, нужно только разместить, заказав у нас по приятной стоимости, комплект солнечных батарей для дома или дачи.

    К преимуществам таких комплексов-электростанций относят:

    • Надежность и долговечность. При бережном использовании, нормальный срок службы – до 30 от 25 лет.
    • Высокоэкономичность при применении. Почти не требуют обслуживания. Чистку светочувствительных поверхностей организуют лишь один раз в год.
    • Безвредность для природы. Не применяется жидкое топливо.
    • Тихо функционирует.
    • Простота установки и транспортировки. Крепятся на крыше с самой освещенной стороны.

    Люди ищут иные источники электрической энергии и совершенствуют методы, разрешающие ее из новых источников извлекать. Купить солнечные батареи-электростанции 5 кВт для частного дома или дачи по популярной цене – разумное и предусмотрительное решение.

    Аппараты достаточно действенно решают свою задачу – обеспечивают владельцев бесплатным электричеством. Один комплект может дать такое количество электроэнергии, что она с лихвой покроет все базовые нужды. Теплым летом можно обойтись без подключения к внешним сетям. Стоимость комплекта для дачи или частного дома батарей-электростанций солнечных приятна и, если Вы нередко пользуетесь электроприборами, быстро окупится.

    Одна из причин, почему нужно сотрудничать именно с нами: наша цена (стоимость) комплекта батарей солнечных для частного дома – одна из самых экономичных. Если Вы ищете новые возможности, более дешевых и безопасных источников электропитания для своей бытовой техники, то мы рекомендуем купить комплект батарей-электростанций солнечных по экономичной цене для частного дома. Тепло, безопасность, экономия средств – наш девиз: жизнь – беззаботнее, быт – комфортнее!

    В настоящее время набирает популярность использование энергогенерирующих технологий и устройств в частном пользовании. Это позволяет в некоторой степени экономить на затратах по отоплению и энергообеспечению жилища. Многоэтажные дома считаются отличным вариантом для размещения подобных систем, поскольку в большинстве случаев воздействие солнечного света носит максимальный характер. Солнечные батареи на балконе квартиры смогут обеспечить работу таких приборов, как светильник, который сможет полноценно освещать балкон, лоджию и другие комнаты, зарядку небольшой аккумуляторной техники, приборов и т. п.

    Солнечная батарея на балкон может в среднем произвести более 2500 Вт, в зависимости от площади батареи, ее эффективности, а также времени года и погоде. Светильник в кладовке или на улице, радиоприемник или небольшая бытовая техника, ноутбук или телефон – это лишь неполный перечень того, чью нормальную работу может обеспечивать небольшие солнечные батареи. На сегодняшний день пользуются популярностью садовые светильники для частных домовладений, однако, использование солнечных батарей во многоэтажных домах стало также не менее популярным.

    Установка солнечных батарей не требует дополнительных согласований или разрешений органов или учреждений, которые эксплуатируют жилое здание. Основным из условий беспрепятственного использования такой инновационной системы, как солнечная батарея на балконе, является отсутствие дискомфорта соседей и обеспечение безопасности лиц и материальных ценностей, которые находятся или расположены в непосредственной близости от жилого дома.

    Многие производители и пользователи декларируют множество преимуществ использования энергии солнца, благодаря которым спрос на подобные технологии растет с каждым годом. К таковым следует отнести:

    • Экономия затрат на электроснабжение жилого помещения (при этом можно освещать квартиру, подъезд или установить светильник, который может освещать весь двор);
    • Экологически чистая технология генерации электроэнергии;
    • Долгий срок службы;
    • Установка солнечной батареи может быть осуществлена своими руками;
    • Солнечная батарея на балконе является альтернативным источником энергии, пусть и неполноценным, на случай отключения основного электроснабжения;
    • Солнечная батарея на балкон легко монтируется и не требует дополнительных затрат на периодическое обслуживание.

    Несмотря на многие преимущества, подобные системы имеют и ряд недостатков, которые, однако, не влияют на техническую и рациональную привлекательность подобной технологии. К «минусам» использования солнечных батарей на балконе или лоджии можно отнести:

    • Массивные аккумуляторы, в которых накапливается энергия. Их размещение на балконе существенно уменьшает полезную площадь этого помещения;
    • Высокая стоимость готового оборудования. В данном случае можно значительно сэкономить на сборке системы своими руками, однако, составляющие компоненты и детали также отличаются высокой стоимостью;
    • Солнечная батарея на балконе квартиры эффективна и полезна лишь в светлое время суток при ясной погоде.

    Солнечные батареи имеют различную эффективность, которая во многом зависит от типа используемого фотоэлемента. Существуют следующие их виды:

    • Поликристаллы кремния. Наиболее популярный фотоэлемент в солнечной батарее, потому как имеет оптимальное соотношение цены и производимого электричества. Кроме того, батареи из поликристаллов кремния значительно проще монтируются. Отличаются синеватым цветом.
    • Монокристаллы кремния. Более производительны, чем поликристаллический вариант батарей, но и более дорогой. Их отличительная особенность – их форма. Она представляет собой многоугольник. В этом и основной их недостаток – собрать такиэ фотоэлементы в цельную панель без зазоров – невозможно, поэтому они плохо подходят для монтажа на балконе из-за ограничения в пространстве.
    • Аморфный кремний. Менее производительный тип фотоэлемента, по сравнению с кремниевыми. Тем не менее, тоже достаточно часто применяется для монтажа на балконе.
    • Теллурид кадмия. Фотоэлемент в виде тонкой пленки, до 0,5 мм. Может быть использована поверх остекления, что создаст эффект тонировки.
    • CIGS. Это полупроводниковый материал, также выглядит как пленка, но более производителен, чем панель на основе теллурида кадмия.

    Различные виды фотоэлементов генерируют различное количество энергии. К примеру, панель площадью 1 кв. м. из монокристаллического кремния генерирует до 125 Ватт, а такая же площадь аморфного кремния даст только 50 Ватт. Кроме того, на них по-разному влияют различные погодные условия. Монокристаллические панели сильно теряют производительность при облачной погоде, а поликристаллические вырабатывают ту же мощность. Напоследок, отличаются и их эксплуатационные характеристики – срок службы монокристаллической панели – до 30 лет, поликристаллической – до 20.

    Солнечная батарея на балкон предусматривает использование специальных аккумуляторов, которым противопоказаны низкие температуры и повышенная влажность. Именно поэтому, перед тем как устанавливать подобные системы, необходимо позаботиться об утеплении лоджии или балкона.

    В том случае, когда это помещение имеет достаточный уровень теплоизоляции, можно приступать к монтажу солнечных батарей.

    Солнечные батареи на балкон представляют собой фотоэлементы в форме пластин, которые устанавливаются с расчетом прямого попадания на их поверхность солнечных лучей. Для их надежного размещения формируется каркас из металлического или алюминиевого профиля с толщиной сторон около 50 мм. Для соединения частей каркаса используют электрическую сварку. Расстояние между горизонтальными профилями не должно быть больше 20 см. Металлический каркас надежно крепится при помощи болтовой стяжки к стенке балкона с учетом того, что будет обеспечен полный доступ пользователя ко всей поверхности фотоэлементов с целью ухода за ними.

    Следует учитывать тот факт, что угол падения прямых солнечных лучей меняется на протяжении всего дня, поэтому нелишним будет предусмотреть возможность регулировки угла наклона основного каркаса, что позволит рационально использовать солнечные батареи на балконе.

    Каркас должен быть обработан антикоррозийными средствами или красками, что надежно защитит от воздействия атмосферных осадков.

    После того как внешняя часть системы установлена и соединена с аккумуляторами, их необходимо связать с группой потребителей электроэнергии силовым проводом.