ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Основные положения теории химического строения органических соединений А.М.Бутлерова. Теория строения органических веществ

Химия - это наука, которая дает нам все то разнообразие материалов и предметов быта, которым мы, не задумываясь, пользуемся каждый день. Но чтобы прийти к открытию такого многообразия соединений, которое известно сегодня, многим химикам пришлось пройти сложный научный путь.

Огромный труд, многочисленные удачные и безуспешные эксперименты, колоссальная теоретическая база знаний - все это привело к формированию различных областей промышленной химии, позволило синтезировать и использовать современные материалы: резины, пластики, пластмассы, смолы, сплавы, различные стекла, силиконы и так далее.

Одним из самых известных, заслуженных ученых-химиков, внесших неоценимый вклад в развитие именно органической химии, был русский человек Бутлеров А. М. Его труды, заслуги и результаты работ мы и рассмотрим кратко в данной статье.

Краткая биография

Дата рождения ученого - сентябрь 1828 года, число в разных источниках неодинаковое. Он был сыном подполковника Михаила Бутлерова, мать потерял достаточно рано. Все детство прожил в родовом имении деда, в деревне Подлесная Шентала (ныне район республики Татарстан).

Учился в разных местах: сначала в закрытой частной школе, затем в гимназии. Позже поступил в Казанский университет на отделение физики и математики. Однако несмотря на это больше всего интересовался химией. Будущий автор теории строения органических соединений остался по окончании учебы на месте в качестве преподавателя.

1851 год - время защиты первой диссертационной работы ученого по теме "Окисление органических соединений". После блестящего выступления ему предоставили возможность управления всей химией в своем университете.

Скончался ученый в 1886 году там, где провел детство, в родовом имении деда. В фамильной местной часовне он и был захоронен.

Вклад ученого в развитие химических знаний

Теория строения органических соединений Бутлерова - это, безусловно, его основной труд. Однако не единственный. Именно этот ученый первым создал русскую школу химиков.

Причем из ее стен вышли такие ученые, которые в дальнейшем имели большой вес в развитии всей науки. Это следующие люди:

  • Марковников;
  • Зайцев;
  • Кондаков;
  • Фаворский;
  • Коновалов;
  • Львов и другие.

Работы по органической химии

Таких трудов можно назвать множество. Ведь Бутлеров практически все свободное время проводил в лаборатории своего университета, осуществляя различные эксперименты, делая выводы и заключения. Именно так и родилась теория органических соединений.

Есть несколько особенно емких работ ученого:

  • им был создан доклад на конференцию на тему "О химическом строении вещества";
  • диссертационный труд "Об эфирных маслах";
  • первая научная работа "Окисление органических соединений".

Перед ее формулировкой и созданием автор теории строения органических соединений долго изучал работы других ученых из разных стран, исследовал их труды, в том числе и экспериментальные. Только потом, обобщив и систематизировав полученные знания, он отразил все выводы в положениях своей именной теории.

Теория строения органических соединений А. М. Бутлерова

XIX век знаменуется бурным развитием практически всех наук, в том числе и химии. В частности, продолжают копиться обширные открытия по углероду и его соединениям, поражают всех своим многообразием. Однако никто не осмеливается систематизировать и упорядочить весь этот фактический материал, привести к общему знаменателю и выявить единые закономерности, на которых все построено.

Первым это сделал Бутлеров А. М. Именно ему принадлежит гениальная теория химического строения органических соединений, о положениях которой он рассказал массово на немецкой конференции химиков. Это стало началом новой эпохи в развитии науки, органическая химия встала на

Сам ученый шел к этому постепенно. Он провел множество опытов и предсказал существование веществ с заданными свойствами, открыл некоторые типы реакций и увидел за ними будущее. Много изучал труды своих коллег и их открытия. Только на фоне этого путем тщательного и кропотливого труда ему удалось-таки создать свой шедевр. И теперь теория строения органических соединений в данном - практически то же самое, что и периодическая система в неорганической.

Открытия ученого перед созданием теории

Какие были сделаны открытия и даны теоретические обоснования ученым перед тем, как появилась теория строения органических соединений А. М. Бутлерова?

  1. Отечественный гений первым синтезировал такие органические вещества, как уротропин, формальдегид, йодистый метилен и другие.
  2. Синтезировал из неорганики сахароподобное вещество (третичный спирт), тем самым нанеся очередной удар по теории витализма.
  3. Предсказал будущее за реакциями полимеризации, назвав их лучшими и перспективными.
  4. Изомерия объяснена была впервые только им.

Конечно, это только основные вехи его работ. На самом деле, многолетний кропотливый труд ученого можно описывать долго. Однако самой значимой на сегодня стала все-таки теория строения органических соединений, о положениях которой и поговорим дальше.

Первое положение теории

В 1861 году великий русский ученый на съезде химиков в городе Шпейере делится с коллегами своими взглядами на причины строения и многообразия органических соединений, выражая все это в форме положений теории.

Самый первый пункт следующий: все атомы в пределах одной молекулы соединены в строгой последовательности, которая определяется их валентностью. При этом атом углерода проявляет показатель валентности, равный четырем. Кислород имеет значение данного показателя, равное двум, водород - единице.

Подобную особенность он предложил называть химическим Позже были приняты обозначения выражения его на бумаге при помощи графических полных структурных, сокращенных и молекулярных формул.

Сюда же относится и явление соединения углеродных частиц друг с другом в бесконечные цепи разного строения (линейные, циклические, разветвленные).

В общем, теория строения органических соединений Бутлерова своим первым положением определила значимость валентности и единой формулы для каждого соединения, отражающей свойства и поведение вещества во время реакций.

Второе положение теории

В данном пункте было дано объяснение многообразию органических соединений в мире. Опираясь на соединения углеродов в цепи, ученый высказал мысль о том, что в мире присутствуют неодинаковые соединения, имеющие различные свойства, но при этом совершенно идентичные по молекулярному составу. Другими словами, существует явление изомерии.

Этим положением теория строения органических соединений А. М. Бутлерова не просто пояснила суть изомеров и изомерии, но и сам ученый практическим опытным путем все подтвердил.

Так, например, он синтезировал изомер бутана - изобутан. Затем предсказал для пентана существование уже не одного, а трех изомеров, исходя из строения соединения. И синтезировал их все, доказав свою правоту.

Раскрытие третьего положения

Следующий пункт теории говорит о том, что все атомы и молекулы в пределах одного соединения способны влиять на свойства друг на друга. От этого и будет зависеть характер поведения вещества в реакциях разных типов, проявляемые химические и другие свойства.

Таким образом, на основании этого положения выделяют несколько отличающихся видом и строением функциональной определяющей группы.

Теория строения органических соединений А. М. Бутлерова кратко излагается практически во всех учебных пособиях по органической химии. Ведь именно она - основа данного раздела, объяснение всех закономерностей, на которых построены молекулы.

Значение теории для современности

Безусловно, оно велико. Данная теория позволила:

  1. объединить и систематизировать весь фактический материал, накопившийся к моменту ее создания;
  2. объяснить закономерности строения, свойств различных соединений;
  3. дать полное пояснение причинам такого большого многообразия соединений в химии;
  4. дала старт для многочисленных синтезов новых веществ, базирующихся на положениях теории;
  5. позволила продвинуться взглядам, развиться атомно-молекулярному учению.

Поэтому сказать, что автор теории строения органических соединений, фото которого можно увидеть ниже, сделал многое,- это не сказать ничего. Бутлерова по праву можно считать отцом органической химии, родоначальником ее теоретических основ.

Его научное видение мира, гениальность мышления, способность предвидеть результат сыграли свою роль в конечном счете. Этот человек обладал колоссальной работоспособностью, терпением и неустанно экспериментировал, синтезировал, тренировался. Ошибался, но всегда извлекал урок и делал правильные перспективные выводы.

Только такой набор качеств и деловая хватка, упорство позволили добиться желаемого эффекта.

Изучение органической химии в школе

В курсе среднего образования на изучение основ органики отводится не так много времени. Всего одна четверть 9 класса и весь год 10 ступени (по программе Габриэляна О. С.). Однако этого времени достаточно, чтобы ребята смогли изучить все основные классы соединений, особенности их строения и номенклатуры, практическую значимость.

Основа же для начала освоения курса - теория строения органических соединений А. М. Бутлерова. 10 класс посвящается полному рассмотрению ее положений, а в дальнейшем - теоретическому и практическому подтверждению их при изучении каждого класса веществ.

Как наука оформилась в начале XIX в., когда шведский ученый Й. Я. Берцелиус впервые ввел понятие об органических веществах и об органической химии. Первая теория в органической химии - теория радикалов. Химиками было обнаружено, что при химических превращениях группы из нескольких атомов в неизменном виде переходят из молекулы одного вещества в молекулу другого вещества, подобно тому как переходят из молекулы в молекулу атомы элементов. Такие «неизменяемые» группы атомов и получили название радикалов.

Однако далеко не все ученые были согласны с теорией радикалов. Многие вообще отвергали идею атомистики - представления о сложном строении молекулы и существовании атома как ее составной части. То, что неоспоримо доказано в наши дни и не вызывает ни малейших сомнений, в XIX в. было предметом ожесточенных споров.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Слайд 1>

Задачи лекции:

  • Образовательные:
    • формировать понятия о сущности теории химического строения органических веществ, опираясь на знания учащихся об электронном строении атомов элементов, их положении в Периодической системе Д.И. Менделеева, о степени окисления, природе химической связи и о других главнейших теоретических положениях:
      • последовательность расположения атомов углерода в цепи,
      • взаимное влияние атомов в молекуле,
      • зависимость свойств органических веществ от структуры молекул;
    • сформировать представление о ходе развития теорий в органической химии;
    • усвоить понятия: изомеры и изомерия;
    • разъяснить смысл структурных формул орг.веществ и их преимуществ перед молекулярными;
    • показать необходимость и предпосылки создания теории химического строения;
    • продолжить формирование навыков составления конспекта.
  • Развивающие :
    • развивать мыслительные приемы анализа, сравнения, обобщения;
    • развивать абстрактное мышление;
    • тренировать внимание учащихся при восприятии большого по объему материала;
    • выробатывать умения анализировать информацию и выделять наиболее важный материал.
  • Воспитательные:
    • с целью патриотического и интернационального воспитания привести учащимся исторические сведения о жизни и деятельности ученых.

ХОД УРОКА

1. Организацонная часть

– Приветствие
– Подготовка учащихся к уроку
– Получение сведений об отсутствующих.

2. Изучение нового

План лекции: <Приложение 1 . Слайд 2>

I. Доструктурные теории:
– витализм;
– теория радикалов;
– теория типов.
II. Краткая справка о состоянии химической науки к 60-м годам XIX столетия. Условия создания теории химического строения веществ:
– необходимость создания теории;
– предпосылки теории химического строения.
III. Сущность теории химического строения органических веществ А.М. Бутлерова. Понятие об изомерии и изомерах.
IV. Значение теории химического строения органических веществ А.М. Бутлерова и ее развитие.

3. Задание на дом: конспект, п. 2.

4. Лекция

I. Знания об органических веществах накапливались постепенно еще с глубокой древности, но как самостоятельная наука органическая химия возникла лишь в начале XIX века. Оформление самостоятельности орг.химии связано с именем шведского ученого Я. Берцелиуса <Приложение 1 . Слайд 3>. В 1808-1812 г.г. он издал свое большое руководство по химии, в котором первоначально намеревался рассмотреть наряду с минеральными также и вещества животного и растительного происхождения. Но часть учебника, посвященная орг.веществам, появилась лишь в 1827 г.
Самое существенное различие между веществами неорганическими и органическими Я. Берцелиус видел в том, что первые могут быть получены в лабораториях синтетическим путем, в то время как вторые якобы образуются лишь в живых организмах под действием некой «жизненной силы» – химического синонима «души», «духа», «божественного происхождения» живых организмов и составляющих их органических веществ.
Теория, объяснявшая образование орг.соединений вмешательством «жизненной силы», получила название витализма. В течение некоторого времени она пользовалась популярностью. В лаборатории удавалось синтезировать лишь самые простые углеродсодержащие вещества, такие как углекислый газ – СО 2 , карбид кальция – CaC 2 , цианид калия – KCN.
Только в 1828 г. немецкий ученый Вёлер <Приложение 1 . Слайд 4> сумел получить органическое вещество мочевину из неорганической соли – цианата аммония – NH 4 CNO.
NH 4 CNO –– t –> CO(NH 2) 2
В 1854 г. французский ученый Бертло <Приложение 1 . Слайд 5>получил триглицерид. Это и повлекло за собой необходимость изменения определения органической химии.
Ученые пытались на основании состава и свойств разгадать природу молекул органических веществ, стремились создать систему, которая позволила бы связать воедино разрозненные факты, накопившиеся к началу XIX века.
Первая попытка создания теории, стремившейся обобщить имевшиеся об орг.веществах данные, связана с именем французского химика Ж.Дюма <Приложение 1 . Слайд 6>. Это была попытка рассмотреть с единой точки зрения довольно большую группу орг.соединений, которые сегодня мы называли бы производными этилена. Орг.соединения оказывались производными некоторого радикала C 2 H 4 – этерина:
C 2 H 4 * HCl – хлористый этил (солянокислый этерин)
Заложенная в этой теории идея – подход к орг.веществу как состоящему из 2-х частей – легла в последствии в основу, более широкой теории радикалов (Я. Берцелиус, Ю.Либих, Ф. Велер). Эта теория основана на представлении о «дуалистическом строении» веществ. Я. Берцелиус писал: «каждое орг.вещество состоит из 2-х составных частей, несущих противоположный электрический заряд». Одной из этих составных частей, а именно частью электроотрицательной, Я.Берцелиус считал кислород, остальная же часть, собственно органическая, должна была составлять электроположительный радикал.

Основные положения теории радикалов: <Приложение 1 . Слайд 7>

– в состав органических веществ входят радикалы, несущие на себе положительный заряд;
– радикалы всегда постоянны, не подвергаются изменениям, они без изменений переходят из одной молекулы в другую;
– радикалы могут существовать в свободном виде.

Постепенно в науке накапливались факты, противоречащие теории радикалов. Так Ж.Дюма провел замещение водорода хлором в углеводородных радикалах. Ученым, приверженцам теории радикалов, казалось невероятным, чтобы хлор, заряженный отрицательно, играл в соединениях роль водорода, заряженного положительно. В 1834 г. Ж. Дюма получил задание расследовать неприятное происшествие во время бала во дворце французского короля: свечи при горении выделяли удушливый дым. Ж.Дюма установил, что воск, из которого делались свечи, фабрикант для отбелки обрабатывал хлором. При этом хлор входил в молекулу воска, заменяя часть содержавшегося в ней водорода. Удушливые пары, перепугавшие королевских гостей, оказались хлороводородом (HCl). В дальнейшем Ж.Дюма получил трихлоруксусную кислоту из уксусной.
Таким образом, электроположительный водород заменялся крайне электроотрицательным элементом хлором, а свойства соединения при этом почти не менялись. Тогда Ж.Дюма сделал вывод, что на место дуалистического подхода должен стать подход к орг.соединению как единому целому.

Теория радикалов была постепенно отвергнута, однако она оставила глубокий след в органической химии: <Приложение 1 . Слайд 8>
– понятие «радикал» прочно вошло в химию;
– верным оказалось утверждение о возможности существования радикалов в свободном виде, о переходе в огромном числе реакций определенных групп атомов из одного соединения в другое.

В 40-х г.г. XIXв. Было положено начало учению о гомологии, позволившему выяснить некоторые отношения между составом и свойствами соединений. Выявлены гомологические ряды, гомологическая разность, что позволило классифицировать органические вещества. Классификация орг.веществ на основе гомологии привела к возникновению теории типов (40-50-е годы XIX в., Ш. Жерар, А.Кекуле и др.) <Приложение 1 . Слайд 9>

Сущность теории типов <Приложение 1 . Слайд 10>

– в основу теории положена аналогия в реакциях между органическими и некоторыми неорганическими веществами, принятыми в качестве типов (типы: водород, вода, аммиак, хлороводород и др.). Замещая в типе вещества атомы водорода на другие группы атомов, ученые предсказали различные производные. Например, замещение атома водорода в молекуле воды на радикал метил приводит к возникновению молекулы спирта. Замещение двух атомов водорода – к появлению молекулы простого эфира <Приложение 1 . Слайд 11>

Ш. Жерар прямо говорил в связи с этим, что формула вещества – это только сокращенная запись его реакций.

Все орг. вещества считали производными простейших неорганических веществ – водорода, хлороводорода, воды, аммиака <Приложение 1 . Слайд 12>

<Приложение 1 . Слайд 13>

– молекулы органических веществ представляют собой систему, состоящую из атомов, порядок соединения которых неизвестен; на свойства соединений влияет совокупность всех атомов молекулы;
– невозможно познать строение вещества, так как молекулы в процессе реакции изменяются. Формула вещества отражает не строение, а реакции, в которые данное вещество. Для каждого вещества можно написать столько рациональных формул, сколько различных видов превращений может испытывать вещество. Теория типов допускала множественность «рациональных формул» для веществ в зависимости от того какие реакции хотят этими формулами выразить.

Теория типов сыграла большую роль в развитии органической химии <Приложение 1 . Слайд 14>

– позволила предсказать и открыть ряд веществ;
– оказала положительное влияние на развитие учения о валентности;
– обратила внимание на изучение химических превращений органических соединений, что позволило глубже изучить свойства веществ, а также свойства предсказываемых соединений;
– создала совершенную для того времени систематизацию органических соединений.

Не следует забывать, что в действительности теории возникали и сменяли друг друга не последовательно, а существовали одновременно. Химики нередко плохо понимали друг друга. Ф.Вёлер в 1835 г. говорил, что «органическая химия в настоящее время может кого угодно свести с ума. Она представляется мне дремучим лесом полным чудесных вещей, огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть…».

Ни одна из этих теорий не стала теорией органической химии в полном смысле слова. Главная причина несостоятельности этих представлений в их идеалистической сущности: внутреннее строение молекул считалось принципиально непознаваемым, а любые рассуждения о нем – шарлатанством.

Нужна была новая теория, которая бы стояла на материалистических позициях. Такой теорией явилась теория химического строения А.М. Бутлерова <Приложение 1 . Слайды 15, 16>, которая создана в 1861 г. Все рациональное и ценное, что было в теориях радикалов и типов, было в дальнейшем ассимилировано теорией химического строения.

Необходимость появления теории диктовалась: <Приложение 1 . Слайд 17>

– возросшими требованиями промышленности к органической химии. Необходимо было обеспечить текстильную промышленность красителями. В целях развития пищевой промышленности требовалось усовершенствовать методы переработки сельскохозяйственных продуктов.
В связи с этими задачами начали разрабатываться новые методы синтеза органических веществ. Однако у ученых возникли серьезные затруднения по научному обоснованию этих синтезов. Так, например, нельзя было объяснить валентность углерода в соединениях с помощью старой теории.
Углерод нам известен как элемент 4-х валентный (Это было доказано экспериментально). Но здесь он как будто только в метане CH 4 сохраняет эту валентность. В этане C 2 H 6 если следовать нашим представлениям, углерод д.б. 3-валентным, а в пропане C 3 H 8 – дробную валентность. (А мы знаем, что валентность должна быть выражена только целыми числами).
Какова же валентность углерода в органических соединениях?

Было непонятно, почему существуют вещества с одинаковым составом, но различными свойствами: С 6 H 12 O 6 – молекулярная формула глюкозы, но такая же формула и фруктозы (сахаристого вещества – составной части мёда).

Доструктурные теории не могли объяснить многообразие органических веществ. (Почему углерод и водород – два элемента, – могут образовывать такое большое число различных соединений?).

Необходимо было систематизировать имеющиеся знания с единой точки зрения и разработать единую химическую символику.

Научно обоснованный ответ на эти вопросы дала теория химического строения органических соединений, созданная русским ученым А.М. Бутлеровым.

Основными предпосылками , подготовившими почву для возникновения теории химического строения были <Приложение 1 . Слайд 18>

– учение о валентности. В 1853 г. Э. Франкланд ввел понятие о валентности, установил валентность для ряда металлов, исследуя металлоорганические соединения. Постепенно понятие валентности было распространено на многие элементы.

Важным открытием для органической химии явилась гипотеза о способности атомов углерода к образованию цепей (А. Кекуле, А. Купер).

Одной из предпосылок была выработка правильного представления об атомах и молекулах. До 2-й половины 50-х г.г. XIXв. Не было общепризнанных критериев для определения понятий: «атом», «молекула», «атомная масса», «молекулярная масса». Только на международном конгрессе химиков в Карлсруэ (1860 г.) были четко определены эти понятия, что предопределило развитие теории валентности, возникновение теории химического строения.

Основные положения теории химического строения А.М. Бутлерова (1861 г.)

А.М. Бутлеров сформулировал важнейшие идеи теории строения органических соединений в виде основных положений, которые можно разделить на 4 группы.<Приложение 1 . Слайд 19>

1. Все атомы, образующие молекулы органических веществ, связаны в определенной последовательности согласно их валентности (т.е. молекула имеет строение).

<Приложение 1 . Слайды 19, 20>

В соответствии с этими представлениями валентность элементов условно изображают черточками, например, в метане CH 4 . <Приложение 1 . Слайд 20>>

Такое схематичное изображение строения молекул называют формулами строения и структурными формулами. Основываясь на положениях о 4-х валентности углерода и способности его атомов образовывать цепи и циклы, структурные формулы орг.веществ можно изобразить так: <Приложение 1 . Слайд 20>

В этих соединениях углерод четырехвалентен. (Черточка символизирует ковалентную связь, пару электронов).

2. Свойства вещества зависят не только от того какие атомы и сколько их входит в состав молекул, но и от порядка соединения атомов в молекулах.(т.е. свойства зависят от строения) <Приложение 1 . Слайд 19>

Данное положение теории строения орг.веществ объяснило, в частности, явление изомерии. Существуют соединения, которые содержат одинаковое число атомов одних и тех же элементов, но связанных в различном порядке. Такие соединения обладают разными свойствами и называются изомерами.
Явление существования веществ с одинаковым составом, но разным строением и свойствами называется изомерией. <Приложение 1 . Слайд 21>

Существование изомеров орг.веществ объясняет их многообразие. Явление изомерии было предсказано и доказано (экспериментально) А.М.Бутлеровым на примере бутана

Так, например, составу С 4 Н 10 отвечают две структурные формулы: <Приложение 1 . Слайд 22>

Разное взаимное расположение атомов углерода в молекулах у/в появляется только с бутана. Число изомеров возрастает с увеличением числа атомов углерода у соответствующего углеводорода, например, у пентана – три изомера, а у декана – семьдесят пять.

3. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы предвидеть свойства. <Приложение 1 . Слайд 19>

Из курса неорганической химии, известно, что свойства неорганических веществ зависят от строения кристаллических решеток. Отличительные свойства атомов от ионов объясняются их строением. В дальнейшем мы убедимся, что органические вещества с одинаковыми молекулярными формулами, но разным строением отличаются не только по физическим, но и по химическим свойствам.

4. Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга.

<Приложение 1 . Слайд 19>

Как нам уже известно, свойства неорганических соединений, содержащих гидроксогруппы, зависят от того, с какими атомами они связаны – с атомами металлов или неметаллов. Так например, гидроксогруппу содержат как основания, так и кислоты:<Приложение 1 . Слайд 23>

Однако, свойства этих веществ совершенно различны. Причина различного химического характера группы – ОН (в водном растворе) обусловлена влиянием связанных с ней атомов и групп атомов. С возрастанием неметаллических свойств центрального атома ослабляется диссоциация по типу основания и возрастает диссоциация по типу кислоты.

Органические соединения также могут иметь разные свойства, которые зависят от того, с какими атомами или группами атомов связаны гидроксильные группы.

Вопрос о взаимном вливании атомов А.М. Бутлеров подробно разобрал 17 апреля 1879 г. на заседании Русского физико – химического общества. Он говорил, что если с углеродом связаны два разных элемента, например, Cl и H, то «они здесь не зависят один от другого в той степени, как от углерода: между ними нет той зависимости, той связи, какая существует в частице соляной кислоты… Но следует ли из этого, что в соединении CH 2 Cl 2 между водородом и хлором нет никакой зависимости? Я отвечаю на это решительным отрицанием».

В качестве конкретного примера он приводит далее увеличение подвижности хлора при превращении группы CH 2 Cl в COCl и говорит по этому поводу: «Очевидно, что характер находящегося в частице хлора изменился под влиянием кислорода, хотя этот последний и не соединился с хлором непосредственно». <Приложение 1 . Слайд 23>

Вопрос о взаимном влиянии непосредственно не связанных атомов явился основным теоретическим стержнем работ В.В. Морковникова.

В истории человечества известно сравнительно немного ученых, открытия которых имеют всемирное значение. В области органической химии такие заслуги принадлежат А.М. Бутлерову. По значимости теорию А.М. Бутлерова сопоставляют с Периодическим законом.

Теория химического строения А.М. Бутлерова: <Приложение 1 . Слайд 24>

– дала возможность систематизировать органические вещества;
– ответила на все вопросы, возникшие к тому времени в органической химии (см. выше);
– позволила теоретически предвидеть существование неизвестных веществ, найти пути их синтеза.

Прошло почти 140 лет с тех пор, как была создана ТХС органических соединений А.М. Бутлерова но и теперь химики всех стран используют ее в своих работах. Новейшие достижения науки пополняют данную теорию, уточняют и находят все новые подтверждения правильности ее основных идей.

Теория химического строения и сегодня остается фундаментом органической химии.

ТХС органических соединений А.М. Бутлерова внесла существенный вклад в создание общенаучной картины мира, способствовала диалектико – материалистическому пониманию природы:<Приложение 1 . Слайд 25>

закон перехода количественных изменений в качественные можно проследить на примере алканов: <Приложение 1 . Слайд 25>.

Изменяется только количество атомов углерода.

закон единства и борьбы противоположностей прослеживается на явлении изомерии<Приложение 1 . Слайд 26>

Единство – в составе (одинаковый), расположении в пространстве.
Противоположность – в строении и свойствах (разная последовательность расположения атомов).
Эти два вещества сосуществуют вместе.

закон отрицания отрицания – на изомерии.<Приложение 1 . Слайд 27>

Изомеры сосуществуя отрицают друг друга своим существованием.

Разработав теорию, А.М. Бутлеров не считал ее абсолютной и неизменной. Он утверждал, что она должна развиваться. ТХС органических соединений не осталась неизменной. Дальнейшее ее развитие шло, главным образом, в 2-х взаимосвязанных направлениях: <Приложение 1 . Слайд 28>

Стереохимия – учение о пространственном строении молекул.

Учение об электронном строении атомов (позволило понять природу химической связи атомов, сущность взаимного влияния атомов, объяснить причину проявления веществом тех или иных химических свойств).

Для приготовления пищи, красителей, одежды, лекарств человек издавна научился применять различные вещества. С течением времени накопилось достаточное количество сведений о свойствах тех или иных веществ, что позволило усовершенствовать способы их получения, переработки и т.д. И оказалось, что многие минеральные (неорганические вещества) можно получить непосредственно.

Но некоторые используемые человеком вещества не были им синтезированы, потому что их получали из живых организмов или растений. Эти вещества назвали органическими. Органические вещества не удавалось синтезировать в лаборатории. В начале ХIХ века активно развивалось такое учение как витализм (vita – жизнь), согласно которому органические вещества возникают только благодаря «жизненной силе» и создать их «искусственным путём» невозможно.

Но шло время и наука развивалась, появились новые факты об органических веществах, которые шли вразрез с существовавшей теорией виталистов.

В 1824 году немецкий учёный Ф. Вёлер впервые в истории химической науки синтезировал щавелевую кислоту органическое вещество из неорганических веществ (дициана и воды):

(CN) 2 + 4H 2 O → COOH - COOH + 2NH 3

В 1828 Вёллер нагрел циановокислый натрий с серлым аммонием и синтезировал мочевину – продукт жизнедеятельности животных организмов:

NaOCN + (NH 4) 2 SO 4 → NH 4 OCN → NH 2 OCNH 2

Эти открытия сыграли важную роль в развитии науки вообще, а химии в особенности. Учёные-химики стали постепенно отходить от виталистического учения, а принцип деления веществ на органические и неорганические обнаружил свою несостоятельность.

В настоящее время вещества по-прежнему делят на органические и неорганические, но критерий разделения уже немного другой.

Органическими называют вещества , содержащие в своём составе углерод, их ещё называют соединениями углерода. Таких соединений около 3 миллионов, остальных же соединений около 300 тысяч.

Вещества, в состав которых углерод не входит, называют неорганическим и. Но есть исключения из общей классификации: существует ряд соединений, в состав которых входит углерод, но они относятся к неорганическим веществам (окись и двуокись углерода, сероуглерод, угольная кислота и её соли). Все они по составу и свойствам они сходны с неорганическими соединениями.

В ходе изучения органических веществ появились новые сложности: на основании теорий о неорганических веществах нельзя раскрыть закономерности строения органических соединений, объяснить валентность углерода. Углерод в разных соединениях имел различную валентность.

В 1861 году русский ученый А.М. Бутлеров впервые синтезом получил сахаристое вещество.

При изучении углеводородов, А.М. Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый выявил несколько закономерностей. Они и легла в основу созданной им теории химического строения.

1. Молекула любого органического вещества не является беспорядочной, атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Углерод в органических соединениях всегда четырёхвалентен.

2. Последовательность межатомных связей в молекуле называется еехимическим строениеми отражается одной структурной формулой (формулой строения).

3. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

4. Свойства веществ зависят не только от состава молекул вещества, но от их химического строения (последовательности соединения атомов элементов).

5. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы предвидеть свойства.

6. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Данная теория стала научным фундаментом органической химии и ускорила её развитие. Опираясь на положения теории, А.М. Бутлеров описал и объяснил явление изомерии , предсказал существование различных изомеров и впервые получил некоторые из них.

Рассмотрим химическое строение этана C 2 H 6 . Обозначив валентность элементов чёрточками, изобразим молекулу этана в порядке соединения атомов, то есть напишем нё структурную формулу. Согласно теории А.М. Бутлерова, она будет иметь следующий вид:

Атомы водорода и углерода связаны в одну частицу, валентность водорода равна единице, а углерода четырём. Два атома углерода соединены между собой связью углерод углерод (С С). Способность углерода образовывать С С-связь понятна, исходя из химических свойств углерода. На внешнем электронном слое у атома углерода четыре электрона, способность отдавать электроны такая же, как и присоединять недостающие. Поэтому углерод чаще всего образует соединения с ковалентной связью, то есть за счёт образования электронных пар с другими атомами, в том числе и атомов углерода друг с другом.

Это одна из причин многообразия органических соединений.

Соединения, которые имеют один и тот же состав, но различное строение, называются изомерами. Явление изомерии одна из причин многообразия органических соединений

Остались вопросы? Хотите знать больше о теории строения органических соединений?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Первой возникла в начале XIX в. теория радикалов (Ж. Гей-Люссак, Ф. Велер, Ю. Либих). Радикалами были названы группы атомов, переходящие без изменения при химических реакциях из одного соединения в другое. Такое понятие о радикалах сохранилось, но большинство других положений теории радикалов оказались неправильными.

Согласно теории типов (Ш. Жерар) все органические вещества можно разделить на типы, соответс­твующие определенным неорганическим веществам. Например, спирты R-OH и простые эфиры R-O-R рассматривались как представители типа воды H-OH, в которой атомы водорода замещены радикалами. Теория типов создала классификацию органических веществ, некоторые принципы которой применяются в настоящее время.

Современная теория строения органических соединений создана выдающимся русским учёным А.М. Бутлеровым.

Основные положения теории строения органических соединений А.М. Бутлерова

1. Атомы в молекуле располагаются в определенной последовательности согласно их валентности. Валентность атома углерода в органических соединениях равна четырем.

2. Свойства веществ зависят не только от того, какие атомы и в каких количествах входят в состав молекулы, но и от того, в каком порядке они соединены между собой.

3. Атомы или группы атомов, входящих в состав молекулы, взаимно влияют друг на друга, от чего зависят химическая активность и реакционная способность молекул.

4. Изучение свойств веществ позволяет определить их химичес­кое строение.

Взаимное влияние соседних атомов в молекулах является важнейшим свойством органических соединений. Это влияние передается или по цепи простых связей или по цепи сопряженных (чередующихся) простых и двойных связей.

Классификация органических соединений основана на анализе двух аспектов строения молекул – строения углеродного скелета и наличия функциональных групп.


Органические соединения

Углеводороды Гетероциклические соединения

Предель- Непре- Арома-

ные дельные тические

Алифатические Карбоциклические

Предельные Непредельные Алициклические Ароматические

(Алканы) (Циклоалканы) (Арены)

С п Н 2п +2 С п Н 2п С п Н 2п -6

Конец работы -

Эта тема принадлежит разделу:

Введение. Основы современной теории строения

Органических соединений.. введение.. биоорганическая химия изучает строение и свойства веществ участвующих в процессах жизнедеятельности в..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Алкены Алкадиены Алкины
СпН2п СпН2п-2 СпН2п-2 Рис. 1. Классификация органических соединений по строению

Электронное строение атома углерода. Гибридизация.
Для валентного электронного слоя атома С, находящегося вглавной подгруппе четвёртой группы второго периода Периодической таблицы Д. И. Менделеева главное квантовое число n = 2, побочное (орбитально

Сопряженные системы
Различают два типа сопряженных систем (и сопряжений). 1. p, p-сопряжение - электроны делокализованы

ТЕМА 3. Химическое строение и изомерия органических соединений
Изомерия органических соединений. Если два или больше индивидуальных веществ имеют одинаковый количественный состав (молекулярную формулу), но отличаются друг от друга пос

Конформации органических молекул
Поворот вокруг s-связи С–С совершается сравнительно легко, углеводородная цепь может принимать разные формы. Конформационные формы легко переходят друг в друга и поэтому не являются различными соед

Конформации циклических соединений.
Циклопентан. У пятичленного цикла в плоской форме валентные углы равны 108°, что близко к нормальному значению для sр3-гибридного атома. Поэтому в плоском циклопентане, в отличие от цикл

Конфигурационные изомеры
Это стереоизомеры с различным расположением вокруг определенных атомов других атомов, радикалов или функциональных групп в пространстве относительно друг друга. Различают понятия диастере

Общая характеристика реакций органических соединений.
Кислотность и основность органических соединений. Для оценки кислотности и основности органических соединений наибольшее значение имеют две теории – теория Бренстеда и тео

Основания Бренстеда – нейтральные молекулы или ионы, способные присоединять протон (акцепторы протонов).
Кислотность и основность являются не абсолютными, а относительными свойствами соединений: кислотные свойства обнаруживаются лишь в присутствии основания; основные свойства – только в присутствии ки

Общая характеристика реакций органических соединений
Большинство органических реакций включает несколько по­следовательных (элементарных) стадий. Детальное описание со­вокупности этих стадий называется механизмом. Механизм реакции -

Селективность реакций
Во многих случаях в органическом соединении присутствуют несколько неравноценных реакционных центров. В зависимости от строения продуктов реакции говорят о региоселективности, хемоселективности и с

Радикальные реакции.
Хлор реагирует с предельными углеводородами только под влия­нием света, нагревания или в присутствии катализаторов, при­чем последовательно замещаются хлором все атомы водорода: СН4

Реакции электрофильного присоединения
Ненасыщенные углеводороды - алкены, циклоалкены, алкадиены и алкины - проявляют способность к реакциям присоединения, так как содержат двойные или тройные связи. Более важной in vivo является двойн

И элиминирования у насыщенного атома углерода
Реакции нуклеофильного замещения у sp3- гибридизованного атома углерода: гетеро­литические реакции, обусловленные поляризацией s- связи углерод - гетероатом (галогенопро

Реакции нуклеофильного замещения с участием sр2-гибридизованного атома углерода.
Механизм реакций этого типа рассмотрим на примере взаимодействия карбоновых кислот со спиртами (реакция этерификации). В карбоксильной группе кислоты реализуется р,p- сопряжение, поскольку пара эле

Реакции нуклеофильного замещения в ряду карбоновых кислот.
Только с чисто формальных позиций можно рассматривать кар­боксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью и

Органических соединений.
Окислительно-восстановительные реакции (ОВР) занимают большое место в органической химии. Важнейшее значение имеют ОВР для процессов жизнедеятельности. С их помощью организм удовлет

Участвующие в процессах жизнедеятельности
Подавляющее большинство органических веществ, участвующих в процессах метаболизма, представляют собой соединения с двумя и более функциональными группами. Такие соединения принято классифицировать

Двухатомные фенолы
Двухатомные фенолы – пирокатехин, резорцин, гидрохинон – входят в состав многих природных соединений. Все они дают характерное окрашивание с хлоридом железа. Пирокатехин (о-дигидроксибензол, катехо

Дикарбоновые и ненасыщенные карбоновые кислоты.
Карбоновые кислоты, содержащие в своем составе одну карбоксильную группу, называют одноосновными, две - двухосновными т. д. Дикарбоновые кислоты – белые кристаллические вещества, обладающи

Аминоспирты
2-Аминоэтанол (этаноламин, коламин) – структурный компонент сложных липидов, образуется путем размыкания напряженных трехчленных циклов этиленоксида и этиленимина аммиаком или водой соответственно

Гидрокси- и аминокислоты.
Гидроксикислоты содержат в молекуле одновременно гидроксильную и карбоксильную группы, аминокислоты - карбоксильную и аминогруппу. В зависимости от расположения гидрокси- или аминогруппы п

Оксокислоты
Оксокислоты - соединения, содержащие одновременно карбоксильную и альдегидную (или кетонную) группы. В соответствии с этим различают альдегидокислоты и кетокислоты. Простейшей альдегидокис

Гетерофункциональные производные бензола как лекарственные средства.
Последние десятилетия характеризуются появлением множества новых лекарственных средств и препаратов. Вместе с тем большое значение продолжают сохранять некоторые группы известных ранее лекарственны

ТЕМА 10. Биологически важные гетероциклические соединения
Гетероциклические соединения (гетероциклы) – соединения, включающие в цикл один или несколько атомов, отличных от углерода (гетероатомов). Гетероциклические системы лежат в основе с

ТЕМА 11. Аминокислоты, пептиды, белки
Строение и свойства аминокислот и пептидов. Аминокислоты - соединения, в молекулах которых одновременно присутствуют амино- и карбоксильные группы. Природные a-амин

Пространственное строение полипептидов и белков
Для высокомолекулярных полипептидов и белков наряду с первичной структурой характерны более высокие уровни организации, которые принято называть вторичной, третичной и четвертичной структурами.

ТЕМА 12. Углеводы: моно, ди- и полисахариды
Углеводы разделяют на простые (моносахариды) и сложные (полисахариды). Моносахариды (монозы). Это гетерополифункциональные соединения, содержащие карбонильную и несколько г

ТЕМА 13. Нуклеотиды и нуклеиновые кислоты
Нуклеиновые кислоты (полинуклеотиды) – это биополимеры, мономерными звеньями которых являются нуклеотиды. Нуклеотид представляет собой трехкомпонентную структуру, состоящую

Нуклеозиды.
Гетероциклические основания образуют N-гликозиды с D-рибозой или 2-дезокси-D-рибозой. В химиии нуклеиновых кислот такие N-гликозиды называют нуклеозидами. D-рибоза и 2-дезокси- D -рибоза в состав п

Нуклеотиды.
Нуклеотидами называются фосфаты нуклеозидов. Фосфорная кислота обычно этерифицирует спиртовый гидроксил при С-5" или С-3" в остатке рибозы или дезоксирибозы (атомы цикла азотистых оснований нумерую

Стероиды
Стероиды широко распространены в природе, выполняют в организме разнообразные функции. К настоящему времени известно около 20 000 стероидов; более 100 из них применяется в медицине. Стероиды имеют

Стероидные гормоны
Гормоны – биологически активные вещества, образующиеся в результате деятельности желез внутренней секреции и принимающие участие в регуляции обмена веществ и физиологических функций в организме.

Стерины
Как правило, клетки очень богаты стеринами. В зависимости от источника выделения различают зоостерины (из животных), фитостерины (из растений), микостерины (из грибов) и стерины микроорганизмов. В

Желчные кислоты
В печени стерины, в частности холестерин, превращаются в желчные кислоты. Алифатическая боковая цепь у С17 в желчных кислотах, производных углеводорода холана, состоит из 5 атомов углеро

Терпены и терпеноиды
Под этим названием объединяют ряд углеводородов и их кислородсодержащих производных - спиртов, альдегидов и кетонов, углеродный скелет которых построен из двух, трех и более звеньев изопрена. Сами

Витамины
Витаминами обычно называют органические вещества, присутствие которых в небольшом количестве в пище человека и животных необходимо для их нормальной жизнедеятельности. Это классическое опр

Житрорастворимые витамины
Витамин А относится к сесквитерпенам, содержится в масле, молоке, яичном желтке, рыбьем жире; свиное сало и маргарин его не содержат. Это витамин роста; недостаток его в пище вызыв

Водорастворимые витамины
В конце прошлого века тысячи моряков на японских судах страдали, а многие из них умирали мучительной смертью от таинственной болезни «бери-бери». Одной из загадок бери-бери было то, что моряки на с